JPH03117677A - Two cycle internal combustion engine - Google Patents

Two cycle internal combustion engine

Info

Publication number
JPH03117677A
JPH03117677A JP25238589A JP25238589A JPH03117677A JP H03117677 A JPH03117677 A JP H03117677A JP 25238589 A JP25238589 A JP 25238589A JP 25238589 A JP25238589 A JP 25238589A JP H03117677 A JPH03117677 A JP H03117677A
Authority
JP
Japan
Prior art keywords
pressure
combustion chamber
compressed air
fuel
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25238589A
Other languages
Japanese (ja)
Inventor
Eiji Ono
大野 栄嗣
Masami Manabe
真鍋 正己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NipponDenso Co Ltd filed Critical Toyota Motor Corp
Priority to JP25238589A priority Critical patent/JPH03117677A/en
Publication of JPH03117677A publication Critical patent/JPH03117677A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

PURPOSE:To prevent injection of quantities of compressed air due to deterioration of atomization of injection fuel and reduction in a pressure in a combustion chamber by a method wherein when fuel is injected in a combustion chamber from an air blast valve, the pressure of compressed air is increased with the increase in a pressure in the combustion chamber. CONSTITUTION:When a feed valve 5 is opened, the interior of a surge tank 12 is communicated with the interior of a combustion chamber 4, and a scavenging pressure in the surge tank 12 attains a value approximately equal to a pressure in the combustion chamber 4. In this period, a compressed air pressure fed to an air blast valve 21 is regulated to a value approximately 3kg/cm<2> higher than a pressure in the combustion chamber 4 by means of a pressure regulator 22. Thus, when, during this period, the nozzle of the air blast valve 21 is opened to inject fuel in the combustion chamber 4, since a compressed air pressure is always regulated to a value higher by a proper pressure than that in the combustion chamber 4, atomization of injection fuel is prevented from worsening due to an increase in a pressure in the combustion chamber 4, and quantities of compressed air is prevented from being injected in the combustion chamber 4 from the air blast valve 21 as a result of a pressure in the combustion chamber 4 being reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクル内燃機関に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a two-stroke internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、燃料を圧縮空気によって噴出せしめるいわゆるエ
アブラスト弁を燃焼室内に臨んで配置し、このエアブラ
スト弁に供給される圧縮空気を圧力調整器によって一定
圧力に調整するようにした内燃機関が知られている。
Conventionally, internal combustion engines have been known in which a so-called air blast valve that blows out fuel using compressed air is placed facing into a combustion chamber, and the compressed air supplied to the air blast valve is adjusted to a constant pressure by a pressure regulator. ing.

一方、特表昭63−500324号公報には、燃焼室内
に燃料を噴出せしめるエアブラスト弁に供給される圧縮
空気の圧力を燃料の圧力より常に一定圧力だけ高くなる
ように調整し、機関回転数が予め定められた回転数に達
したときに燃料圧を増大せしめるようにした内燃機関が
開示されている。
On the other hand, Japanese Patent Publication No. 63-500324 discloses that the pressure of compressed air supplied to the air blast valve that injects fuel into the combustion chamber is adjusted so that it is always higher than the fuel pressure by a constant pressure, and An internal combustion engine is disclosed in which the fuel pressure is increased when the engine reaches a predetermined rotational speed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら前者の従来の内燃機関では、例えば圧縮空
気の圧力を比較的低い一定の圧力に調整している場合に
は、燃料噴射時における燃焼室内の圧力が高くなると、
燃料を噴出せしめるための圧縮空気の圧力と燃焼室内の
圧力との差圧が小さくなるため噴射燃料の微粒化が悪化
するという問題がある。また圧縮空気の圧力を比較的高
い一定の圧力に調整している場合には、燃料噴射時にお
ける燃焼室内の圧力が高くなっても噴射燃料は良好に微
粒化せしめられるが、燃料噴射時における燃焼室内の圧
力が低くなるとエアブラスト弁から多量の圧縮空気が燃
焼室内に噴射せしめられるため、圧縮空気供給源として
大容量のニアコンプレッサが必要となる等の問題がある
However, in the former type of conventional internal combustion engine, for example, when the pressure of compressed air is adjusted to a relatively low constant pressure, when the pressure inside the combustion chamber increases during fuel injection,
There is a problem that the atomization of the injected fuel worsens because the pressure difference between the pressure of the compressed air for injecting the fuel and the pressure inside the combustion chamber becomes small. Furthermore, if the pressure of compressed air is adjusted to a relatively high constant pressure, the injected fuel can be atomized well even if the pressure inside the combustion chamber increases during fuel injection, but the When the pressure in the chamber becomes low, a large amount of compressed air is injected into the combustion chamber from the air blast valve, resulting in problems such as the need for a large-capacity near compressor as a compressed air supply source.

一方、特表昭63−500324号公報に開示された内
燃機関においても、エアブラスト弁に供給される圧縮空
気の圧力を燃料噴射時における燃焼室内の圧力の増大に
応じて増大せしめるようにしていないため、前述の従来
の内燃機関と同様の問題を生ずる。
On the other hand, in the internal combustion engine disclosed in Japanese Patent Application Publication No. 63-500324, the pressure of compressed air supplied to the air blast valve is not increased in accordance with the increase in pressure in the combustion chamber during fuel injection. Therefore, problems similar to those of the conventional internal combustion engine described above occur.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため本発明によれば、燃料を圧縮
空気によって噴射せしめるエアブラスト弁を燃焼室内に
臨んで配置し、エアブラスト弁に供給される圧縮空気の
圧力を調整するための圧力調整器に掃気圧を導き掃気圧
の増大に応じて圧縮空気の圧力を増大せしめ、給気弁が
開弁しているときにエアブラスト弁から燃焼室内への燃
料噴射を開始せしめるようにしている。
In order to solve the above-mentioned problems, according to the present invention, an air blast valve for injecting fuel with compressed air is arranged facing into the combustion chamber, and a pressure adjustment mechanism is provided to adjust the pressure of the compressed air supplied to the air blast valve. Scavenging pressure is introduced into the combustion chamber, and the pressure of compressed air is increased in accordance with the increase in scavenging pressure, so that when the air supply valve is open, fuel injection into the combustion chamber is started from the air blast valve.

〔作 用〕 給気弁が開弁しているときには掃気圧は燃焼室内の圧力
とほぼ等しいため、エアブラスト弁から燃焼室内に燃料
を噴射せしめる際に、圧縮空気の圧力を燃焼室内の圧力
の増大に応じて増大せしめるように調整することができ
る。
[Operation] When the intake valve is open, the scavenging pressure is almost equal to the pressure inside the combustion chamber, so when injecting fuel into the combustion chamber from the air blast valve, the pressure of compressed air is equal to the pressure inside the combustion chamber. It can be adjusted to increase according to the increase.

〔実施例〕〔Example〕

第1図を参照すると、1はシリンダブロック、2はピス
トン、3はシリンダヘッド、4は燃焼室、5は給気弁、
6は給気ボート、7は排気弁、8は排気ホード、9は点
火栓、10はクランクケース、11はインテークマニホ
ルド、12はサージタンク、13はエアクリーナ、14
はサージタンク12とエアクリーナ13とを連結する給
気管を夫々示す。給気管14の途中には、上流側から順
次エアフローメータ15、スロットル弁16および機械
式過給機17が設けられる。過給機17は燃焼室4内に
給気を送り込むためエアクリーナ13から流入する空気
を加圧して圧送している。従って過給機17より下流の
給気管14、サージタンク12、インテークマニホルド
11および給気ボート6内には過給機17によって、い
わゆる掃気圧が供給されており、この掃気圧によって給
気が燃焼室4内に流入することとなる。エアクリーナ1
3とエアフローメータ150間の給気管14から吸入通
路18が分岐され、この吸入通路18はニアコンプレッ
サ19の吸入口19aに連絡される。−方、ニアコンプ
レッサ19の吐出口19bは、吐出通路20を介してエ
アブラスト弁21に接続され、このエアブラスト弁21
に圧縮空気を供給する。ニアコンプレッサ19はベーン
式のニアコンプレッサであり、機関により回転駆動され
る。吐出通路2oの途中に圧力調整器22が接続される
。圧力調整器22はリリースエア管23を介してクラン
クケース10内に接続されると共に掃気圧導管24を介
してサージタンク12内に接続される。
Referring to FIG. 1, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is a combustion chamber, 5 is an intake valve,
6 is an air supply boat, 7 is an exhaust valve, 8 is an exhaust hoard, 9 is a spark plug, 10 is a crankcase, 11 is an intake manifold, 12 is a surge tank, 13 is an air cleaner, 14
1 and 2 show air supply pipes connecting the surge tank 12 and the air cleaner 13, respectively. In the middle of the air supply pipe 14, an air flow meter 15, a throttle valve 16, and a mechanical supercharger 17 are sequentially provided from the upstream side. The supercharger 17 pressurizes and pumps air flowing in from the air cleaner 13 in order to feed air into the combustion chamber 4 . Therefore, so-called scavenging pressure is supplied by the supercharger 17 to the air supply pipe 14, surge tank 12, intake manifold 11, and air supply boat 6 downstream from the supercharger 17, and this scavenging pressure causes the charge to be combusted. This will flow into the chamber 4. Air cleaner 1
A suction passage 18 is branched from the air supply pipe 14 between the compressor 3 and the air flow meter 150, and this suction passage 18 is connected to the suction port 19a of the near compressor 19. - On the other hand, the discharge port 19b of the near compressor 19 is connected to an air blast valve 21 via a discharge passage 20.
supply compressed air. The near compressor 19 is a vane type near compressor, and is rotationally driven by an engine. A pressure regulator 22 is connected in the middle of the discharge passage 2o. The pressure regulator 22 is connected within the crankcase 10 via a release air pipe 23 and into the surge tank 12 via a scavenging pressure conduit 24.

第2図には圧力調整器22の拡大断面図を示す。FIG. 2 shows an enlarged sectional view of the pressure regulator 22.

第2図を参照すると、圧力調整器22はダイヤフラム2
5によって隔成された第1室26と第2室27とを具備
し、この第1室26内にはダイヤフラム押圧用圧縮ばね
28が設けられる。第1室26は掃気圧導管24を介し
てサージタンク12に接続され、従ってこの第1室26
内には掃気圧が導入される。一方第2室27側部は吐出
通路20に接続され、第2室27内には圧縮空気が導入
される。第2室27内にはり+7−スエア管23が突出
せしめられ、このリリースエア管23の開口29に対向
してダイヤフラム25と一体変位するボール弁30が設
けられる。第2室27内の圧縮空気の圧力が第1室26
内の掃気圧より予め定められた圧力、例えば3kg/c
I11高くなるとボール弁30は開口29を開弁せしめ
これにより圧縮空気の一部はリリースエア管23を介し
てクランクケース10内に放出される。従って吐出通路
20内の圧力はサージタンク12内の掃気圧より例えば
3kg/cafだけ高くなるように調整される。
Referring to FIG. 2, the pressure regulator 22 is connected to the diaphragm 2
The first chamber 26 has a first chamber 26 and a second chamber 27 separated by a diaphragm compression spring 28. The first chamber 26 is connected to the surge tank 12 via the scavenging pressure conduit 24 and thus this first chamber 26
Scavenging pressure is introduced inside. On the other hand, a side portion of the second chamber 27 is connected to the discharge passage 20, and compressed air is introduced into the second chamber 27. A +7-square air pipe 23 is projected into the second chamber 27, and a ball valve 30 that is integrally displaced with the diaphragm 25 is provided opposite the opening 29 of the release air pipe 23. The pressure of the compressed air in the second chamber 27 is
A predetermined pressure than the internal scavenging pressure, e.g. 3kg/c
When I11 becomes high, the ball valve 30 opens the opening 29, whereby a portion of the compressed air is released into the crankcase 10 through the release air pipe 23. Therefore, the pressure in the discharge passage 20 is adjusted to be higher than the scavenging pressure in the surge tank 12 by, for example, 3 kg/caf.

機関上部空間31はクランクケース10内と連通され、
またブローバイガス排出通路32を介してスロットル弁
16上流のスロットル弁16近傍位置で給気管14に連
通される。リリースエア管23を介してクランクケース
10内に放出される圧縮空気は、機関上部空間31およ
びブローバイガス排出通路32を介して給気管14内に
放出されるため、クランクケース10内の圧力が過度に
高くなることはない。また、ブローバイガス排出通路3
2から給気管14内に放出されるブローバイガスは機械
式過給機17によって燃焼室4内に送り込まれるため、
大気中に放出されることはない。
The engine upper space 31 is communicated with the inside of the crankcase 10,
It also communicates with the air supply pipe 14 at a position upstream of the throttle valve 16 and near the throttle valve 16 via a blow-by gas discharge passage 32 . The compressed air released into the crankcase 10 via the release air pipe 23 is released into the air supply pipe 14 via the engine upper space 31 and the blow-by gas discharge passage 32, so that the pressure inside the crankcase 10 becomes excessive. It won't get any higher. In addition, the blow-by gas discharge passage 3
Blow-by gas discharged into the intake pipe 14 from 2 is sent into the combustion chamber 4 by the mechanical supercharger 17.
It will not be released into the atmosphere.

エアフローメータ15は吸入空気量に比例した出力電圧
を発生し、こめ出力電圧は電子制御ユニツ) (lEc
tl) 40に入力される。また、クランク角センサ3
3は機関回転数に比例した出力パルスを発生し、この出
力パルスも電子制御ユニット40に入力される。これら
の入力信号から電子制御ユニット40内で燃料噴射量等
が計算される。さらに電子制御ユニット40はエアブラ
スト弁21のソレノイド50および燃料噴射弁56(第
3図参照)に接続されこれらを機関運転状態に応じて制
御する。
The air flow meter 15 generates an output voltage proportional to the amount of intake air, and the output voltage is determined by the electronic control unit) (lEc
tl) is input to 40. In addition, the crank angle sensor 3
3 generates an output pulse proportional to the engine speed, and this output pulse is also input to the electronic control unit 40. The fuel injection amount and the like are calculated within the electronic control unit 40 from these input signals. Further, the electronic control unit 40 is connected to a solenoid 50 of the air blast valve 21 and a fuel injection valve 56 (see FIG. 3), and controls these according to the engine operating state.

第3図はエアブラスト弁21の一部断面側面図を示す。FIG. 3 shows a partially sectional side view of the air blast valve 21.

第3図を参照すると、エアブラスト弁21のハウジング
41内にはまっすぐに延びるニードル挿入孔42が形成
され、このニードル挿入孔42内ニ二−ドル挿入孔42
よりも小径のニードル43が挿入される。ニードル挿入
孔42の一端にはノズル口44が形成され、このノズル
口44はニードル43の先端部に形成された弁部45に
よって開閉制御される。第3図に示す実施例ではこのノ
ズル口44は燃焼室4内に配置される。また、ニードル
43にはスプリングリテーナ46が固定され、このスプ
リングリテーナ46とハウジング41間には圧縮ばね4
7が挿入される。この圧縮ばね47のばね力によりノズ
ル口44は通常ニードル43の弁部45によって閉鎖さ
れる。弁部45と反対側のニードル43の端部には可動
コア48が圧縮ばね49のばね力により常時当接せしめ
られており、ハウジング41内には可動コア48を吸引
するためのソレノイド50とステータ51が配置される
Referring to FIG. 3, a straightly extending needle insertion hole 42 is formed in the housing 41 of the air blast valve 21.
A needle 43 with a smaller diameter is inserted. A nozzle port 44 is formed at one end of the needle insertion hole 42, and the opening and closing of the nozzle port 44 is controlled by a valve portion 45 formed at the tip of the needle 43. In the embodiment shown in FIG. 3, this nozzle opening 44 is arranged within the combustion chamber 4. In the embodiment shown in FIG. Further, a spring retainer 46 is fixed to the needle 43, and a compression spring 4 is connected between the spring retainer 46 and the housing 41.
7 is inserted. Due to the spring force of this compression spring 47, the nozzle port 44 is normally closed by the valve portion 45 of the needle 43. A movable core 48 is always brought into contact with the end of the needle 43 on the opposite side to the valve portion 45 by the spring force of a compression spring 49, and a solenoid 50 and a stator for suctioning the movable core 48 are provided in the housing 41. 51 are arranged.

ソレノイド50が付勢されると可動コア48がステータ
51に向けて移動し、その結果ニードル43が圧縮ばね
47のばね力に抗してノズル口44の方向に移動するの
でノズル口44が開口せしめられる。
When the solenoid 50 is energized, the movable core 48 moves toward the stator 51, and as a result, the needle 43 moves in the direction of the nozzle port 44 against the spring force of the compression spring 47, so that the nozzle port 44 is opened. It will be done.

一方、ハウジング41内には円筒状をなすノズル室52
が形成される。ノズル室52の一端52aはニアコンプ
レッサ19の吐出通路20に連通せしめられ、ノズル室
52の他端52bは圧縮空気流出通路55を介してニー
ドル挿入孔42内に連通せしめられる。ノズル室52内
には燃料噴射弁56の噴口57が配置され、更にこの噴
口57はノズル室52内の一端52aと他端52bとの
間に位置する。第3図に示されるように圧縮空気流出通
路55はまっすぐに延びている。噴口57は圧縮空気流
出通路55の軸線上に配置され、噴口57からは圧縮空
気流出通路55の軸線に沿って広がり角の小さな燃料が
噴射される。圧縮空気流出通路55はノズル口44方向
に向けてニードル挿入孔42に対して斜めに延びており
、ニードル挿入孔42に対し20度から45度をなして
ニードル挿入孔42に斜めに接続される。
On the other hand, inside the housing 41 is a cylindrical nozzle chamber 52.
is formed. One end 52a of the nozzle chamber 52 is communicated with the discharge passage 20 of the near compressor 19, and the other end 52b of the nozzle chamber 52 is communicated with the needle insertion hole 42 via a compressed air outflow passage 55. A nozzle 57 of the fuel injection valve 56 is disposed within the nozzle chamber 52, and the nozzle 57 is located between one end 52a and the other end 52b within the nozzle chamber 52. As shown in FIG. 3, the compressed air outlet passage 55 extends straight. The nozzle 57 is arranged on the axis of the compressed air outflow passage 55, and fuel with a small spreading angle is injected from the nozzle 57 along the axis of the compressed air outflow passage 55. The compressed air outflow passage 55 extends obliquely to the needle insertion hole 42 in the direction of the nozzle opening 44 and is connected obliquely to the needle insertion hole 42 at an angle of 20 to 45 degrees with respect to the needle insertion hole 42. .

ニードル挿入孔42、ノズル室52および圧縮空気流出
通路55は吐出通路20を介してニアコンプレッサ19
(第1図参照)に連通している。従ってこれらニードル
挿入孔42、ノズル室52および圧縮空気流出通路55
内は圧縮空気で満たされている。この圧縮空気中に噴口
57から圧縮空気流出通路55の軸線に沿って燃料が噴
射される。第3図に示されるように圧縮空気流出通路5
5がニードル挿入孔42に斜めに接続されているので噴
射燃料の大部分は弁部45近傍のニードル43周りのニ
ードル挿入孔42内に達する。このとき一部の燃料は圧
縮空気流出通路55の内壁面およびノズル室52の内壁
面上に付着する。次いでソレノイド50が付勢されると
ニードル43がノズル口44を開弁する。このとき弁部
45近傍に噴射燃料が集まっているのでニードル43が
ノズル口44を開弁するや否や燃料と圧縮空気が共にノ
ズル口44から燃焼室4内に噴出する。また、ニードル
43がノズル口44を開弁すると圧縮空気が吐出通路2
0からノズル室52内に流入し、次いで圧縮空気流出通
路55を経てノズル口44に向かうために圧縮空気流出
通路55の内壁面およびノズル室52の内壁面上に付着
した燃料が圧縮空気流によって運び去られ、ノズル口4
4から噴出せしめられる。従ってニードル43が開弁す
るや否や噴射燃料の全てがノズル口44から噴出せしめ
られ、次いでこれらの全噴射燃料の噴出が完了すると圧
縮空気のみがノズル口4から噴出せしめられる。次いで
ソレノイド50が消勢されてニードル43がノズル口4
4を閉弁する。
The needle insertion hole 42, the nozzle chamber 52, and the compressed air outflow passage 55 are connected to the near compressor 19 via the discharge passage 20.
(See Figure 1). Therefore, these needle insertion hole 42, nozzle chamber 52 and compressed air outflow passage 55
The inside is filled with compressed air. Fuel is injected into this compressed air from the nozzle 57 along the axis of the compressed air outflow passage 55. As shown in FIG.
5 is obliquely connected to the needle insertion hole 42, most of the injected fuel reaches the needle insertion hole 42 around the needle 43 near the valve portion 45. At this time, some of the fuel adheres to the inner wall surface of the compressed air outflow passage 55 and the inner wall surface of the nozzle chamber 52. Next, when the solenoid 50 is energized, the needle 43 opens the nozzle port 44. At this time, since the injected fuel is gathered near the valve portion 45, as soon as the needle 43 opens the nozzle port 44, both fuel and compressed air are injected from the nozzle port 44 into the combustion chamber 4. Furthermore, when the needle 43 opens the nozzle port 44, compressed air flows into the discharge passage 2.
0 into the nozzle chamber 52 and then passes through the compressed air outlet passage 55 toward the nozzle port 44, so that the fuel deposited on the inner wall surface of the compressed air outlet passage 55 and the inner wall surface of the nozzle chamber 52 is caused by the compressed air flow. carried away, nozzle port 4
It is made to erupt from 4. Therefore, as soon as the needle 43 opens, all of the injected fuel is ejected from the nozzle port 44, and then, when all of the injected fuel has been ejected, only compressed air is ejected from the nozzle port 4. Then, the solenoid 50 is deenergized and the needle 43 moves to the nozzle port 4.
Close valve 4.

再び第1図を参照すると、燃料噴射弁56は燃料供給通
路34を介して燃料タンク35に接続され、燃料供給通
路34の途中に燃料供給ポンプ36が配置される。また
燃料供給通路34は圧力調整器37に接続される。この
圧力調整器37は第2図に示す圧力調整器22と同様で
あり、圧力調整器37の第1室26は圧縮空気導入通路
38を介して吐出通路20に接続され、第1室26内に
は圧縮空気が導入される。第2室27内には燃料供給通
路34を介して燃料が導入される。また第2室27は燃
料リターン通路39を介して燃料タンク35に接続され
、余分の燃料は燃料タンク35に返戻される。従って燃
料噴射弁56に供給される燃料の圧力は、圧力調整器3
7内に導入される圧縮空気の圧力によって制御され、燃
料の圧力は圧縮空気の圧力より予め定められた圧力、例
えば2.5 kg / cn(だけ高い圧力に制御され
る。この結果燃料噴射弁56に供給される燃料圧と、ノ
ズル室52および圧縮空気流出通路55(第3図)内の
圧縮空気の圧力との差圧がほぼ一定となるので、電子制
御ユニット40によって計算された燃料噴射量を燃料噴
射弁56によって正確に計量することができる。
Referring again to FIG. 1, the fuel injection valve 56 is connected to the fuel tank 35 via the fuel supply passage 34, and the fuel supply pump 36 is disposed in the middle of the fuel supply passage 34. Further, the fuel supply passage 34 is connected to a pressure regulator 37. This pressure regulator 37 is similar to the pressure regulator 22 shown in FIG. compressed air is introduced. Fuel is introduced into the second chamber 27 via the fuel supply passage 34. Further, the second chamber 27 is connected to the fuel tank 35 via a fuel return passage 39, and excess fuel is returned to the fuel tank 35. Therefore, the pressure of the fuel supplied to the fuel injection valve 56 is controlled by the pressure regulator 3.
The pressure of the fuel is controlled by the pressure of the compressed air introduced into the injector 7, and the pressure of the fuel is controlled to a predetermined pressure higher than the pressure of the compressed air, e.g. 2.5 kg/cn (as a result of this, the fuel injection valve 56 and the pressure of the compressed air in the nozzle chamber 52 and the compressed air outlet passage 55 (FIG. 3) are approximately constant, so that the fuel injection calculated by the electronic control unit 40 The amount can be precisely metered by the fuel injection valve 56.

第4図には給排気弁5.7およびエアブラスト弁21の
開弁期間を示す。給気弁5が開弁するとサージタンク1
2内は燃焼室4内に連通せしめられ、その結果サージタ
ンク12内の掃気圧は燃焼室4内の圧力とほぼ等しくな
る。従ってこの期間においては、エアブラスト弁21に
供給される圧縮空気圧は圧力調整器22によって燃焼室
4内の圧力よりほぼ3kg/cat高く調整される。従
ってこの期間においてエアブラスト弁21のノズル口4
4を開弁せしめて燃焼室4内に燃料を噴射せしめると、
圧縮空気圧力は燃焼室4内の圧力より適当な圧力、例え
ば3kg/cafだけ常に高くなるように調整されるた
め、燃焼室4内の圧力が高くなることによって噴射燃料
の微粒化が悪化したり、燃焼室4内の圧力が低くなるこ
とによって多量の圧縮空気がエアブラスト弁21から燃
焼室4内に噴射されることを防止することができる。第
4図では排気弁7閉弁直後から給気弁5閉弁後しばらく
の間においてノズル口44を開弁せしめて燃料を噴射せ
しめるようにしているが、この期間において掃気圧は燃
焼室4内の圧力と最も近い圧力となる。
FIG. 4 shows the opening period of the supply/exhaust valve 5.7 and the air blast valve 21. When the air supply valve 5 opens, the surge tank 1
The inside of the surge tank 12 is communicated with the inside of the combustion chamber 4, and as a result, the scavenging pressure inside the surge tank 12 becomes almost equal to the pressure inside the combustion chamber 4. Therefore, during this period, the compressed air pressure supplied to the air blast valve 21 is adjusted by the pressure regulator 22 to be approximately 3 kg/cat higher than the pressure within the combustion chamber 4. Therefore, during this period, the nozzle port 4 of the air blast valve 21
When valve 4 is opened and fuel is injected into combustion chamber 4,
Since the compressed air pressure is adjusted so that it is always higher than the pressure in the combustion chamber 4 by an appropriate pressure, for example, 3 kg/caf, the atomization of the injected fuel may become worse due to the increase in the pressure in the combustion chamber 4. By lowering the pressure within the combustion chamber 4, it is possible to prevent a large amount of compressed air from being injected into the combustion chamber 4 from the air blast valve 21. In FIG. 4, the nozzle port 44 is opened to inject fuel immediately after the exhaust valve 7 is closed and for a while after the intake valve 5 is closed. During this period, the scavenging pressure inside the combustion chamber 4 is The pressure is closest to that of .

なお前述のようにエアブラスト弁21に供給される圧縮
空気の圧力の変動に応じて燃料の圧力も変動せしめこれ
らの間の圧力差が一定となるようにしているため、噴射
燃料量を正確に計量することができる。
As mentioned above, the fuel pressure is also varied in accordance with the variation in the pressure of the compressed air supplied to the air blast valve 21, so that the pressure difference between them is kept constant, so the amount of injected fuel can be accurately controlled. Can be weighed.

〔発明の効果〕〔Effect of the invention〕

エアブラスト弁から燃焼室内に燃料を噴射せしめる際に
、圧縮空気の圧力を燃焼室内の圧力の増大に応じて増大
せしめるようにしたので、燃料噴射時における燃焼室内
の圧力が増大しても噴射燃料の微粒化の悪化を防止する
ことができると共に、燃料噴射時における燃焼室内の圧
力が低下してもエアブラスト弁から多量の圧縮空気が燃
焼室内に噴射されることもない。
When injecting fuel into the combustion chamber from the air blast valve, the pressure of compressed air is increased in accordance with the increase in pressure within the combustion chamber, so even if the pressure within the combustion chamber increases during fuel injection, the injected fuel will not be It is possible to prevent deterioration of atomization, and even if the pressure inside the combustion chamber decreases during fuel injection, a large amount of compressed air is not injected into the combustion chamber from the air blast valve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2サイクル内燃機関の全体図、第2図は圧力調
整器の拡大断面図、第3図はエアブラスト弁の一部断面
側面図、第4図は給排気弁およびエアブラスト弁の開弁
期間等を示す線図である。 4・・・燃焼室、     5・・・給気弁、12・・
・サージタンク、20・・・吐出通路、21・・・エア
ブラスト弁、 22・・・圧力調整器、24・・・掃気
圧導管。 第 2 図 弔 図
Figure 1 is an overall view of a two-stroke internal combustion engine, Figure 2 is an enlarged cross-sectional view of the pressure regulator, Figure 3 is a partial cross-sectional side view of the air blast valve, and Figure 4 is a diagram of the supply/exhaust valve and air blast valve. FIG. 3 is a diagram showing valve opening periods and the like. 4... Combustion chamber, 5... Air supply valve, 12...
- Surge tank, 20...Discharge passage, 21...Air blast valve, 22...Pressure regulator, 24...Scavenging pressure conduit. Figure 2 Funeral map

Claims (1)

【特許請求の範囲】[Claims] 燃料を圧縮空気によって噴射せしめるエアブラスト弁を
燃焼室内に臨んで配置し、該エアブラスト弁に供給され
る圧縮空気の圧力を調整するための圧力調整器に掃気圧
を導き該掃気圧の増大に応じて前記圧縮空気の圧力を増
大せしめ、給気弁が開弁しているときに前記エアブラス
ト弁から前記燃焼室内への燃料噴射を開始せしめるよう
にした2サイクル内燃機関。
An air blast valve that injects fuel with compressed air is arranged facing into the combustion chamber, and scavenging pressure is introduced to a pressure regulator for adjusting the pressure of the compressed air supplied to the air blast valve to increase the scavenging pressure. The two-stroke internal combustion engine is configured to increase the pressure of the compressed air accordingly, and to start fuel injection from the air blast valve into the combustion chamber when the intake valve is open.
JP25238589A 1989-09-29 1989-09-29 Two cycle internal combustion engine Pending JPH03117677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25238589A JPH03117677A (en) 1989-09-29 1989-09-29 Two cycle internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25238589A JPH03117677A (en) 1989-09-29 1989-09-29 Two cycle internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03117677A true JPH03117677A (en) 1991-05-20

Family

ID=17236587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25238589A Pending JPH03117677A (en) 1989-09-29 1989-09-29 Two cycle internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03117677A (en)

Similar Documents

Publication Publication Date Title
JP2671225B2 (en) 2 cycle engine
JP2725468B2 (en) Fuel injection device for internal combustion engine
US5063886A (en) Two-stroke engine
JP2696446B2 (en) In-cylinder direct injection type injection valve assist air supply device
JPH0996256A (en) Egr gas assist injection system
JP2550026B2 (en) Liquid fuel distribution method and device for internal combustion engine
US6314948B1 (en) Fuel injection system control method
JPH0357876A (en) Cylinder injection two-cycle engine
JPH04276182A (en) Fuel injector for 2-cycle engine
JPH10502146A (en) Control of internal combustion engines
EP0799377B1 (en) Fuel amount control
JPH03117677A (en) Two cycle internal combustion engine
JP2761422B2 (en) Fuel injection engine
JPH11511531A (en) Engine operation control
JP2702666B2 (en) 2 cycle engine
JPS63500324A (en) Method and fuel injection device for controlling fuel distribution in a combustion chamber of an internal combustion engine
JP2780435B2 (en) Fuel injection device for internal combustion engine
JPH051854U (en) Fuel supply device for in-cylinder direct injection engine
JP2912382B2 (en) Port scavenging / fuel injection type 2-cycle engine
JP2817385B2 (en) Fuel injection device
JP2938992B2 (en) Injection engine with air / fuel mixture
JP3010077B2 (en) Fuel injection control device for two-cycle multi-cylinder engine
JP2600334B2 (en) Fuel injection device for internal combustion engine
JPH0396657A (en) Fuel injection unit of internal combustion engine
JP3031473B2 (en) Low-speed rotation control device for air-fuel-injected two-cycle engine