JPH03117008A - Current mirror circuit - Google Patents

Current mirror circuit

Info

Publication number
JPH03117008A
JPH03117008A JP1254159A JP25415989A JPH03117008A JP H03117008 A JPH03117008 A JP H03117008A JP 1254159 A JP1254159 A JP 1254159A JP 25415989 A JP25415989 A JP 25415989A JP H03117008 A JPH03117008 A JP H03117008A
Authority
JP
Japan
Prior art keywords
current
transistor
mirror circuit
ratio
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1254159A
Other languages
Japanese (ja)
Other versions
JP2613944B2 (en
Inventor
Tatsuyuki Amano
天野 龍之
Kazuo Tokuda
和夫 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP1254159A priority Critical patent/JP2613944B2/en
Publication of JPH03117008A publication Critical patent/JPH03117008A/en
Application granted granted Critical
Publication of JP2613944B2 publication Critical patent/JP2613944B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To compensate the error of a current ratio caused by a base current, to realize a current mirror circuit with high accuracy and to set the current ratio of the mirror circuit with an arbitrary ratio by inserting a current converting means to the base current route of a transistor constituting the current mirror circuit. CONSTITUTION:The emitters of a transistor Q2 and a transistor Q1, which emitter area is N-times, are connected to a common terminal 3 and the bases of the transistors are commonly connected. Between the base and the collector of the second transistor Q1, a first current converting means 10 is interposed with a 2/(N+1)-times conversion ratio and between the base of a third transistor Q3 and a current input terminal 1, a second current converting means 20 is interposed with the N-times conversion ratio. Thus, the current mirror circuit can be realized to set the current ratio over a wide range with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電流ミラー回路に係シ、特にトランジスタの対
称性を利用した基本回路として用いられている複合電流
ミラー回路において特にトランジスタのhFEとアーリ
ー効果の影醤に対しても高精度が得られかつ入出力の電
流比の設定範囲を広げたバイポーラ集積回路からなる回
路構成に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to current mirror circuits, and in particular, to complex current mirror circuits that are used as basic circuits that take advantage of the symmetry of transistors. The present invention relates to a circuit configuration consisting of a bipolar integrated circuit that achieves high accuracy even with respect to effects and has a wide setting range of input/output current ratios.

〔従来の技術〕[Conventional technology]

第7図において、従来の電流ミラー回路は、PNP)ラ
ンジスタQ1.Q2.Qaと、電流■□の流れる電流入
力端子1と、電流出力端子2と、共通端子3と、電流供
給源4とを含み、構成される。
In FIG. 7, the conventional current mirror circuit consists of PNP) transistors Q1. Q2. Qa, a current input terminal 1 through which current ■□ flows, a current output terminal 2, a common terminal 3, and a current supply source 4.

従来から用いられている電流ミラー回路の一例を、第7
図に示す。ベースをトランジスタQ1ト共通接続し、コ
レクタ・ベース間を短絡したトランジスタQ2のコレク
タ側へ、トランジスタQsのエミッタを接続し、トラン
ジスタQ のベースをトランジスタQ1のコレクタに接
続して、電流入力端子1とし、トランジスタQ3のコレ
クタを電流出力端子2とする構成である。トランジスタ
Q□lQ2のエミッタは短絡するが、各々抵抗を介して
共通端子3へ接続され、これは電流供給源4へ結合され
る。電流入力端子1に印加する電流を11とし電流出力
端子2に流出する電流を12とすると、それらの関係は
以下のように衣わされる。
An example of a conventionally used current mirror circuit is shown in the seventh section.
As shown in the figure. The emitter of the transistor Qs is connected to the collector side of the transistor Q2 whose base is commonly connected to the transistor Q1 and the collector and base are shorted, and the base of the transistor Q is connected to the collector of the transistor Q1. , the collector of transistor Q3 is used as current output terminal 2. The emitters of the transistors Q□lQ2 are shorted but each connected via a resistor to a common terminal 3, which is coupled to a current source 4. Assuming that the current applied to the current input terminal 1 is 11 and the current flowing out to the current output terminal 2 is 12, the relationship between them is as follows.

但し、トランジスタQl、Q2の特性は同一であるとし
、エミッタ接地電流増幅率をβ、各々のコレクタ電流を
’C1+ IC2とすると、次式が得られる。
However, assuming that the characteristics of transistors Ql and Q2 are the same, and assuming that the common emitter current amplification factor is β and each collector current is 'C1+IC2, the following equation is obtained.

これら両式から、次式が得られる。From these two equations, the following equation can be obtained.

前記(1)式よシ、電流増幅率βが十分大きければ、出
力電流I2は入力電流■、にほぼ等しくなシ、β=10
0では0.02%の誤差である。また、電流比を決定す
るトランジスタQ1とトランジスタQ2のコレクタ・エ
ミッタ間電圧■。は電流出力端子2の電位に関係なく、
ベース・エミッタ順方向電圧VBHによる定電圧が与え
られるので、トランジスタのアーリー効果による電流比
の変動が抑えられ、高精度の電流ミラー回路が得られる
According to equation (1) above, if the current amplification factor β is sufficiently large, the output current I2 is approximately equal to the input current , β = 10.
At 0, the error is 0.02%. Also, the collector-emitter voltage ■ of transistor Q1 and transistor Q2 determines the current ratio. is regardless of the potential of current output terminal 2,
Since a constant voltage is provided by the base-emitter forward voltage VBH, fluctuations in the current ratio due to the Early effect of the transistor are suppressed, and a highly accurate current mirror circuit can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、第7図の電流ミラー回路は、電流比1対1の場
合に限シ前述の効果が得られ、電流比を自由に設定する
ことができないという欠点があシ、使用範囲が限定され
てしまう。
However, the current mirror circuit shown in Fig. 7 can obtain the above-mentioned effect only when the current ratio is 1:1, and has the disadvantage that the current ratio cannot be set freely, which limits the range of use. Put it away.

第7図において、もしトランジスタQ1をトランジスタ
Q2のN倍のエミツタ面積比とし、トランジスタQ2の
エミッタ電流に対し、N倍のエミッタ電流が流れる構成
とした場合には、前記の(1)式は次式となる。
In FIG. 7, if the emitter area ratio of the transistor Q1 is N times that of the transistor Q2, and the emitter current is N times the emitter current of the transistor Q2, then the above equation (1) becomes as follows. The formula becomes

ここで、Nの値が1以外ではベース電流の補償効果がな
くな、?、(x−N)の1倍された成分が電流比の誤差
として現れてくる。例えば、β=100でも、N=2で
は0.95%、N=3では1.9%もの誤差が生じてし
まうことになる。
Here, if the value of N is other than 1, the compensation effect of the base current disappears, and ? , (x-N) appears as an error in the current ratio. For example, even when β=100, an error of 0.95% occurs when N=2, and an error of 1.9% occurs when N=3.

本発明の目的は、前記欠点が解決され、高精度で、電流
比を広範囲に設定できるようにした電流ミラー回路を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a current mirror circuit in which the above-mentioned drawbacks are solved and the current ratio can be set over a wide range with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の構成は、第1のトランジスタおよび第2のトラ
ンジスタのベース同士およびエミッタ同士を互いに接続
して、その共通エミッタを電流供給源に接続し、前記第
1.第2のトランジスタの電流比をN対1(但しN〉1
)に設定し、前記第2のトランジスタのコレクタにエミ
ッタを接続した第3のトランジスタを設け、前記第1の
トランジスタのコレクタを電流入力端子に接続し、前記
− 第3のトランジスタのコレクタを電流出力端子とする入
出力電流比N対1の電流ミラー回路において、前記第2
のトランジスタのベース・コレクタ間に、2/(N+1
)倍の変換比を有する第1の電流変換手段を介在させ、
前記第3のトランジスタのベースと前記電流入力端子と
の間に、N倍の変換比を有する第2の電流変換手段を介
在させたことを特徴とする。
The configuration of the present invention is such that the bases and emitters of the first transistor and the second transistor are connected to each other, and their common emitters are connected to a current supply source. The current ratio of the second transistor is set to N to 1 (where N>1
), a third transistor is provided whose emitter is connected to the collector of the second transistor, the collector of the first transistor is connected to a current input terminal, and the collector of the third transistor is connected to a current output terminal. In a current mirror circuit with an input/output current ratio of N to 1, the second
2/(N+1) between the base and collector of the transistor
) a first current conversion means having a conversion ratio of
The present invention is characterized in that a second current conversion means having a conversion ratio of N times is interposed between the base of the third transistor and the current input terminal.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の電流ミラー回路の基本回路
を示す回路図である。
FIG. 1 is a circuit diagram showing a basic circuit of a current mirror circuit according to an embodiment of the present invention.

第1図において、本実施例の基本回路は、入力電流I□
に対して1/N倍の出力電流 12を得ようとするもの
で、共通端子3にトランジスタQ2とエミッタ面積N倍
のトランジスタQ1のエミッタが接続され、ベースは共
通接続されている。共通ベースには、ベース電流の2/
(N+ 1 )倍の成分を取シ出す第1の電流変換手段
10が接続され、トランジスタQ2のコレクタへの電流
経路と6− なる。トランジスタQ2のコレクタにはトランジスタQ
3のエミッタが接続され、トランジスタQ3のコレクタ
は、電流出力端子2として出力電流I2が出力される。
In FIG. 1, the basic circuit of this embodiment has an input current I□
The purpose is to obtain an output current 12 that is 1/N times larger than that of the transistor Q2, and the emitters of a transistor Q2 and a transistor Q1 whose emitter area is N times larger are connected to a common terminal 3, and their bases are commonly connected. The common base has 2/2 of the base current.
A first current converting means 10 which extracts (N+1) times the component is connected and forms a current path 6- to the collector of the transistor Q2. A transistor Q is connected to the collector of transistor Q2.
The emitter of the transistor Q3 is connected to the collector of the transistor Q3, and the output current I2 is outputted to the collector of the transistor Q3 as a current output terminal 2.

トランジスタQ3のベースは、ベース電流113をN倍
する第2の電流変換手段2゜を介して、トランジスタQ
1のコレクタに接続され、その接続点を電流入力端子1
として、入力電流■□を与える構成となっている。
The base of the transistor Q3 is connected to the transistor Q through the second current conversion means 2° which multiplies the base current 113 by N.
1, and its connection point is connected to the current input terminal 1.
The configuration is such that an input current of ■□ is given.

同様に、トランジスタのエミッタ接地電流増幅率をβ、
トランジスタQl、Q2の各々のコレクタ電流をIC□
、■o2、トランジスタQ3のベース電流をより3とし
て、入力電流l□と出力電流I2の関係を求めると、以
下のように表わされる。
Similarly, the common emitter current amplification factor of the transistor is β,
The collector current of each of transistors Ql and Q2 is IC□
, ■o2, and the base current of the transistor Q3 is set to 3, and the relationship between the input current l□ and the output current I2 is expressed as follows.

工C1= N IC2 これら(3)式を解いて、 次式が得られる。Engineering C1= N IC2 Solving these equations (3), The following equation is obtained.

前記(4)式を前記(3)式へ代入して、次式が得られ
る。
By substituting the above equation (4) into the above equation (3), the following equation is obtained.

以上のように、トランジスタQl、Q2の電流比Nと、
2つの電流変換手段10.20の係数Nが等しい場合に
は、前記(5)式が成立し、Nの値にかかわらず、第7
図の回路と同じ補償効果をもった高精度電流ミラー回路
を得ることができる。誤差成分は(1)式と同一の2/
(β2+2β+2)で与えられている。
As described above, the current ratio N of transistors Ql and Q2 is
If the coefficients N of the two current conversion means 10.20 are equal, the above formula (5) is established, and regardless of the value of N, the seventh
A high-precision current mirror circuit with the same compensation effect as the circuit shown in the figure can be obtained. The error component is 2/ which is the same as in equation (1).
It is given by (β2+2β+2).

ここで前述の第1図の電流変換手段10.20の具体例
につき、第2図と第3図により説明する。
A specific example of the current converting means 10.20 shown in FIG. 1 will now be described with reference to FIGS. 2 and 3.

第2図は第1の電流変換手段1oを最も基本的な電流ミ
ラー回路によ多構成したもので、エミッタとベースを共
通接続したトランジスタQ□□、Q02のうち、トラン
ジスタQllのコレクタと共通ベースの接続点を入力端
子11、トランジスタQ□2のコレクタを出力端子12
としている。トランジスタQ□、のエミッタ面積をQ□
2の27(N−1)倍に設定することで、共通端子13
と入力端子11との電流比は、(N+1)対2の関係に
なる。電流増幅率βを考慮して電流比を算出すると、(
N+が生じる。
Fig. 2 shows the first current converting means 1o configured in the most basic current mirror circuit. Among the transistors Q□□ and Q02 whose emitters and bases are commonly connected, the collector and common base of the transistor Qll are shown in Fig. 2. The connection point is the input terminal 11, and the collector of the transistor Q□2 is the output terminal 12.
It is said that Let the emitter area of transistor Q□ be Q□
By setting 27 (N-1) times 2, the common terminal 13
The current ratio between the input terminal 11 and the input terminal 11 is (N+1) to 2. When calculating the current ratio by considering the current amplification factor β, (
N+ occurs.

第3図は第2の電流変換手段20を同様に電流ミラー回
路によ多構成したもので、第2図とは逆導電性のトラン
ジスタを用いている。トランジスタQ21のエミッタ面
積をQ22の1/(N−1)倍に設定することで、入力
端子21と共通端子23との電流比は、1対Nの関係に
なる。同じくβを考以上のように、第1図の回路を具体
化する際には、トランジスタQ、 、Q2の電流比Nと
、2つの電流変換手段10.20の係数とNは、厳密に
致させることは難しい。
In FIG. 3, the second current converting means 20 is similarly configured with a current mirror circuit, and uses transistors having conductivity opposite to those in FIG. 2. By setting the emitter area of the transistor Q21 to 1/(N-1) times that of Q22, the current ratio between the input terminal 21 and the common terminal 23 becomes 1:N. Considering β in the same way, as mentioned above, when embodying the circuit of Fig. 1, the current ratio N of the transistors Q, , Q2, and the coefficients and N of the two current conversion means 10.20 must be strictly It's difficult to make it happen.

そこで、第4図に示すように、第1の電流変換−ff= 手段10の係数をnl 、第2の電流変換手段20の係
数をn2として、入力電流11と出力電流I2の関係を
求めると、次式が得られる。
Therefore, as shown in FIG. 4, the relationship between the input current 11 and the output current I2 is determined by setting the coefficient of the first current conversion means 10 to nl and the coefficient of the second current conversion means 20 to n2. , the following equation is obtained.

・・・・・・・・・・・・・・・(6)係数n□+”2
は、前述のように第2図と第3図のような簡単な回路を
用いた場合でも数パーセントの値(例えばN=2で、β
=100のとき、約1%)に収まるので、前記(6)式
は前記(5)式とほとんど同等となると考えてよい。従
って、設定すべき係数Nに対して、第2図において通常
発生する誤差を含む程度の係数n□、n2を実現するこ
とで、第1図で説明した本実施例の効果を得ることがで
きる。
・・・・・・・・・・・・・・・(6) Coefficient n□+”2
As mentioned above, even when using simple circuits as shown in Figures 2 and 3, the value of β is a few percent (for example, when N = 2, β
= 100, the equation (6) can be considered to be almost equivalent to the equation (5). Therefore, the effect of this embodiment explained in FIG. 1 can be obtained by realizing coefficients n□, n2 that include the error that normally occurs in FIG. 2 for the coefficient N to be set. .

第5図は第1図の実施例のよシ具体的な一例を示した回
路図である。第5図において、本例は、第1図のうち2
つの電流変換手段10.20を第2図と第3図とで実現
した複合電流ミラー回路である。PNPトランジスタQ
□IQ2の共通ベース10− には、第2図で示した電流ミラー回路の共通端子13が
接続され、トランジスタQl’、Q2のベース電流は入
力端子11側に2 / (N + t )倍の成分とな
って、トランジスタQ3のエミッタへ分配される。残シ
の(N−1)/(N+i )倍の成分は、出力端子12
から流出させて、接地している。また、トランジスタQ
3のベースには、第3図で示した電流ミラー回路の入力
端子21が接続され、トランジスタQ3のベース電流は
共通端子23側からN倍されて、電流入力端子1へ流出
する。N倍するために必要な(N−1)倍成分は、出力
端子22を介して電流供給源となる共通端子3から得て
いる。
FIG. 5 is a circuit diagram showing a more specific example of the embodiment shown in FIG. In FIG. 5, in this example, two of FIG.
This is a composite current mirror circuit in which two current converting means 10.20 are realized by the combination of FIGS. 2 and 3. PNP transistor Q
□The common terminal 13 of the current mirror circuit shown in FIG. 2 is connected to the common base 10- of IQ2, and the base current of transistors Ql' and Q2 is 2 / (N + t) times larger on the input terminal 11 side. component and is distributed to the emitter of transistor Q3. The remaining component (N-1)/(N+i) times is output to the output terminal 12.
It flows out from the ground and is grounded. Also, transistor Q
The base of transistor Q3 is connected to the input terminal 21 of the current mirror circuit shown in FIG. The (N-1) times component required for multiplying by N is obtained from the common terminal 3, which serves as a current supply source, via the output terminal 22.

第6図は本発明の他の実施例の電流ミラー回路を示す回
路図である。第2図において、本実施例は、N=2の場
合を示したものである。第1の電流変換手段10には、
第2図の電流ミラー回路をマルチコレクタPNP)ラン
ジスタQ□3で構成したものを用いている。また、トラ
ンジスタQ□のコレクタと電流出力端子の間にはコレク
タ・ベースを短絡したトランジスタQ4とトランジスタ
Q5を直列に挿入して、トランジスタQ□とトランジス
タQ2とのコレクタ・エミッタ間電圧を一致させ、素子
特性の対称性を改善している。
FIG. 6 is a circuit diagram showing a current mirror circuit according to another embodiment of the present invention. In FIG. 2, this embodiment shows the case where N=2. The first current conversion means 10 includes:
The current mirror circuit shown in FIG. 2 is constructed using a multi-collector PNP transistor Q□3. In addition, a transistor Q4 and a transistor Q5 with their collectors and bases shorted are inserted in series between the collector of the transistor Q□ and the current output terminal to match the collector-emitter voltages of the transistor Q□ and the transistor Q2. The symmetry of device characteristics is improved.

以上本実施例は、前記従来回路のベース電流補償効果を
、電流比1対1ではなく、入力電流に対して出力電流を
l/N倍(但し、Nは1よシ大きい任意の実数)に設定
できる高精度電流ミラー回路であシ、第7図のトランジ
スタQ2のベース・コレクタ間に2/(N+1)倍の電
流変換手段を挿入シ、更にトランジスタQ3のベース電
流をN倍の電流変換手段を介して、電流入力端子に与え
る構成となっている。
As described above, in this embodiment, the base current compensation effect of the conventional circuit is increased by multiplying the output current by l/N (where N is any real number larger than 1) with respect to the input current, instead of the current ratio of 1:1. A high-precision current mirror circuit that can be set is used, and a 2/(N+1) current converting means is inserted between the base and collector of the transistor Q2 shown in Fig. 7, and a current converting means for N times the base current of the transistor Q3 is inserted. The configuration is such that the current is supplied to the current input terminal via the current input terminal.

以上説明したように、本発明は、電流ミラー回路を構成
するトランジスタのベース電流経路に、電流変換手段を
挿入することによシ、ベース電流による電流比の誤差を
補償し、高精度の電流ミラー回路を得ることができ、ま
た従来の高精度電流ミラー回路の電流比は1対1に限ら
れていたが、本発明は、入力に対して出力電流を減少さ
せる方向に任意の比率で設定することができるという効
果がある。尚、前記実施例では、PNPトランジスタが
主体となる回路を示したが、これをNPNトランジスタ
に置き換えても、同様の効果が得られることは明白であ
る。
As explained above, the present invention compensates for the error in the current ratio due to the base current by inserting a current conversion means into the base current path of the transistor that constitutes the current mirror circuit. In addition, the current ratio of conventional high-precision current mirror circuits was limited to 1:1, but the present invention allows the output current to be set at an arbitrary ratio in the direction of decreasing the input current. It has the effect of being able to Although the above embodiments have shown circuits mainly composed of PNP transistors, it is clear that similar effects can be obtained even if this is replaced with NPN transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電流ミラー回路の基本回路
を示す回路図、第2図と第3図は各々電流変換手段の具
体例を示す回路図、第4図は第1図の電流変換係数の影
餐を説明するための基本回路図、第5図は第1図の実施
例のよシ具体的な一例の回路図、第6図は本発明の他の
実施例の電流ミラー回路を示す回路図、第7図は従来か
ら用いられている高精度電流ミラー回路の基本回路図で
ある。 Q□lQ2?Q31Q4#Q11+Q121Q13・・
・PNP)ランジスタ、Q5=Q2□、Q2□・・・N
PN )ランジスタ、10・・・第1の電流変換手段、
20・・・第2の電流変換手段、1・・・電流入力端子
、2・・・電流出力端子、13− 3・・・共通端子、 4・・・電流供給源。
FIG. 1 is a circuit diagram showing a basic circuit of a current mirror circuit according to an embodiment of the present invention, FIGS. 2 and 3 are circuit diagrams showing specific examples of current converting means, and FIG. A basic circuit diagram for explaining the influence of the current conversion coefficient, FIG. 5 is a circuit diagram of a specific example similar to the embodiment of FIG. 1, and FIG. 6 is a current mirror of another embodiment of the present invention. The circuit diagram shown in FIG. 7 is a basic circuit diagram of a conventionally used high-precision current mirror circuit. Q□lQ2? Q31Q4#Q11+Q121Q13...
・PNP) transistor, Q5=Q2□, Q2□...N
PN) transistor, 10... first current conversion means,
20... Second current conversion means, 1... Current input terminal, 2... Current output terminal, 13-3... Common terminal, 4... Current supply source.

Claims (1)

【特許請求の範囲】[Claims]  第1のトランジスタおよび第2のトランジスタのベー
ス同士およびエミッタ同士を互いに接続して、その共通
エミッタを電流供給源に接続し、前記第1、第2のトラ
ンジスタの電流比をN対1(但しN>1)に設定し、前
記第2のトランジスタのコレクタにエミッタを接続した
第3のトランジスタを設け、前記第1のトランジスタの
コレクタを電流入力端子に接続し、前記第3のトランジ
スタのコレクタを電流出力端子とする入出力電流比N対
1の電流ミラー回路において、前記第2のトランジスタ
のベース・コレクタ間に、2/(N+1)倍の変換比を
有する第1の電流変換手段を介在させ、前記第3のトラ
ンジスタのベースと前記電流入力端子との間に、N倍の
変換比を有する第2の電流変換手段を介在させたことを
特徴とする電流ミラー回路。
The bases and emitters of the first transistor and the second transistor are connected to each other, the common emitters are connected to a current supply source, and the current ratio of the first and second transistors is set to N:1 (however, N >1), a third transistor is provided whose emitter is connected to the collector of the second transistor, the collector of the first transistor is connected to a current input terminal, and the collector of the third transistor is connected to a current input terminal. In a current mirror circuit with an input/output current ratio of N to 1 serving as an output terminal, a first current conversion means having a conversion ratio of 2/(N+1) is interposed between the base and collector of the second transistor, A current mirror circuit characterized in that a second current conversion means having a conversion ratio of N times is interposed between the base of the third transistor and the current input terminal.
JP1254159A 1989-09-28 1989-09-28 Current mirror circuit Expired - Lifetime JP2613944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254159A JP2613944B2 (en) 1989-09-28 1989-09-28 Current mirror circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254159A JP2613944B2 (en) 1989-09-28 1989-09-28 Current mirror circuit

Publications (2)

Publication Number Publication Date
JPH03117008A true JPH03117008A (en) 1991-05-17
JP2613944B2 JP2613944B2 (en) 1997-05-28

Family

ID=17261051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254159A Expired - Lifetime JP2613944B2 (en) 1989-09-28 1989-09-28 Current mirror circuit

Country Status (1)

Country Link
JP (1) JP2613944B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198078A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Mounting structure of externally attached frame unit and its mounting method
JP2011232931A (en) * 2010-04-27 2011-11-17 Rohm Co Ltd Current generation circuit and reference voltage circuit using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113518U (en) * 1980-12-29 1982-07-14
JPS594305A (en) * 1982-06-30 1984-01-11 Toshiba Corp Current mirror circuit
JPS63305606A (en) * 1987-06-08 1988-12-13 Mitsubishi Electric Corp Constant current circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113518U (en) * 1980-12-29 1982-07-14
JPS594305A (en) * 1982-06-30 1984-01-11 Toshiba Corp Current mirror circuit
JPS63305606A (en) * 1987-06-08 1988-12-13 Mitsubishi Electric Corp Constant current circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198078A (en) * 2006-01-30 2007-08-09 Toyota Motor Corp Mounting structure of externally attached frame unit and its mounting method
JP2011232931A (en) * 2010-04-27 2011-11-17 Rohm Co Ltd Current generation circuit and reference voltage circuit using the same
US8749219B2 (en) 2010-04-27 2014-06-10 Rohm Co., Ltd. Current generating circuit

Also Published As

Publication number Publication date
JP2613944B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US4647839A (en) High precision voltage-to-current converter, particularly for low supply voltages
JPS5880715A (en) Current source circuit
JPH08265060A (en) Voltage to current conversion circuit
US20030110199A1 (en) Multiplier
JPH0770935B2 (en) Differential current amplifier circuit
US5399914A (en) High ratio current source
JPH03117008A (en) Current mirror circuit
JPS63214009A (en) Composite transistor
JPS5827411A (en) Differential amplifier circuit
JP2661358B2 (en) Level shift circuit
JP3381100B2 (en) amplifier
JPH03117010A (en) Current mirror circuit
JP2567145B2 (en) Compound current mirror circuit
JPS6145314A (en) Absolute value voltage-to-current converting circuit
JPH0514075A (en) Differential amplifier circuit
JPH0198307A (en) Transistor amplifier
JPH04354408A (en) Current polarity conversion circuit
JPS61247111A (en) Amplifier circuit
JPS60134611A (en) Photoelectric converting circuit
JPS59211307A (en) Current mirror circuit
JPH0413302A (en) Compensation circuit for dielectric strength of transistor
JPS6129974A (en) Analog adder
JPS5925407A (en) Operational amplifier circuit
JPS63296404A (en) Differential amplifier circuit
JPS6386606A (en) Current mirror circuit