JPH0311686A - Etalon sheet for ultraviolet-ray - Google Patents

Etalon sheet for ultraviolet-ray

Info

Publication number
JPH0311686A
JPH0311686A JP1144228A JP14422889A JPH0311686A JP H0311686 A JPH0311686 A JP H0311686A JP 1144228 A JP1144228 A JP 1144228A JP 14422889 A JP14422889 A JP 14422889A JP H0311686 A JPH0311686 A JP H0311686A
Authority
JP
Japan
Prior art keywords
face
etalon
mirror
laser beam
outer circumference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1144228A
Other languages
Japanese (ja)
Inventor
Tatsumasa Nakamura
達政 中村
Shungo Tsuboi
俊吾 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Mitsubishi Electric Corp
Original Assignee
Shin Etsu Quartz Products Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Mitsubishi Electric Corp filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP1144228A priority Critical patent/JPH0311686A/en
Publication of JPH0311686A publication Critical patent/JPH0311686A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent a deviation in a selective wavelength region of an output laser beam by a method wherein an outer circumference face is formed to be a mirror face through which a specific beam can be transmitted and an edge part sandwiched between the outer circumference face and an end face is chamfered to be a smooth curved-face shape. CONSTITUTION:An outer circumference face 23B of an etalon sheet 10 is formed to be a mirror face through which a specific beam of about 400nm or lower, e.g. an excimer laser beam, can be transmitted. In this case, this can be achieved when a surface roughness of the outer circumference face 23B at the mirror face through which the laser beam can be transmitted is set preferably to 30Angstrom or lower. In addition, an edge part 24 is cham fered to be smooth, i.e. to be a radius shape as a mirror-face shape; a microcrack and a processing distortion at its circumference are removed. Thereby, it is possible to suppress a change in a selective wavelength region of an output laser beam and to obtain a stable and accurate wavelength even during a use for many hours.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、入出射面として機能する端面を夫々高精度に
平面研磨した後、その少なくとも−の研磨面に一部透過
可能な反射膜を形成したエタロン板に係り、特に略40
0nm以下の特定波長域の紫外光の波長選択を精度よく
行う事の出来るエタロン板の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention involves polishing each of the end faces that function as input and exit surfaces with high precision, and then applying a reflective film that allows a portion of the light to pass through at least one of the polished surfaces. Regarding the formed etalon plate, especially about 40
This invention relates to an improvement in an etalon plate that can accurately select the wavelength of ultraviolet light in a specific wavelength range of 0 nm or less.

「従来の技術」 従来より、ウェーハ上に集積回路パターンを描画す、る
光リングラフィの露光用光源としてスペクトル幅の狭い
レーザ光、特に略400na以下の紫外域で発振する光
出力パルスレーザであるエキシマレーザが用いられてい
る。
"Prior Art" Conventionally, laser light with a narrow spectrum width, particularly a light output pulsed laser that oscillates in the ultraviolet region of about 400 na or less, has been used as an exposure light source for photophosphorography to draw integrated circuit patterns on wafers. An excimer laser is used.

かかるエキシマレーザ装置としては例えば第4図に示す
ように、KrF XeF ArF等の混合ガスをレーザ
媒質として封入したレーザ管30の両端側にウィンドウ
35a、35bを取付けるとともに、ウィンドウ35a
の軸方向外側に高反射ミラー31を、ウィンドウ面すの
出力側に出力ミラー32を配し、該レーザ管30内に設
けた励起手段34により励起したレーザ光を前記両ミラ
ー31.32間で多数回往復させながら増帳した後、所
定出力レベルのレーザ光を前記出力ミラー32より出力
するようにした発振装置3は公知であり、かかる装置に
あってはウィンドウ35bと出力ミラー32間に−又は
複数のエタロン1を配置し、該エタロン1により波長選
択を行い、縮小投影露光に適したスペクトル幅に調整し
たレーザ光を露光装置7(ステッパ)側に導くように構
成している。
As shown in FIG. 4, for example, such an excimer laser device has windows 35a and 35b attached to both ends of a laser tube 30 in which a mixed gas such as KrF XeF ArF is sealed as a laser medium.
A high reflection mirror 31 is arranged on the axially outer side of the window, and an output mirror 32 is arranged on the output side of the window surface, and the laser beam excited by the excitation means 34 provided in the laser tube 30 is transmitted between the two mirrors 31 and 32. An oscillation device 3 that outputs a laser beam of a predetermined output level from the output mirror 32 after increasing the number of books by reciprocating a number of times is known. Alternatively, a plurality of etalons 1 are arranged, wavelength selection is performed by the etalons 1, and laser light whose spectral width is adjusted to be suitable for reduction projection exposure is guided to the exposure device 7 (stepper) side.

そして前記レーザ光をモニターする事により該波長に対
応する制御信号を得、その制御信号に基づいて調整回路
6を介して、前記励起手段34とエタロンの調整を行う
ように構成している。
By monitoring the laser beam, a control signal corresponding to the wavelength is obtained, and based on the control signal, the excitation means 34 and the etalon are adjusted via the adjustment circuit 6.

そしてかかる装置に組込まれるエタロン1は例えば第2
図及び第3図に示すように、一対の端面21,22を夫
々高精度に平面研磨した2枚−組の石英ガラス、若しく
はフッ化カルシウム等からなる一対のエタロン板10A
と、両エタロン板10A間のギャップ調整を行うスペー
サ11からなり、そしてエタロン板10Aの少なくとも
対向するーの端面に一部透過可能な反射膜12Aを蒸着
して形成し、そしてエタロン1にレーザ光を入射させる
事により反射膜12Aの間で繰り返し反射が起こり、こ
の反射−共振により選択された波長に狭帯域化されたレ
ーザ光が出力されるように構成している。
The etalon 1 incorporated in such a device is, for example, a second etalon.
As shown in FIG. 3 and FIG. 3, a pair of etalon plates 10A made of quartz glass, calcium fluoride, etc., each having a pair of end surfaces 21 and 22 polished to a high precision.
and a spacer 11 for adjusting the gap between both etalon plates 10A, and a reflective film 12A that is partially transparent is deposited on at least the opposing end face of the etalon plate 10A, and a laser beam is applied to the etalon 1. By making the light incident thereon, repeated reflections occur between the reflective films 12A, and by this reflection-resonance, a laser beam narrowed to a selected wavelength is output.

尚、他の端面には反射防止膜12Bが蒸着形成されてい
る。
Note that an antireflection film 12B is deposited on the other end face.

さて上記構成において、前記エタロン板10に入射スる
エキシマレーザ光は、コヒーレンス長が極端に短くほと
んど干渉が起きない為に、ダイアモンドカッタその他の
機械加工手段により前記均質性を有する合成石英ガラス
を円板状に形成した後、レーザ光が入出射する端面21
,22のみを高精度に平面研磨するが、その外周面23
Aはダイアモンドカッタの研削跡により擦りガラス状に
形成されている。
In the above configuration, the excimer laser beam incident on the etalon plate 10 has an extremely short coherence length and almost no interference occurs. After forming into a plate shape, the end face 21 where the laser beam enters and exits
, 22 are polished to high precision, but the outer peripheral surface 23
A is formed into a frosted glass shape due to the grinding marks of the diamond cutter.

しかしながら確かにエキシマレーザ光はコヒーレンス長
が極端に短くほとんど干渉が起きない為に直進性を有す
るが、レーザ光を短波長化した場合に、ガラス体自体の
僅かな屈折率差等に起因してレーザ光の長時間照射によ
り熱歪等が生じ微小な屈折率変動等が生じてしまう。か
かる変動はレンズのように一回のみの透過若しくは反射
する光学系であれば特段に問題とならないが、エタロン
板10はレンズ等と異なり繰り返し反射且つ共振させる
構成を取る為に、例えエタロン板10に均質な合成石英
を用いて乱反射を微小に抑えても繰り返し外周面23A
で乱反射される事によりエタロン性能に悪影響を及ぼし
てしまうものと推定される。
However, it is true that excimer laser light has an extremely short coherence length and almost no interference occurs, so it travels in a straight line, but when the wavelength of the laser light is shortened, there is a slight difference in the refractive index of the glass body itself. Long-term irradiation with laser light causes thermal distortion and the like, resulting in minute changes in the refractive index. Such fluctuations are not a particular problem if the optical system transmits or reflects only once, such as a lens. Even if the diffused reflection is minimized by using homogeneous synthetic quartz, the outer peripheral surface 23A
It is presumed that the diffused reflection caused by the light will have a negative effect on the etalon performance.

又ダイアモンドカッタの研削跡によりその表面に加工歪
も生じており、該加工歪もエタロン性能に悪影響を及ぼ
してしまうものと推定される。
Further, machining distortion occurs on the surface due to the grinding marks of the diamond cutter, and it is presumed that the machining distortion also adversely affects etalon performance.

「発明が解決しようとする課題」 さて前記エキシマレーザ装置に組み込まれる第2図のエ
タロンはエタロン板10内を繰り返し透過するレーザ光
が精度よく反射−共振するように形成している。しかし
前記石英ガラス内に不純物や脈理若しくは屈折率差が存
在すると、その光吸収による内部温度の上昇に起因する
熱歪や屈折率の変動等により精度よい共振波長を得る事
が出来ず、結果として出力レーザ光の選択波長域が変動
して目的とする絶対波長を得られないという問題が生じ
ていた。
``Problem to be Solved by the Invention'' Now, the etalon shown in FIG. 2 incorporated into the excimer laser device is formed so that the laser light that repeatedly passes through the etalon plate 10 is reflected and resonated with high precision. However, if there are impurities, striae, or a difference in refractive index within the quartz glass, it will not be possible to obtain an accurate resonant wavelength due to thermal distortion and fluctuations in the refractive index caused by an increase in internal temperature due to light absorption. As a result, a problem has arisen in that the selected wavelength range of the output laser beam fluctuates, making it impossible to obtain the desired absolute wavelength.

かかる欠点を解消する為に本発明者は先に、略400n
m以下の特定光波長帯域で使用される光学用石英ガラス
部材において、三座標方向のいずれの方向からも脈理が
認められない石英ガラス塊より形成され、低圧水銀ラン
プの照射により蛍光を実質的に発生せず、且つ少なくと
も光が透過する区域において屈折率差Δnが小さく均質
性を有する(略5X10”以下)光学用石英ガラス部材
を提案している。(特開昭84−28240号)しかし
ながらこのような均質性の高い光学用石英ガラス部材を
用いてもエタロン板10はレンズ等と異なり繰り返し反
射且つ共振させる構成を取る為に、出力レーザ光の選択
波長域の変動や長時間使用による出力低下等を完全に防
ぐ事が出来ないという欠点を有していた。
In order to eliminate such drawbacks, the present inventor first developed approximately 400n
Optical quartz glass members used in specific light wavelength bands of m or less are formed from quartz glass lumps with no striae observed in any of the three coordinate directions, and can substantially eliminate fluorescence by irradiation with a low-pressure mercury lamp. proposed a quartz glass member for optical use that does not cause the occurrence of oxidation and has a small homogeneity (approximately 5×10” or less) in the refractive index difference Δn at least in the area through which light passes. (Japanese Patent Laid-Open No. 84-28240) However, Even if such a highly homogeneous optical quartz glass member is used, the etalon plate 10 is configured to repeatedly reflect and resonate, unlike a lens, etc., so the selected wavelength range of the output laser beam may fluctuate or the output may vary due to long-term use. This has the disadvantage that it is not possible to completely prevent deterioration.

本発明はかかる従来技術の欠点に鑑み、前記出力レーザ
光の選択波長城の変動を極力抑制し長時間使用にも安定
して精度よい絶対波長を得る事の出来るエタロン板10
を提供する事を目的とする。
In view of the drawbacks of the prior art, the present invention provides an etalon plate 10 that suppresses fluctuations in the selected wavelength range of the output laser beam as much as possible and obtains an absolute wavelength that is stable and accurate even during long-term use.
The purpose is to provide.

「課題を解決しようとする手段」 本発明は、前記欠点がガラス自体の均質性のみに影響す
るものではなく、その表面状態も影響するものである事
を知見して発明されたものである。
"Means for Solving the Problems" The present invention was invented based on the knowledge that the above-mentioned drawbacks do not only affect the homogeneity of the glass itself, but also affect its surface condition.

すなわち本発明の第1の特徴とする所は、第1図に示す
ようにエタロン板10の外周面23Bを前記エキシマレ
ーザ光が透過可能な鏡面状に形成した点にある。
That is, the first feature of the present invention is that, as shown in FIG. 1, the outer peripheral surface 23B of the etalon plate 10 is formed into a mirror surface through which the excimer laser light can pass.

これにより前記屈折率等の変動により外周面23Bに到
達したレーザ光は、外周面23Bで乱反射する事なくそ
のまま透過してしまい繰り返しの乱反射を避ける車が出
来る為に、前記欠点が解消されるものと思慮される。又
該鏡面加工時にダイアモンドカッタの研削跡に起因する
表面歪も除去される。
As a result, the laser light that reaches the outer circumferential surface 23B due to the fluctuation of the refractive index etc. is transmitted through the outer circumferential surface 23B as it is without being diffusely reflected, thereby creating a vehicle that avoids repeated diffuse reflections, thereby eliminating the above-mentioned drawbacks. It is considered. Furthermore, surface distortion caused by the grinding marks of the diamond cutter during mirror finishing is also removed.

尚、前記レーザ光が透過可能な鏡面とは外周面23Bの
表面粗さを好ましくは30Å以下に設定する事により容
易に達成され、そしてこのような鏡面はレーザ光が透過
可能であればうねり等があってもよく、従って端面21
,22側のように高精度に平面研磨する必要はなく、フ
ァイアポリッシュ加工や通常のパフ鏡面加工にて形成す
ればよい。
Note that the mirror surface through which the laser beam can pass can be easily achieved by setting the surface roughness of the outer peripheral surface 23B to preferably 30 Å or less, and such a mirror surface can be formed without waviness or the like if the laser beam can pass through. Therefore, the end face 21
, 22 side, it is not necessary to polish the surface with high precision, and it may be formed by fire polishing or ordinary puff mirror polishing.

更にエタロン板10の端面21,22を高精度な平面研
磨面に、又外周面23Bを鏡面状に仕上げてもガラス材
自体が脆性材料である為に、前記ダイヤモンドカッタそ
の他を用いた研削加工を行うと、外周面23Bと端面2
1,22間に挟まれる稜線部分に微小なマイクロクラッ
クが発生する。
Furthermore, even if the end surfaces 21 and 22 of the etalon plate 10 are polished to a highly precise flat surface and the outer circumferential surface 23B is polished to a mirror finish, the glass material itself is a brittle material, so the grinding process using the diamond cutter or the like is not necessary. When done, the outer peripheral surface 23B and the end surface 2
A minute micro-cracks occur in the ridgeline portion sandwiched between No. 1 and No. 22.

そしてこのようなマイクロクラックが発生すると、端面
21,22の平面研磨や外周面23Bの鏡面仕上げのみ
では乱反射を避けることが出来ない。
When such microcracks occur, diffused reflection cannot be avoided only by flat polishing the end surfaces 21 and 22 or mirror finishing the outer circumferential surface 23B.

けだし前記研磨加工等はいずれも表面に形成された凹凸
を潰すか、表面全体の凹凸を除去するのみであるから、
稜線部分24のみをより多く除去する事は不可能であり
、結果として該微小クラックが残存してしまう。
However, the above-mentioned polishing process only crushes the unevenness formed on the surface or removes the unevenness of the entire surface.
It is impossible to remove more of the ridgeline portion 24 alone, and as a result, the microcracks remain.

そしてこのような微小クラックの存在は前記乱反射のみ
ならずその周囲に加工歪を発生せしめ、やはり前記エタ
ロン性能を低下させてしまう。
The presence of such microcracks causes not only the diffused reflection but also processing distortion around them, which also reduces the etalon performance.

そこで本発明の第2の特徴として前記稜線部分24をな
めらかなより具体的には鏡面状にR状の面取り加工を施
す事により前記マイクロクラック及びその周囲の加工歪
を除去する点にある。
Therefore, the second feature of the present invention is that the micro-cracks and the machining distortion around them are removed by chamfering the ridgeline portion 24 into a smooth, more specifically mirror-like, R-shape.

尚、この場合にエタロン板10は均質性を有する事が前
提となる事は言うまでもなく、少なくとも前記特定光の
入出射方向と平行な方向に脈理が認められない高純度の
合成石英ガラス、より好ましくは三座標方向のいずれの
方向からも脈理が認められない高純度の合成石英ガラス
を用いるのがよい。
In this case, it goes without saying that the etalon plate 10 must be homogeneous, and should be made of high-purity synthetic quartz glass with no striae observed at least in the direction parallel to the direction of incidence and emission of the specific light. Preferably, high-purity synthetic quartz glass with no striae observed in any of the three coordinate directions is used.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
"Embodiments" Hereinafter, preferred embodiments of the present invention will be described in detail by way of example with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, and relative arrangements of the components described in this example are not intended to limit the scope of this invention, but are merely illustrative examples. It's nothing more than that.

先ず三座標方向のいずれの方向からも脈理が認められず
、且つ低圧水銀ランプの照射により蛍光を実質的に発生
せず、更に少なくとも光が透過する区域において屈折率
差△nが小さく均質性を有する(略8X10−6以下)
光学用石英ガラス部材として本出願人が開発し市販して
いる5uprasi I−PIO(商品名)を用い、該
ガラス部材をダイアモンドカッタにより50φX 12
tに形成したエタロン板10用の石英ガラス体を複数個
製作する。
First, striae are not observed in any of the three coordinate directions, and fluorescence is not substantially generated by irradiation with a low-pressure mercury lamp, and the refractive index difference △n is small and homogeneous at least in the area through which light passes. (approximately 8X10-6 or less)
Using 5uprasi I-PIO (trade name), which was developed and commercially available by the applicant as an optical quartz glass member, the glass member was cut into 50φ×12 with a diamond cutter.
A plurality of quartz glass bodies for the etalon plate 10 formed in the shape t are manufactured.

次に前記石英ガラス体を2群に分け、−群のガラス体に
ついて、先ず稜線部分24をダイヤ砥石により前記切削
加工時に発生したマイクロクラックが除去し得る程度の
研削代(最大研削代250 gm )でR状に面取りを
行う。
Next, the quartz glass bodies are divided into two groups, and for the - group glass bodies, the ridgeline portion 24 is first ground with a diamond grindstone to the extent that the microcracks generated during the cutting process can be removed (maximum grinding stock is 250 gm). Chamfer in an R shape.

次に外周面23と稜線部分24を、前記面取り加工に用
いた砥石より細かい砥石を用いて10〜30JLm程度
研削して表面の加工歪を除去した後、パフ研磨にて鏡面
仕上げを行いその表面粗さを20〜30A程度に設定す
る。この結果第1図に示すような外周面23Bと稜線部
分24が形成出来る。
Next, the outer peripheral surface 23 and the ridge line portion 24 are ground by about 10 to 30 JLm using a grindstone finer than the grindstone used for the chamfering process to remove processing distortion on the surface, and then the surface is mirror-finished by puff polishing. Set the roughness to about 20 to 30A. As a result, an outer circumferential surface 23B and a ridgeline portion 24 as shown in FIG. 1 can be formed.

次に外周面23Bと稜線部分24の鏡面加工を行ったガ
ラス体と行わないガラス体について夫々その端面21.
22を公知の平面研磨手段を利用して平面研磨を行い、
例えば平面度が入150〜入/100(632,8mm
において)以上、その表面粗さを20Å以上になるよう
に高平面度に加工する車により、第1図に示すエタロン
板10(実施例)と、第2図に示すエタロン板10Aを
形成出来る。
Next, the end faces 21 of the glass bodies with and without mirror finishing on the outer circumferential surface 23B and the ridge line portion 24 are respectively treated.
22 is subjected to surface polishing using a known surface polishing means,
For example, the flatness is 150 to 100 (632.8mm)
As described above, the etalon plate 10 (embodiment) shown in FIG. 1 and the etalon plate 10A shown in FIG. 2 can be formed using a wheel processed to have a high flatness so that the surface roughness is 20 Å or more.

次に前記実施例と比較例に係る各エタロン板10.10
°の対向する端面21,22に夫々所定の反射膜12A
、12Bをコーティングして反射率を80%(248n
mにて)に設定する。そして第1図及び第2図のエタロ
ン1を前記第4図に示す装置に組み込んだ後、前記発振
器3より248n+w  (KrF )の波長域のエキ
シマレーザ光についてパルス当たりエネルギー密度10
(mJ/ c m′e pulse)及び照射パルス数
200 (pulse/5ee)にて24時間(約2X
 107 pulse)程度照射を行った。その結果、
比較例のものはその端面21に僅かに凹み若しくはふく
らみが生じ又露光装置側に導かれる1ル レーザ光の選択波長にも振れが生じていた。実施例のも
のはこのような事がなく、安定して248.3±0.0
02nmの波長のレーザ光を得る車が出来た。
Next, each etalon plate 10.10 according to the above example and comparative example.
Predetermined reflective films 12A are provided on opposing end surfaces 21 and 22 of
, 12B to increase the reflectance to 80% (248n
m). After the etalon 1 shown in FIGS. 1 and 2 is incorporated into the device shown in FIG.
(mJ/cm'e pulse) and the number of irradiation pulses 200 (pulse/5ee) for 24 hours (approximately 2X
Irradiation was performed at approximately 107 pulses. the result,
In the comparative example, the end face 21 had a slight dent or bulge, and the selected wavelength of the 1-channel laser beam guided to the exposure apparatus side also varied. There was no such problem with the example, and the value was 248.3±0.0 stably.
A car that can obtain laser light with a wavelength of 0.2 nm has been created.

前記実施例のものについて更に48時間同様なレーザ光
を照射した場合にも、同様に安定した絶対波長のレーザ
光を得る事が出来た。
Even when the same laser light was irradiated with the same laser light for 48 hours, it was possible to obtain a laser light having a stable absolute wavelength.

尚、5uprasil−PIO(商品名)に加えて本出
願人が開発し市販している三方向脈理のない5upra
sil−P2O(商品名)についても前記と同様な方法
で実施例と比較例に係る各エタロン板10を製作し、同
様な確認実験を行った所、はぼ同様な結果を得る車が出
来た。
In addition to 5uprasil-PIO (trade name), 5upra without three-way striae, developed and commercially available by the applicant,
Regarding sil-P2O (trade name), etalon plates 10 according to the examples and comparative examples were manufactured in the same manner as described above, and when similar confirmation experiments were conducted, a car was produced that obtained almost the same results. .

「発明の効果」 以上記載した如く本発明によれば、出力レーザ光の選択
波長域の変動を極力抑制し長時間使用にも安定して精度
よい波長を得る事の出来るエタロン板を提供する事が可
能となった。
"Effects of the Invention" As described above, according to the present invention, it is possible to provide an etalon plate that can suppress fluctuations in the selected wavelength range of output laser light as much as possible and obtain stable and accurate wavelengths even during long-term use. became possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のエタロンの形状を示す正面2 図、第2図は従来のエタロンを示す正面図、第3図は第
2図のm−m ’線断面図を示す。 第4図はエタロンが組込まれたエキシマレーザ装置を示
すブロック図である。 lO:エタロン板 21 、22:端面23B=外周面
 24:稜線部分
FIG. 1 is a front view showing the shape of the etalon of the present invention, FIG. 2 is a front view showing a conventional etalon, and FIG. 3 is a sectional view taken along line mm' in FIG. FIG. 4 is a block diagram showing an excimer laser device incorporating an etalon. lO: Etalon plate 21, 22: End surface 23B = outer peripheral surface 24: Ridge line portion

Claims (1)

【特許請求の範囲】 1)略400nm以下の特定光波長帯域で使用され、少
なくとも入出射面として機能する一対の端面を夫々高精
度に平面研磨した紫外光用エタロン板において、外周面
を前記特定光が透過可能な鏡面状に形成するとともに、
該外周面と端面間に挟まれる稜線部分をなめらかな曲面
状に面取り加工を施した事を特徴とする紫外光用エタロ
ン板 2)前記外周面の表面粗さを少なくとも30Å以下に設
定し、且つ稜線部分の面取り加工面が鏡面である請求項
1)記載の紫外光用エタロン板 3)少なくとも前記特定光の入出射方向と平行な方向に
脈理が認められない高純度の合成石英ガラスを用いて形
成した請求項1)記載の紫外光用エタロン板
[Scope of Claims] 1) In an etalon plate for ultraviolet light that is used in a specific light wavelength band of about 400 nm or less and has a pair of end faces that function as at least input/output surfaces that are polished to a high precision, the outer circumferential surface is In addition to forming a mirror surface that allows light to pass through,
An etalon plate for ultraviolet light characterized in that the ridgeline portion sandwiched between the outer peripheral surface and the end face is chamfered into a smooth curved surface 2) The surface roughness of the outer peripheral surface is set to at least 30 Å or less, and 3) The etalon plate for ultraviolet light according to claim 1, wherein the chamfered surface of the ridge line portion is a mirror surface. The etalon plate for ultraviolet light according to claim 1, which is formed by
JP1144228A 1989-06-08 1989-06-08 Etalon sheet for ultraviolet-ray Pending JPH0311686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1144228A JPH0311686A (en) 1989-06-08 1989-06-08 Etalon sheet for ultraviolet-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1144228A JPH0311686A (en) 1989-06-08 1989-06-08 Etalon sheet for ultraviolet-ray

Publications (1)

Publication Number Publication Date
JPH0311686A true JPH0311686A (en) 1991-01-18

Family

ID=15357225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1144228A Pending JPH0311686A (en) 1989-06-08 1989-06-08 Etalon sheet for ultraviolet-ray

Country Status (1)

Country Link
JP (1) JPH0311686A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268907B1 (en) 1998-05-13 2001-07-31 International Business Machines Corporation Elimination of standing waves in photoresist
US6604621B1 (en) 1998-12-11 2003-08-12 Fujitec Co., Ltd. Variable-speed moving sidewalk and method of designing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268907B1 (en) 1998-05-13 2001-07-31 International Business Machines Corporation Elimination of standing waves in photoresist
US6604621B1 (en) 1998-12-11 2003-08-12 Fujitec Co., Ltd. Variable-speed moving sidewalk and method of designing it

Similar Documents

Publication Publication Date Title
JP3089955B2 (en) Optical member for optical lithography and projection optical system
US4803694A (en) Laser resonator
KR20110086055A (en) Very high power laser chamber optical improvements
US6181724B1 (en) Narrow-band oscillation excimer laser and optics thereof
US5381427A (en) Single mode laser
EP1041689A1 (en) Excimer laser
JPS628277B2 (en)
JPH0311686A (en) Etalon sheet for ultraviolet-ray
JPH0875649A (en) Sample for measuring transmittance, and preparing method thereof
JP3857236B2 (en) High repetition rate UV excimer laser
JP3734105B2 (en) Illumination device for semiconductor exposure apparatus
JPH0437181A (en) Narrowed excimer laser apparatus
JPH04349132A (en) Method for working photosensitive glass
EP1276000B1 (en) Polarisation beam splitter and method of producing the same
JPS63211779A (en) Slab-shaped laser medium and manufacture thereof
JP2762188B2 (en) Method for producing synthetic quartz glass compact for ultraviolet laser
US7170920B2 (en) Laser device
US4550482A (en) Method of constructing a beam spread lens
JPH01223786A (en) Laser oscillator
US4605282A (en) Line lens and method of design therefor
JPH04357133A (en) Processing of photosensitive glass
JP3431048B2 (en) Optical waveguide, waveguide member thereof, and manufacturing method thereof
Slack et al. XX. Optical activity and magneto-optical activity of crystalline nickel sulphate in the near ultra-violet
JPH06218563A (en) Working of photosensitive glass
SU460167A1 (en) Method for making abbe prism