JP3089955B2 - Optical member for optical lithography and projection optical system - Google Patents
Optical member for optical lithography and projection optical systemInfo
- Publication number
- JP3089955B2 JP3089955B2 JP06242448A JP24244894A JP3089955B2 JP 3089955 B2 JP3089955 B2 JP 3089955B2 JP 06242448 A JP06242448 A JP 06242448A JP 24244894 A JP24244894 A JP 24244894A JP 3089955 B2 JP3089955 B2 JP 3089955B2
- Authority
- JP
- Japan
- Prior art keywords
- optical
- less
- optical member
- birefringence
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
- G03F7/70966—Birefringence
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、紫外線リソグラフィー
技術において400nm以下、好ましくは300nm以下の
特定波長領域で、レンズやミラー、プリズム等の光学系
に使用される光リソグラフィー用光学部材、及びこれを
用いた投影光学系に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical member for optical lithography used in an optical system such as a lens, a mirror or a prism in a specific wavelength region of 400 nm or less, preferably 300 nm or less in an ultraviolet lithography technique. It relates to the projection optical system used.
【0002】[0002]
【従来の技術】近年において、VLSIは、ますます高集積
化、高機能化され、論理VLSIの分野ではチップ上により
大きなシステムが盛り込まれるシステムオンチップ化が
進行している。これに伴い、その基板となるシリコン等
のウエハ上において、微細加工化及び高集積化が要求さ
れている。シリコン等のウエハ上に集積回路の微細パタ
ーンを露光・転写する光リソグラフィー技術において
は、ステッパと呼ばれる露光装置が用いられている。2. Description of the Related Art In recent years, VLSIs are becoming more highly integrated and more sophisticated, and in the field of logic VLSIs, system-on-chip, in which a larger system is incorporated on a chip, is in progress. Along with this, fine processing and high integration are required on a wafer of silicon or the like serving as the substrate. In an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, an exposure apparatus called a stepper is used.
【0003】VLSIの中でDRAMを例に挙げれば、LSIからV
LSIへと展開されて 1K →256K→1M→4M→16M と容量が
増大してゆくにつれ、加工線幅がそれぞれ 10μm →2μ
m→1μm →0.8μm →0.5μm と微細なステッパが要求さ
れる。このため、ステッパの投影レンズには、高い解像
度と深い焦点深度が要求されている。この解像度と焦点
深度は、露光に使う光の波長とレンズのN.A.(開口
数)によって決まる。[0003] If DRAM is taken as an example of VLSI, LSI to V
As the capacity is expanded from LSI to 1K → 256K → 1M → 4M → 16M, the processing line width is 10μm → 2μ each.
A fine stepper of m → 1μm → 0.8μm → 0.5μm is required. For this reason, the projection lens of the stepper is required to have a high resolution and a large depth of focus. The resolution and the depth of focus depend on the wavelength of light used for exposure and the N.D. of the lens. A. (Numerical aperture).
【0004】細かいパターンほど回折光の角度が大きく
なり、レンズのN.A.が大きくなければ回折光を取り
込めなくなる。また、露光波長λが短いほど同じパター
ンでの回折光の度は小さくなり、従ってN.A.は小さ
くてよいことになる。解像度と焦点深度は、次式のよう
に表される。 解像度=k1・λ/N.A. 焦点深度=k2・λ/N.A.2 (但し、k1、k2は比例定数である。) 解像度を向上させるためには、N.A.を大きくする
か、λを短くするかのどちらかであるが、上式からも明
らかなように、λを短くするほうが深度の点で有利であ
る。このような観点から、光源の波長は、g線(436n
m)からi線(365nm)へ、さらにKrF(248nm)やA
rF(193nm)エキシマレーザーへと短波長化が進めら
れている。[0004] The finer the pattern, the larger the angle of the diffracted light. A. If it is not large, the diffracted light cannot be taken. Further, the shorter the exposure wavelength λ, the smaller the intensity of the diffracted light in the same pattern. A. Will be small. The resolution and the depth of focus are expressed by the following equations. Resolution = k1.lambda. / N. A. Depth of focus = k2 · λ / N. A. 2 (however, k1 and k2 are proportional constants). A. Is increased or λ is shortened. As is clear from the above equation, it is more advantageous to shorten λ in terms of depth. From such a viewpoint, the wavelength of the light source is g-line (436n
m) to i-line (365 nm), and KrF (248 nm) and A
Shortening of the wavelength to an rF (193 nm) excimer laser is being promoted.
【0005】また、ステッパに搭載される光学系は、多
数のレンズ等の光学部材の組み合わせにより構成されて
おり、たとえレンズ一枚当たりの透過率低下量が小さく
とも、それが使用レンズ枚数分だけ積算されてしまい、
照射面での光量の低下につながるため、光学部材に対し
て高透過率化が要求されている。そこで、400nmより
も短い波長領域では短波長化及び光学部材の組み合わせ
による透過率の低下を考慮した特殊な製法の光学ガラス
を用いる。さらに300nm以下では合成石英ガラスやC
aF2(蛍石)等のフッ化物単結晶を用いることが提案
されている。Further, the optical system mounted on the stepper is composed of a combination of a large number of optical members such as lenses, and even if the transmittance reduction per lens is small, it is only as large as the number of lenses used. Multiplied,
To reduce the amount of light on the irradiation surface, the optical member is required to have high transmittance. Therefore, in a wavelength region shorter than 400 nm, an optical glass of a special manufacturing method is used, which takes into account a reduction in transmittance due to a shorter wavelength and a combination of optical members. Further, at a wavelength of 300 nm or less, synthetic quartz glass or C
It has been proposed to use a single crystal of fluoride such as aF 2 (fluorite).
【0006】一方、投影レンズとしてより微細な線幅を
実現し、微細かつ鮮明な露光・転写パターンを得るため
には、屈折率の均質性の高い(測定領域内の屈折率のば
らつきの小さい)光学部材を得ることが不可欠である。
しかし、最近の半導体のウエハサイズの大型化に伴う露
光面積の拡大により、これらの材料の口径や厚さは拡大
し、その品質を得ることがますます困難になっている。
そこで、大口径や厚みのある光学部材の屈折率の均質性
を向上させるために様々な試みが行われている。On the other hand, in order to realize a finer line width as a projection lens and obtain a fine and clear exposure / transfer pattern, uniformity of the refractive index is high (variation in the refractive index within the measurement area is small). It is essential to obtain an optical member.
However, due to the recent increase in the exposure area accompanying the increase in the wafer size of semiconductors, the diameter and thickness of these materials have increased, and it has become more difficult to obtain the quality.
Therefore, various attempts have been made to improve the uniformity of the refractive index of an optical member having a large diameter and a large thickness.
【0007】この屈折率の均質性については、従来、測
定領域内の屈折率の最大値と最小値の差(以下Δnとす
る)で表され、この値が小さいほど均質性が良い光学部
材であると考えられている。それ故、既存の高均質と称
する光学部材はこのΔnを最小にすることを目的に製造
が行われている。一方、光学部材の複屈折に関しては、
複屈折量が5nm/cm以下の材料であれば、レンズ性
能に影響がないとされていた。Conventionally, the homogeneity of the refractive index is represented by the difference between the maximum value and the minimum value of the refractive index in the measurement area (hereinafter referred to as Δn). The smaller this value is, the better the homogeneity of the optical member is. It is believed that there is. Therefore, the existing optical member called high homogeneity is manufactured for the purpose of minimizing this Δn. On the other hand, regarding the birefringence of the optical member,
It has been considered that a material having a birefringence of 5 nm / cm or less does not affect the lens performance.
【0008】しかしながら、一般に高均質と言われる△
nが10-6オーダー以下で、かつ、複屈折量が5nm/
cm以下の光学部材を使用しているにもかかわらず、微
細かつ鮮明な露光・転写パターンを得られない場合があ
った。However, it is generally called highly homogeneous.
n is in the order of 10 −6 or less, and the birefringence amount is 5 nm /
In some cases, fine and clear exposure / transfer patterns could not be obtained despite the use of an optical member having a diameter of not more than 1 cm.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、光リ
ソグラフィー技術に使用される光学部材の複屈折の評価
において、既存の技術とは異なる概念を導入し、詳細な
評価及び光学系の調整を行うことにより、微細で鮮明
な、例えば線幅0.3μm 以下の露光・転写パターンを
実現することが可能な光リソグラフィー用光学部材及び
投影光学系を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to introduce a concept different from the existing technology in the evaluation of birefringence of an optical member used in an optical lithography technology, and to carry out a detailed evaluation and adjustment of an optical system. The object of the present invention is to provide an optical member for photolithography and a projection optical system capable of realizing a fine and clear exposure / transfer pattern having a line width of 0.3 μm or less, for example.
【0010】[0010]
【課題を解決するための手段】本発明者らは、光リソグ
ラフィー技術において微細かつ鮮明な露光・転写パター
ンを得ることのできる光学部材の特性について鋭意研究
した。その結果、投影レンズの性能は均質性△nがほぼ
同一の場合、光学部材の複屈折量及びその分布、さらに
その進相軸方向の分布が限界加工線幅と良い相関関係を
示すことを見い出した。そしてこの知見をもとに、以下
に示す物性を持つ光学部材を用いて構成された光学系に
おいて、線幅0.3μm以下の微細かつ鮮明な露光・転
写パターンを得られる事が明らかになった。Means for Solving the Problems The present inventors have made intensive studies on the characteristics of an optical member capable of obtaining a fine and clear exposure / transfer pattern in the photolithography technique. As a result, when the homogeneity Δn of the performance of the projection lens is almost the same, it is found that the birefringence amount and the distribution of the optical member and the distribution in the fast axis direction show a good correlation with the limit processing line width. Was. Based on this finding, it was revealed that a fine and clear exposure / transfer pattern having a line width of 0.3 μm or less can be obtained in an optical system configured using optical members having the following physical properties. .
【0011】ここで偏光、複屈折特性について説明す
る。偏光とは、光が電磁場に対する横波であり、その光
の進行方向から観察した電場の変化を示す。例えばその
状態を表す用語として、直線偏光、円偏光、楕円偏光が
用いられる。また、同様の現象を別の言い方で表現する
と、複屈折とは一つの入射光が光学的異方体を通過した
とき二つの屈折光が得られる現象である。この時物質中
を伝搬する方向によって位相速度(屈折率)の異なる光
を異常光線、方向によらず位相速度が一定の光を常光線
と定義される。Here, the polarization and birefringence characteristics will be described. Polarized light is a transverse wave of light with respect to an electromagnetic field, and indicates a change in an electric field observed from the traveling direction of the light. For example, linearly polarized light, circularly polarized light, and elliptically polarized light are used as terms representing the state. Expressing the same phenomenon in another way, birefringence is a phenomenon in which two refracted lights are obtained when one incident light passes through an optically anisotropic body. At this time, light having a different phase velocity (refractive index) depending on the direction of propagation in a substance is defined as an extraordinary ray, and light having a constant phase velocity regardless of the direction is defined as an ordinary ray.
【0012】さらに、屈折率の偏光方向における分布を
示す方法に、屈折率楕円体が用いられる。屈折率楕円体
とは、屈折率の3次元空間での偏光に対する量を示す。
屈折率楕円体は一般的に次式で表される。(光学部品の
使い方と留意点 末田哲夫)Further, a refractive index ellipsoid is used as a method for indicating the distribution of the refractive index in the polarization direction. The refractive index ellipsoid indicates an amount of the refractive index for polarized light in a three-dimensional space.
The refractive index ellipsoid is generally represented by the following equation. (How to use optical parts and points to keep in mind) Tetsuo Sueda
【0013】[0013]
【数1】 (Equation 1)
【0014】ここで、進相軸とは屈折率の小さい方向つ
まり屈折率楕円体の短軸の方向と定義する。屈折率の高
い方向を示すためには、進相軸の反対の意味として遅相
軸という用語が用いられる。均質性に加え、下記の偏光
(複屈折)特性の条件を満たす事により、投影レンズの
設計性能に近い解像度を得ることが可能になる。Here, the fast axis is defined as a direction in which the refractive index is small, that is, the direction of the minor axis of the refractive index ellipsoid. The term slow axis is used as the opposite of fast axis to indicate the direction of higher refractive index. By satisfying the following conditions of the polarization (birefringence) characteristics in addition to the homogeneity, it becomes possible to obtain a resolution close to the design performance of the projection lens.
【0015】複屈折量の絶対値が2.0nm/cm以
下である事 複屈折量の分布に中央対称性がある事 屈折率楕円体における進相軸方向が中央対称である事 これらの条件を満たすことにより高い解像度が得られる
のは、複屈折の絶対量が小さい事、及び偏光特性が中央
対称であるために、解像度に対する影響が少なくなる為
であろうと推測される。The absolute value of the amount of birefringence is not more than 2.0 nm / cm. The distribution of the amount of birefringence has central symmetry. The fast axis direction in the index ellipsoid must be centrally symmetric. It is presumed that the high resolution can be obtained by satisfying the condition because the absolute amount of birefringence is small and the influence on the resolution is reduced due to the central symmetry of the polarization characteristic.
【0016】光学部材の複屈折量の絶対値が2.0nm
/cm以上であると、これを用いて構成された投影光学
系のコントラストが低下し、解像度が悪くなり、結果と
して線幅0.3μm以下の露光・転写パターンを得るこ
とができない。次に投影光学系の結像位置における複屈
折量を最小にする、レンズの調整について説明する。The absolute value of the birefringence of the optical member is 2.0 nm
/ Cm or more, the contrast of the projection optical system formed by using this decreases, the resolution deteriorates, and as a result, an exposure / transfer pattern with a line width of 0.3 μm or less cannot be obtained. Next, adjustment of the lens for minimizing the amount of birefringence at the image forming position of the projection optical system will be described.
【0017】偏光解析には一般的にJones行列計算
が用いられる。(分光の基礎と方法工藤恵栄) 以下に、本発明に用いたJones Matrixを示
す。y軸及びz軸方向の振幅透過度は、δy=δz=1で
あるとした。Generally, Jones matrix calculation is used for the polarization analysis. (Basic and Methods of Spectroscopy Keiei Kudo) The Jones Matrix used in the present invention is shown below. The amplitude transmittance in the y-axis and z-axis directions was δy = δz = 1.
【0018】[0018]
【数2】 (Equation 2)
【0019】このMatrixを用いた投影レンズ系に
おける電気ベクトルの計算例を示す。An example of calculation of an electric vector in a projection lens system using this Matrix will be described.
【0020】[0020]
【数3】 (Equation 3)
【0021】ここで、式中のnはレンズの枚数であり、
且つn,n−1・・・・・1は、投影レンズ系における各レ
ンズエレメント(部材)を示す記号でもある。この計算
にレンズ部材の測定結果を代入し、最も複屈折量が最小
になるような部材の組み合わせで投影レンズを組み上げ
る事で、さらにレンズ性能は向上した。Here, n in the equation is the number of lenses.
Further, n, n-1... 1 are also symbols indicating each lens element (member) in the projection lens system. The lens performance was further improved by substituting the measurement results of the lens members into this calculation and assembling the projection lens with a combination of members that minimized the amount of birefringence.
【0022】この組み合わせの例として、2枚の平行平
板(A,B)を考える。それぞれある一点において、複
屈折量が同一で、且つAで発生する異常光線の位相速度
が常光線にたいして正であり、Bでは負であるとする。
この場合、理論的には完全円偏光が入射した場合通過し
た光線も完全円偏光となる。つまり、見かけ上の複屈折
量が0と同意となる。この際、異常光の位相速度が常光
より常に小さい正の一軸性結晶(水晶等)や常に大きい
負の一軸性結晶(方解石等)を使用する方法もある。実
際にはレンズ枚数は、一般的には10枚以上であるので
この様に単純ではない。As an example of this combination, consider two parallel flat plates (A, B). At each point, it is assumed that the birefringence amount is the same, the phase velocity of the extraordinary ray generated in A is positive with respect to the ordinary ray, and negative in B.
In this case, theoretically, when the perfect circularly polarized light is incident, the light beam that has passed is also completely circularly polarized light. That is, the apparent birefringence amount is equal to 0. At this time, there is also a method of using a positive uniaxial crystal (crystal or the like) or a negative uniaxial crystal (calcite or the like) in which the phase velocity of the extraordinary light is always smaller than that of the ordinary light. Actually, the number of lenses is generally ten or more, so that it is not so simple.
【0023】同様に、レンズ系の偏光特性または複屈折
特性の光軸する中央対称性についても、各レンズ部材の
測定結果により、最も中央対称に近づく組み合わせで投
影レンズを組み上げる。Similarly, with respect to the central symmetry of the optical axis of the polarization characteristic or birefringence characteristic of the lens system, the projection lens is assembled in a combination that approaches the most central symmetry according to the measurement result of each lens member.
【0024】[0024]
【作用】巨視的な光学的性質である屈折率を考えた場
合、ガラスは光学結晶等と異なり、理論的な無応力且つ
完全均一状態では、その構造に方向性がないため、歪が
発生せず複屈折は0である。しかし、その様な状態は重
力等の影響も含め現実的には有り得ない。[Function] When the refractive index, which is a macroscopic optical property, is considered, glass is different from optical crystals and the like in a theoretically stress-free and completely uniform state. The birefringence is zero. However, such a state is practically impossible including the influence of gravity and the like.
【0025】そのため、石英ガラスの複屈折は、不純物
と密度分布、熱履歴などにより発生する残留応力に起因
する。不純物としては、OH、Cl、金属不純物、溶存ガス
があげられ、ダイレクト法の場合は、数百ppm以上含有
されるOH、次いで数十ppmが含有されるCl、が混入量か
ら支配的だと考えられる。他の不純物は、分析によると
50ppb以下に過ぎないので、複屈折に対する影響は無
視できる。Therefore, the birefringence of quartz glass is caused by residual stress generated by impurities, density distribution, heat history and the like. Examples of impurities include OH, Cl, metal impurities, and dissolved gas.In the case of the direct method, OH containing several hundred ppm or more, and then Cl containing several tens of ppm are dominant from the amount of contamination. Conceivable. Other impurities are less than 50 ppb by analysis and therefore have a negligible effect on birefringence.
【0026】一方、密度分布としては、熱履歴による密
度分布が支配的である。これは、ダイレクト法(Direct
Method)、VAD(vapor axial deposition)法、ゾルゲ
ル(sol-gel)法、プラズマバーナー(plasma burnar)法等
の製造方法に依らず存在する。このような成分により複
屈折量及び分布が決定されると推測される。この様な複
屈折の原因である残留応力を減少するための手段として
は以下の方法がある。On the other hand, as the density distribution, the density distribution based on the thermal history is dominant. This is the direct method (Direct
Method, VAD (vapor axial deposition) method, sol-gel method, plasma burner method and the like. It is assumed that the birefringence amount and distribution are determined by such components. As means for reducing the residual stress which causes such birefringence, the following method is available.
【0027】合成条件の最適化による不純物量、密度
分布の減少 アニ−ル条件の最適化 また、複屈折量及びその分布、進相軸方向の分布を中央
対称にするための方法としては、合成、均質化や形状変
更のための熱処理、除歪のためのアニール、および切断
・丸め等の機械的な加工、の各工程で幾何学的な中心位
置を常に維持するような製造方法が必要となる。Reduction of impurity amount and density distribution by optimizing synthesis conditions Optimization of annealing conditions Also, as a method for making the birefringence amount and its distribution and the distribution in the fast axis direction centrally symmetric, a method of synthesizing A manufacturing method that always maintains the geometric center position in each process of heat treatment for homogenization and shape change, annealing for strain removal, and mechanical processing such as cutting and rounding is required. Become.
【0028】図1に、本発明に係るリソグラフィ−用石
英ガラスの製造手順の概略図を示す以下に製造方法の一
例を説明する。石英ガラスの合成をインゴットを回転さ
せながら行えば、不純物濃度分布、物性分布、及びそれ
に基づく偏光及び複屈折特性は必ず中心対称になる。得
られたインゴット11を、まず円筒形状12に切断す
る。この円筒形状12の側面はインゴット11側面のま
まであるため、円筒形状12の幾何学的な中心を側面か
ら求めれば、それがインゴット11合成時の中心、すな
わち応力分布の中心となる。この点を円形の切断面上に
マーキングし、その後の切断、丸め等の加工の中心基準
とすれば、インゴット11の中心軸と石英ガラス部材の
中心軸とが一致し、最終的に偏光特性及び複屈折特性の
中央対称性を有する光学部材を得ることができる。FIG. 1 is a schematic diagram showing a procedure for manufacturing a quartz glass for lithography according to the present invention. An example of the manufacturing method will be described below. If the synthesis of the quartz glass is performed while rotating the ingot, the impurity concentration distribution, the physical property distribution, and the polarization and birefringence characteristics based on the impurity concentration distribution always become centrally symmetric. First, the obtained ingot 11 is cut into a cylindrical shape 12. Since the side surface of the cylindrical shape 12 remains as the side surface of the ingot 11, if the geometric center of the cylindrical shape 12 is obtained from the side surface, it becomes the center at the time of combining the ingot 11, that is, the center of the stress distribution. If this point is marked on a circular cut surface and the center of the subsequent cutting, rounding, or other processing is performed, the center axis of the ingot 11 and the center axis of the quartz glass member coincide, and finally the polarization characteristics and An optical member having central symmetry of birefringence characteristics can be obtained.
【0029】前述したように、偏光及び複屈折特性は、
不純物と熱履歴による密度分布等により決まるが、これ
らは合成条件により制御を行うことができる。合成条件
の変動に影響を与える、原料、酸素、水素等のガス流
量、排気流量、回転、引き下げ等の駆動部は、高精度に
制御可能な構成とする。また、レーザー光の光軸を基準
軸として使用し、炉、駆動部、バーナーのアライメント
を高精度で行う。As mentioned above, the polarization and birefringence properties are:
The density and the like are determined by impurities and thermal history, and these can be controlled by synthesis conditions. The drive units that affect the fluctuations in the synthesis conditions, such as the gas flow rates of the raw materials, oxygen, hydrogen, and the like, the exhaust flow rates, rotation, and reduction, are configured to be controlled with high precision. In addition, using the optical axis of the laser beam as a reference axis, the furnace, the drive unit, and the burner are aligned with high accuracy.
【0030】アニール等の熱処理を加える場合は、対称
性を維持するために、素材形状を円筒形とし、回転対称
な温度分布を持つ炉の中央で熱を加える必要がある。こ
の石英ガラス素材は回転させる事が望ましい。粘性変形
をさせる場合は、片寄った変形とならないように特に配
慮を加える必要がある。これらの方法により、複屈折量
及び偏光特性分布を調整し、所望の光学部材を得ること
ができる。When heat treatment such as annealing is applied, in order to maintain symmetry, it is necessary to apply heat at the center of a furnace having a cylindrical shape and a rotationally symmetric temperature distribution. This quartz glass material is preferably rotated. In the case of viscous deformation, it is necessary to pay particular attention to prevent uneven deformation. By these methods, the amount of birefringence and the polarization characteristic distribution can be adjusted to obtain a desired optical member.
【0031】さらに、丸め等の加工を加え、石英ガラス
部材13を得るときは、加工前に中心位置をマークし、
位置のズレがないように加工を行う。この石英ガラス部
材13をさらに加工・研磨し、投影レンズ14を作製す
るこの際、均質性△nは、2×10-6以下のものを使用
した。図2にエキシマレーザステッパの簡単な概略図を
示したが、以上のような工程により様々な形状の投影レ
ンズ14を作製し、組み合わせて鏡筒に組み込むことに
より、露光・転写用の投影レンズ系24ができあがる。
この図において、21はエキシマレーザ装置,22はエ
キシマレーザステッパの照明系,23はレチクル,25
は縮小投影されるシリコンウエハである。このような操
作を行うことにより、光リソグラフィー技術において微
細かつ鮮明なパターンを得るための光学性能を得る事が
できる。さらに、進相軸方向を考慮し、結像面で複屈折
量が最小になるような、レンズ部材を組み合わせて投影
レンズを組み上げる事によりさらに、解像度は向上し
た。Further, when processing such as rounding is performed to obtain the quartz glass member 13, the center position is marked before processing.
Perform processing so that there is no displacement. The quartz glass member 13 is further processed and polished to produce a projection lens 14. At this time, one having a uniformity Δn of 2 × 10 −6 or less was used. FIG. 2 shows a simple schematic diagram of an excimer laser stepper. The projection lens 14 of various shapes is manufactured by the above-described steps, and the projection lens system for exposure and transfer is manufactured by combining the projection lenses 14 into a lens barrel. 24 is completed.
In this figure, 21 is an excimer laser device, 22 is an illumination system of an excimer laser stepper, 23 is a reticle, 25
Is a silicon wafer to be reduced and projected. By performing such an operation, optical performance for obtaining a fine and clear pattern in the photolithography technique can be obtained. Further, the resolution was further improved by assembling a projection lens by combining lens members so as to minimize the amount of birefringence on the image plane in consideration of the fast axis direction.
【0032】すなわち以上のように本発明によれば、光
リソグラフィー技術において、0.3μm 以下の微細パ
ターンを得る事が可能になった。That is, as described above, according to the present invention, it is possible to obtain a fine pattern of 0.3 μm or less in the photolithography technique.
【0033】[0033]
【比較例】レンズ部材として均質性△n≦2×10-6、
且つ 複屈折量≦5nm/cmの仕様を満たす石英ガラ
スでKrFエキシマレ−ザ−ステッパ用投影レンズを作
製した。得られた解像度(L/S)は、設計解像度(L
/S)0.25μmに対して0.5μmであった。この
様な仕様による材料の選定だけでは、設計性能が得られ
ない事がわかった。[Comparative Example] As lens members, homogeneity Δn ≦ 2 × 10 −6 ,
In addition, a projection lens for a KrF excimer laser stepper was made of quartz glass satisfying the specification of birefringence ≦ 5 nm / cm. The obtained resolution (L / S) is equal to the design resolution (L
/ S) was 0.5 μm with respect to 0.25 μm. It was found that design performance could not be obtained only by selecting materials based on such specifications.
【0034】L/Sとは、line and space の略語で半
導体製造の性能評価の指標として一般的に使用される数
値である。均質性の測定は、He−Neレーザ干渉計を用い
たオイルオンプレート法、複屈折の測定は回転検光子法
により行った。L / S is an abbreviation of line and space and is a numerical value generally used as an index for performance evaluation of semiconductor manufacturing. The homogeneity was measured by an oil-on-plate method using a He-Ne laser interferometer, and the birefringence was measured by a rotating analyzer method.
【0035】[0035]
【実施例1】レンズ部材の△n≦2×10-6、且つ 複
屈折量≦2nm/cm、且つ複屈折及び偏光特性が中央
対称である仕様を満たす石英ガラスでKrFエキシマレ
−ザ−ステッパ用投影レンズを作製した。得られた解像
度(L/S)は、設計解像度(L/S)0.25μmに
対して0.3μmであった。この仕様により部材を選別
する事で、仕様に近い性能が得られた。Embodiment 1 Quartz glass satisfying specifications of Δn ≦ 2 × 10 −6 of the lens member, birefringence ≦ 2 nm / cm, and birefringence and polarization characteristics of central symmetry for a KrF excimer laser stepper. A projection lens was made. The obtained resolution (L / S) was 0.3 μm against the design resolution (L / S) of 0.25 μm. By sorting the members according to this specification, performance close to the specification was obtained.
【0036】均質性の測定は、He−Neレーザ干渉計を用
いたオイルオンプレート法、複屈折の測定は位相変調法
により行った。位相変調法は、回転検光子法と比較して
およそ2桁高い感度で、進相軸方向の確認が容易であ
る。(持田悦宏:光技術コンタクト vol.27.N
o.3(1989)) この際使用した石英ガラスは、365nm,248nm,193nmに
おいて10mm内部透過率が99.9%を超えるものであった。The homogeneity was measured by an oil-on-plate method using a He-Ne laser interferometer, and the birefringence was measured by a phase modulation method. The phase modulation method has a sensitivity approximately two orders of magnitude higher than that of the rotary analyzer method, and facilitates confirmation in the fast axis direction. (Etsuhiro Mochida: Optical Technology Contact vol.27.N
o. 3 (1989)) The quartz glass used at this time had an internal transmittance of 10 mm at 365 nm, 248 nm and 193 nm exceeding 99.9%.
【0037】また、KrFエキシマレーザを 400mJ/cm2・ハ゜
ルスで106ハ゜ルス照射した後、 248nmにおける10mm内部透過
率は99.9%を超えていた。さらに、ArFエキシマレーザ特
性を確認したところ 100mJ/cm2・ハ゜ルスで106ハ゜ルス照射した
後、 193nmにおける10mm内部透過率が 99.9%を超えるこ
とを確認した。レンズ設計をArFエキシマレ−ザ−用
にする事で、この材料を使用すれば、ArFエキシマス
テッパにも使用可能である。Further, after 106 pulse irradiation with KrF excimer laser at 400 mJ / cm 2 · pulse, 10 mm internal transmittance at 248nm was greater than 99.9%. Furthermore, after 106 pulse irradiation at 100 mJ / cm @ 2 · pulse was confirmed ArF excimer laser characteristics, 10 mm internal transmittance at 193nm and it was confirmed that more than 99.9%. By using a lens design for an ArF excimer laser, this material can be used for an ArF excimer stepper.
【0038】この石英ガラスは、水素濃度5×1017個/cm
3以上であり、中央部の方が周辺部より高い水素濃度を
持つ。この投影レンズは、256MBのVLSI製造ラ
イン用に使用可能である。This quartz glass has a hydrogen concentration of 5 × 10 17 / cm
It is 3 or more, and the central part has a higher hydrogen concentration than the peripheral part. This projection lens can be used for a 256 MB VLSI production line.
【0039】[0039]
【実施例2】レンズ部材特性△n≦2×10-6、且つ
複屈折量≦2nm/cm、且つ複屈折及び偏光特性が中
央対称である仕様を満たす石英ガラスでKrFエキシマ
レ−ザ−ステッパ用投影レンズを作製した。さらに、レ
ンズ部材組み上げ時に、結像面における、複屈折量が最
小になるように使用する部材を組み合わせ、調整を行っ
た。得られた解像度(L/S)は、設計解像度(L/
S)0.25μmに対して0.25μmであった。Embodiment 2 Lens member characteristics Δn ≦ 2 × 10 −6 , and
A projection lens for a KrF excimer laser stepper was made of quartz glass satisfying the specification that the amount of birefringence ≦ 2 nm / cm and the birefringence and polarization characteristics are center symmetric. Further, at the time of assembling the lens members, the members used were adjusted so as to minimize the amount of birefringence on the imaging surface. The obtained resolution (L / S) is equal to the design resolution (L / S).
S) It was 0.25 μm against 0.25 μm.
【0040】均質性の測定は、He−Neレーザ干渉計を用
いたオイルオンプレート法、複屈折の測定は位相変調法
により行った。この際使用した石英ガラスは、365nm,2
48nm,193nmにおいて10mm内部透過率が 99.9%を超える
ものであった。また、KrFエキシマレーザを 400mJ/cm2・
ハ゜ルスで106ハ゜ルス照射した後、 248nmにおける10mm内部透
過率は99.9%を超えていた。The homogeneity was measured by an oil-on-plate method using a He-Ne laser interferometer, and the birefringence was measured by a phase modulation method. The quartz glass used at this time was 365 nm, 2
At 48 nm and 193 nm, the internal transmittance at 10 mm exceeded 99.9%. In addition, a KrF excimer laser was supplied at 400 mJ / cm 2
After 10 6 pulses of irradiation at 10 Hz, the 10 mm internal transmission at 248 nm was greater than 99.9%.
【0041】さらに、ArFエキシマレーザ特性を確認し
たところ 100mJ/cm2・ハ゜ルスで106ハ゜ルス照射した後、 193nm
における10mm内部透過率が 99.9%を超えることを確認し
た。レンズ設計ををArFエキシマレ−ザ−用にする事
で、この材料を使用すれば、ArFエキシマステッパに
も使用可能である。この石英ガラスは、水素濃度5×10
17個/cm3以上であり、中央部の方が周辺部より高い水素
濃度を持つ。[0041] In addition, after 10 6 pulse irradiation at 100mJ / cm2 · pulse After a review of our ArF excimer laser characteristics, 193nm
It was confirmed that the 10 mm internal transmittance of the sample exceeded 99.9%. By using a lens design for an ArF excimer laser, this material can be used for an ArF excimer stepper. This quartz glass has a hydrogen concentration of 5 × 10
It is more than 17 / cm 3 , and the central part has a higher hydrogen concentration than the peripheral part.
【0042】この投影レンズは、256MB以上の微細
なVLSI製造ライン用に使用可能である。以上の実施
例においては、石英ガラスを材料として用いた投影レン
ズについて詳述したが、本発明はこれに限られるもので
はなく石英ガラス以外の光学部材、例えば蛍石を材料と
して用いたものにも適用され得るものであり、さらに
は、レンズ以外の光学部材、例えばミラーやプリズム等
にも適用され得る。This projection lens can be used for a fine VLSI production line of 256 MB or more. In the above embodiments, the projection lens using quartz glass as a material has been described in detail, but the present invention is not limited to this, and optical members other than quartz glass, for example, those using fluorite as a material are also applicable. The present invention can be applied to optical members other than lenses, such as mirrors and prisms.
【0043】[0043]
【発明の効果】本発明によれば、レンズ設計時の設計解
像度に近い光学性能が得られる光学部材及び投影光学系
を提供することができる。本発明の光学部材及び投影光
学系は、400nm以下の、i−Line、ArF・K
rFエキシマレ−ザ−ステッパ用として適用できる。According to the present invention, it is possible to provide an optical member and a projection optical system capable of obtaining optical performance close to the design resolution at the time of designing a lens. The optical member and the projection optical system according to the present invention have an i-Line, ArF · K of 400 nm or less.
Applicable for rF excimer laser stepper.
【0044】これらの発明により、光リソグラフィー装
置の性能向上及び安定化が可能になった。なお、本発明
の光学部材を光リソグラフィー技術に用いた場合におい
て、400nm以下の特定波長領域の光を用いて露光・転
写を行うほか、He‐Ne(632.8nm)等のレーザー光
を用いてのウエハのアライメントにも兼用することが可
能である。According to these inventions, the performance of an optical lithography apparatus can be improved and stabilized. When the optical member of the present invention is used for photolithography technology, exposure and transfer are performed using light in a specific wavelength region of 400 nm or less, and laser light such as He-Ne (632.8 nm) is used. Can also be used for wafer alignment.
【図1】 本発明に係るリソグラフィー用石英ガラスの
製造手順の概略図である。FIG. 1 is a schematic view of a procedure for manufacturing a quartz glass for lithography according to the present invention.
【図2】 本発明に係る光学部材を用いて製作された投
影レンズを組み込んだリソグラフィー装置の概略図であ
る。FIG. 2 is a schematic view of a lithography apparatus incorporating a projection lens manufactured using the optical member according to the present invention.
フロントページの続き (56)参考文献 特開 平6−16449(JP,A) 特開 平5−58668(JP,A) 特開 平3−109223(JP,A) 特開 平3−88743(JP,A) 特開 平6−234531(JP,A) 特開 平6−234530(JP,A) 特開 平6−308717(JP,A) 特開 平7−187684(JP,A) (58)調査した分野(Int.Cl.7,DB名) G02B 1/00 - 1/12 G02B 3/00 - 3/14 C30B 1/00 - 35/00 C01F 1/00 - 17/00 C03C 1/00 - 14/00 C03B 1/00 - 17/06 C03F 7/20 - 7/24 H01L 21/027 Continuation of the front page (56) References JP-A-6-16449 (JP, A) JP-A-5-58668 (JP, A) JP-A-3-109223 (JP, A) JP-A-3-88743 (JP) JP-A-6-234531 (JP, A) JP-A-6-234530 (JP, A) JP-A-6-308717 (JP, A) JP-A-7-187684 (JP, A) (58) Field surveyed (Int.Cl. 7 , DB name) G02B 1/00-1/12 G02B 3/00-3/14 C30B 1/00-35/00 C01F 1/00-17/00 C03C 1/00- 14/00 C03B 1/00-17/06 C03F 7/20-7/24 H01L 21/027
Claims (9)
光リソグラフィー用光学部材において、屈折率の均質性
Δnが2×10 -6 以下、複屈折量の絶対値が2.0nm
/cm以下、複屈折量の分布が中央対称性を有すること
を特徴とする光学部材。1. An optical member for photolithography used in a specific wavelength region of 400 nm or less, in which the refractive index homogeneity is high.
Δn is 2 × 10 −6 or less, and the absolute value of birefringence is 2.0 nm
/ Cm or less, the birefringence amount distribution has a central symmetry.
光リソグラフィー用光学部材において、屈折率の均質性
Δnが2×10 -6 以下、複屈折量の絶対値が2.0nm
/cm以下、屈折率楕円体における進相軸方向が中央対
称性を有することを特徴とする光学部材。2. An optical member for photolithography used in a specific wavelength region of 400 nm or less, wherein a refractive index uniformity is obtained.
Δn is 2 × 10 −6 or less, and the absolute value of birefringence is 2.0 nm
/ Cm or less, wherein the fast axis direction of the refractive index ellipsoid has central symmetry.
において、365nm、248nm、193nmにおけ
る10mm内部透過率が99.9%を越えることを特徴
とする光学部材。3. The optical member according to claim 1, wherein a 10 mm internal transmittance at 365 nm, 248 nm, and 193 nm exceeds 99.9%.
において、KrFエキシマレーザを400mJ/cm2
・パルスで106パルス照射した後、248nmにおけ
る10mm内部透過率が99.9%を越えることを特徴
とする光学部材。4. The optical member according to claim 1, wherein a KrF excimer laser is applied at 400 mJ / cm 2.
-An optical member characterized by having a 10 mm internal transmittance at 248 nm exceeding 99.9% after irradiation with 10 6 pulses.
において、ArFエキシマレーザを100mJ/cm2
・パルスで106パルス照射した後、193nmにおけ
る10mm内部透過率が99.9%を越えることを特徴
とする光学部材。5. The optical member according to claim 1, wherein the ArF excimer laser is supplied at 100 mJ / cm 2.
-An optical member characterized by having a 10 mm internal transmittance at 193 nm of more than 99.9% after irradiation with 10 6 pulses.
において、水素濃度が5×1017個/cm3以上であ
り、中央部が周辺部より高い水素濃度を持つ石英ガラス
からなることを特徴とする光学部材。6. The optical member according to claim 1, wherein the hydrogen concentration is 5 × 10 17 / cm 3 or more, and the central portion is made of quartz glass having a higher hydrogen concentration than the peripheral portion. An optical member characterized by the above-mentioned.
る、多数の光学部材の組み合わせにより構成された光リ
ソグラフィー用投影光学系において、それぞれの光学部
材の屈折率の均質性Δnが2×10 -6 以下であり、投影
光学系の結像位置における複屈折量の絶対値が2nm/
cm以下となるようにそれぞれの光学部材の複屈折量の
分布を組み合わせたことを特徴とする光リソグラフィー
用投影光学系。7. In a projection optical system for photolithography used in a specific wavelength band of 400 nm or less and constituted by a combination of a large number of optical members, the homogeneity Δn of the refractive index of each optical member is 2 × 10 −. 6 or less, projection
The absolute value of the birefringence amount at the imaging position of the optical system is 2 nm /
cm or less of the birefringence of each optical member.
A projection optical system for optical lithography characterized by combining distributions .
る、多数の光学部材の組み合わせにより構成された光リ
ソグラフィー用投影光学系において、それぞれの光学部
材の屈折率の均質性Δnが2×10 -6 以下であり、投影
光学系の結像位置における屈折率楕円体の進相軸方向が
光軸に対して中央対称になるようにそれぞれの光学部材
の屈折率楕円体の進相軸方向を組み合わせたことを特徴
とする光リソグラフィー用投影光学系。8. In a projection optical system for optical lithography used in a specific wavelength band of 400 nm or less and constituted by a combination of a large number of optical members, the uniformity Δn of the refractive index of each optical member is 2 × 10 −. 6 or less, projection
The fast axis direction of the index ellipsoid at the imaging position of the optical system is
Each optical member so that it is centrally symmetric with respect to the optical axis
A projection optical system for optical lithography, wherein the fast axis directions of the refractive index ellipsoids are combined .
る、多数の光学部材の組み合わせにより構成された光リ
ソグラフィー用投影光学系において、それぞれの光学部
材の屈折率の均質性Δnが2×10 -6 以下であり、投影
光学系の結像位置における複屈折量の絶対値が2nm/
cm以下で且つ屈折率楕円体の進相軸方向が光軸に対し
て中央対称になるようにそれぞれの光学部材の複屈折量
の分布及び屈折率楕円体の進相軸方向を組み合わせたこ
とを特徴とする光リソグラフィー用投影光学系。9. In a projection optical system for optical lithography used in a specific wavelength band of 400 nm or less and constituted by a combination of a large number of optical members, the homogeneity Δn of the refractive index of each optical member is 2 × 10 −. 6 or less, projection
The absolute value of the birefringence amount at the imaging position of the optical system is 2 nm /
cm or less and the fast axis direction of the refractive index ellipsoid is relative to the optical axis.
Birefringence of each optical member so that
Distribution and fast axis this <br/> and photolithography projection optical system characterized by a combination of direction of the refractive index ellipsoid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06242448A JP3089955B2 (en) | 1994-10-06 | 1994-10-06 | Optical member for optical lithography and projection optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06242448A JP3089955B2 (en) | 1994-10-06 | 1994-10-06 | Optical member for optical lithography and projection optical system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08107060A JPH08107060A (en) | 1996-04-23 |
JP3089955B2 true JP3089955B2 (en) | 2000-09-18 |
Family
ID=17089252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06242448A Expired - Lifetime JP3089955B2 (en) | 1994-10-06 | 1994-10-06 | Optical member for optical lithography and projection optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3089955B2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6829041B2 (en) | 1997-07-29 | 2004-12-07 | Canon Kabushiki Kaisha | Projection optical system and projection exposure apparatus having the same |
EP1037267A4 (en) * | 1997-11-07 | 2005-05-18 | Nikon Corp | Projection exposure device, projection exposure method, and method of manufacturing projection exposure device |
DE19855106A1 (en) * | 1998-11-30 | 2000-05-31 | Zeiss Carl Fa | Illumination system for VUV microlithography |
ATE431619T1 (en) | 1999-01-06 | 2009-05-15 | Nikon Corp | METHOD FOR PRODUCING AN OPTICAL PROJECTION SYSTEM |
JP2000219523A (en) | 1999-01-28 | 2000-08-08 | Nikon Corp | Forming method of quartz glass, forming device and quartz glass produced by the method |
WO2000064826A1 (en) * | 1999-04-21 | 2000-11-02 | Nikon Corporation | Quartz glass member, production method therefor, and projection aligner using it |
US6769273B1 (en) | 1999-07-05 | 2004-08-03 | Nikon Corporation | Method of manufacturing silica glass member and silica glass member obtained by the method |
AU6321600A (en) | 1999-08-12 | 2001-03-13 | Nikon Corporation | Method for preparation of synthetic vitreous silica and apparatus for heat treatment |
US6710930B2 (en) | 1999-12-01 | 2004-03-23 | Nikon Corporation | Illumination optical system and method of making exposure apparatus |
KR100877022B1 (en) | 2000-10-10 | 2009-01-07 | 가부시키가이샤 니콘 | Method of evaluating imaging performance |
TW558749B (en) * | 2001-06-20 | 2003-10-21 | Nikon Corp | Optical system and the exposure device comprising the same |
WO2003003429A1 (en) * | 2001-06-28 | 2003-01-09 | Nikon Corporation | Projection optical system, exposure system and method |
TW584898B (en) * | 2001-07-10 | 2004-04-21 | Nikon Corp | Optical system and exposure apparatus having the optical system |
US6775063B2 (en) | 2001-07-10 | 2004-08-10 | Nikon Corporation | Optical system and exposure apparatus having the optical system |
US6788389B2 (en) | 2001-07-10 | 2004-09-07 | Nikon Corporation | Production method of projection optical system |
KR100908587B1 (en) * | 2001-07-17 | 2009-07-22 | 가부시키가이샤 니콘 | Manufacturing method of optical member |
US6844915B2 (en) | 2001-08-01 | 2005-01-18 | Nikon Corporation | Optical system and exposure apparatus provided with the optical system |
JP2003161882A (en) * | 2001-11-29 | 2003-06-06 | Nikon Corp | Projection optical system, exposure apparatus and exposing method |
AU2002354150A1 (en) * | 2001-12-10 | 2003-07-09 | Nikon Corporation | Fluoride crystal material for optical device used for photolithographic apparatus and its manufacturing method |
JP2003297729A (en) * | 2002-04-03 | 2003-10-17 | Nikon Corp | Projection optical system, exposure apparatus, and method of exposure |
JP4333078B2 (en) | 2002-04-26 | 2009-09-16 | 株式会社ニコン | Projection optical system, exposure apparatus including the projection optical system, exposure method using the projection optical system, and device manufacturing method |
DE102011004182B4 (en) * | 2011-02-16 | 2019-10-17 | Carl Zeiss Smt Gmbh | Method for producing a microlithography projection exposure apparatus and corresponding projection exposure apparatus and projection objective therefor |
-
1994
- 1994-10-06 JP JP06242448A patent/JP3089955B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH08107060A (en) | 1996-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3089955B2 (en) | Optical member for optical lithography and projection optical system | |
US6829041B2 (en) | Projection optical system and projection exposure apparatus having the same | |
US6672109B1 (en) | Silica glass member, method for producing the same, and projection aligners using the same | |
US20170329233A1 (en) | Polarization-modulating optical element | |
KR100392127B1 (en) | Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof | |
TWI471613B (en) | Optical system | |
JP5510987B2 (en) | Microlithography projection exposure apparatus | |
US7239450B2 (en) | Method of determining lens materials for a projection exposure apparatus | |
EP1586946A2 (en) | Optical system of a microlithographic projection exposure apparatus | |
US6025955A (en) | Optical member for photolithography, method for evaluating optical member, and photolithography apparatus | |
JP4029838B2 (en) | Optical member for optical lithography and its evaluation method | |
US20060238895A1 (en) | Projection objective of a microlithographic projection exposure apparatus and method for its production | |
JPWO2003007045A1 (en) | Manufacturing method of projection optical system | |
KR20010062343A (en) | Projection exposure apparatus and method of manufacturing a device using the projection exposure apparatus | |
JP3120647B2 (en) | Method for producing quartz glass and quartz glass produced thereby | |
EP1134197B1 (en) | Method for preparation of synthetic vitreous silica | |
JP2770224B2 (en) | Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same | |
JP4617492B2 (en) | Polarization modulation optical element and method of manufacturing polarization modulation optical element | |
JPH0755845B2 (en) | Transmitter for laser light | |
JP3679774B2 (en) | Birefringence measuring apparatus and method | |
JP3976083B2 (en) | Optical system for circuit pattern exposure | |
JPH06308717A (en) | Quartz glass member for photolithography | |
JP2639514B2 (en) | Laser lithography equipment | |
JPH0463019B2 (en) | ||
JP2558217B2 (en) | Optical lithography equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150721 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term |