JPH03115806A - Method for measuring thickness in laminated structure - Google Patents

Method for measuring thickness in laminated structure

Info

Publication number
JPH03115806A
JPH03115806A JP25432089A JP25432089A JPH03115806A JP H03115806 A JPH03115806 A JP H03115806A JP 25432089 A JP25432089 A JP 25432089A JP 25432089 A JP25432089 A JP 25432089A JP H03115806 A JPH03115806 A JP H03115806A
Authority
JP
Japan
Prior art keywords
layer
thickness
waveform
laminated structure
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25432089A
Other languages
Japanese (ja)
Other versions
JPH0648179B2 (en
Inventor
Shunji Honda
本田 舜二
Isao Matsumoto
功 松本
Kenji Yamada
健二 山田
Teruhisa Yasuoka
安岡 輝久
Shiro Sato
志朗 佐藤
Katsumi Sugano
菅野 克美
Tatsuhide Nakane
達英 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI DORO KK
Japan Radio Co Ltd
Kokusai Kogyo Co Ltd
Original Assignee
TAISEI DORO KK
Japan Radio Co Ltd
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI DORO KK, Japan Radio Co Ltd, Kokusai Kogyo Co Ltd filed Critical TAISEI DORO KK
Priority to JP1254320A priority Critical patent/JPH0648179B2/en
Publication of JPH03115806A publication Critical patent/JPH03115806A/en
Publication of JPH0648179B2 publication Critical patent/JPH0648179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To highly accurately measure thickness of each layer by a method wherein a pulse wave is radiated to a laminated structure, a synthesized reflection wave is decomposed and extracted as reflection waves of a surface and respective layers, their time differences are detected, and the difference and the dielectric constant of each layer are used to calculate the thickness. CONSTITUTION:A pulse wave is radiated to a pavement where a surface At, a sub grade St and a road bed Mt are laminated, and a synthesized reflection wave of waveforms reflected on the surface and borders of the respective layers is received. Reflection waveforms W11 to W13 of the surface and the respective layers are decomposed and extracted from the synthesized deflection wave. With a time axis of the waveforms W11 as a reference, respective time differences D1 to D3 of the reflection waveforms W11 to W13 are calculated. An equation I is used to calculate thickness L of a layer based on the time difference D and a dielectric constant epsilon of each layer which is obtained as data in advance. Thus thickness of a layer can be measured at high accuracy quickly and continuously.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はパルス波(電磁波)を用いて、積層された舗装
道路等の夫々の層の厚さを計測する際に好適な積層構造
における厚さ測定方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention uses pulse waves (electromagnetic waves) to measure the thickness of each layer of a laminated structure, such as a paved road. Regarding the measurement method.

[従来の技術] 従来、単層の建造物のコンクリートあるいは溶鉱炉のレ
ンガ等の厚みを測定する際には、パルス波を放射し、次
いで、得られる反射波から前記コンクリート、レンガ等
に係る表面の反射波(クロストークを含む)を除去して
残留した波形から前記コンクリート、レンガ等の厚さの
計測を行う方法が知悉されている。
[Prior Art] Conventionally, when measuring the thickness of concrete in a single-story building or bricks in a blast furnace, a pulse wave is emitted, and then the surface of the concrete, brick, etc. is determined from the reflected waves obtained. A method is well known in which the thickness of the concrete, brick, etc. is measured from the waveform that remains after removing reflected waves (including crosstalk).

この場合、比較的薄いコンクリートの測定においては、
第7図に示されるように、先ず、充分に厚いコンクIJ
 −) Tの表面にパルス波を放射し、ここで得られる
反射波W1を記憶せしめる。次いで、測定を行うコンク
リートTaにパルス波を放射し、表面からの反射波W2
と底面からの反射波W、が合成して形成された合成反射
波W、を得る。
In this case, when measuring relatively thin concrete,
As shown in Figure 7, first, make sure that the conc IJ is sufficiently thick.
-) Emit a pulse wave to the surface of T, and store the reflected wave W1 obtained here. Next, a pulse wave is emitted to the concrete Ta to be measured, and the reflected wave W2 from the surface is
and the reflected wave W from the bottom surface are combined to obtain a composite reflected wave W.

そして、合成反射波W4から前記の反射波W、を読み出
し、且つ差し引きを行い、これにより底面からの反射波
W3のみが創出される。
Then, the reflected wave W is read out from the combined reflected wave W4 and subtracted, thereby creating only the reflected wave W3 from the bottom surface.

[発明が解決しようとする課題] 然しなから、第8図に示される表層(アスコン)At、
路盤(砕石)sr、路床(土)Mtからなる積層舗装道
路等における厚さの測定においては、路盤Stと路床M
tの境界からの反射波W6の信号レベルが低く、殊に、
路盤Stが薄い場合には表層Atの底面の反射波W1の
影響を受け、そのため、厚さの測定に困難を伴う。すな
わち、合成反射波W、から表面に係る反射波W6を差し
引き、続いて表層Atの底面からの基準とする反射波W
、を定めて差し引きく場合には、路盤Stの厚さにより
、前記基準となる反射波W7が変化してしまい、路盤S
tと路床Mtの境界面からの反射波W6の測定に誤差が
生じることになる。
[Problem to be solved by the invention] However, the surface layer (ascon) At shown in FIG.
When measuring the thickness of a laminated paved road, etc. consisting of a subgrade (crushed stone) sr and a subgrade (soil) Mt, the subgrade St and the subgrade M
The signal level of the reflected wave W6 from the boundary of t is low, especially when
When the roadbed St is thin, it is affected by the reflected wave W1 from the bottom of the surface layer At, and therefore it is difficult to measure the thickness. That is, the reflected wave W6 from the surface is subtracted from the composite reflected wave W, and then the reference reflected wave W from the bottom of the surface layer At is calculated.
When determining and subtracting , the reference reflected wave W7 changes depending on the thickness of the roadbed St, and the thickness of the roadbed St changes.
An error will occur in the measurement of the reflected wave W6 from the interface between the roadbed Mt and the roadbed Mt.

このように、従来より採用される積層構造における厚さ
測定方法においては、積層舗装道路における路盤Stの
厚さ、すなわち、路床Mtまでの深さの計測は困難であ
る。また、積層舗装道路の各層に係る積層構造における
厚さ測定方法は現況において見当たらない。
As described above, it is difficult to measure the thickness of the subgrade St in a laminated paved road, that is, the depth to the subgrade Mt, using conventional methods for measuring the thickness of a laminated structure. Furthermore, there is currently no method for measuring the thickness of each layer of a laminated pavement road.

本発明は係る点に鑑みてなされたものであって、パルス
波が積層構造、例えば、複数層からなる舗装道路に放射
された後、得られる夫々の層の境界に係る合成反射波か
ら、夫々の層の厚さが高精度、迅速、且つ連続的に計測
される積層構造における厚さ測定方法を提供することを
目的とする。
The present invention has been made in view of the above points, and after a pulse wave is radiated to a laminated structure, for example, a paved road consisting of multiple layers, each of the synthesized reflected waves obtained from the boundaries of each layer is An object of the present invention is to provide a method for measuring the thickness of a layer in a laminated structure, in which the thickness of a layer can be measured with high precision, quickly, and continuously.

[課題を解決するための手段] 前記の課題を解決するために本発明に係る積層構造にお
ける厚さ測定方法においては、積層構造にパルス波が放
射された後、得られる夫々の層の境界に係る合成反射波
に基づいて、夫々の層の厚さを計測する積層構造におけ
る厚さ測定方法において、 合成反射波の表面からの反射波を基準とした時間差(D
)が形成される前記夫々の層の境界からの反射波を抽出
する第1の過程と、前記夫々の層の比誘電率を知行する
第2の過程と、 前記夫々の時間差(D)と、対応する比誘電率とにおい
て、前記夫々の層に係る厚さL (mm)を において求める第3の過程と、 を含むことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, in the method for measuring the thickness of a laminated structure according to the present invention, after a pulse wave is radiated to the laminated structure, a pulse wave is emitted to the laminated structure, and then the thickness is In a thickness measurement method for a laminated structure in which the thickness of each layer is measured based on such synthetic reflected waves, the time difference (D
) is formed; a second process of determining the dielectric constant of each layer; and a time difference (D) between the respective layers; and a third step of determining the thickness L (mm) of each of the layers with respect to the corresponding dielectric constant.

[作用コ 上記の積層構造における厚さ測定方法においては、積層
構造に放射されたパルス波が表面並びに夫々の層を通過
した後、夫々の底面(境界)で反射され、合成反射波に
形成される。そして、前記合成反射波は、表面並びに夫
々の層の境界に係る反射波に分解されて抽出され、次い
で、表面からの反射波を基準として、前記夫々の反射波
における時間差が検出され、当該時間差と、予めデータ
として得られる夫々の層(物質)の比誘電率との演算処
理により、各層の厚さが算出される。
[Operation] In the method for measuring the thickness of a laminated structure described above, a pulse wave emitted to the laminated structure passes through the surface and each layer, and then is reflected at the bottom (boundary) of each layer, forming a composite reflected wave. Ru. Then, the composite reflected wave is decomposed and extracted into reflected waves related to the surface and the boundaries of each layer, and then, with the reflected waves from the surface as a reference, a time difference in each of the reflected waves is detected, and the time difference is detected. The thickness of each layer is calculated by calculating the dielectric constant of each layer (substance) obtained in advance as data.

[実施例] 次に、本発明に係る積層構造における厚さ測定方性の実
施例を、添付図面を参照しながら以下詳細に説明する。
[Example] Next, an example of thickness measurement method in a laminated structure according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は実施例の説明に供される積層舗装道路の構造を
示す断面図、第2図は積層舗装道路の各層の境界で形成
される合成反射波並びに位相状態を示す波形図、第3図
は処理過程の説明に供される図、第4図(a)、b)は
処理過程におけるシミュレーションフローチャート、1
5図(a)、6月ま処理過程の説明に供される図、第6
図は実施例が適用される埋設物探査装置を示す構成図で
ある。
FIG. 1 is a cross-sectional view showing the structure of a laminated pavement road used for explanation of the embodiment, FIG. 2 is a waveform diagram showing the phase state and the synthesized reflected waves formed at the boundaries of each layer of the laminated pavement road, and FIG. The figure is a diagram used to explain the processing process, and Figures 4 (a) and b) are simulation flowcharts in the processing process.
Figure 5 (a), diagram provided to explain the processing process until June, No. 6
The figure is a configuration diagram showing a buried object exploration device to which an embodiment is applied.

先ず、第6図を用いて、本発明の積層構造における厚さ
測定方法が、例えば、積層舗装道路の各層を測定する際
に適用される埋設物探査装置を説明する。
First, with reference to FIG. 6, a buried object detection device to which the method for measuring thickness in a laminated structure of the present invention is applied, for example, when measuring each layer of a laminated paved road will be explained.

この例は台車Dcと本体表示部10を有している。This example has a cart Dc and a main body display section 10.

台車Dcには、例えば、舗装道路M方向に指向性(ビー
ムターン)が形成される送信アンテナ12と、受信アン
テナ14とが配設されている。
For example, a transmitting antenna 12 whose directivity (beam turn) is formed in the direction of the paved road M and a receiving antenna 14 are disposed on the trolley Dc.

なお、符号Txで示される部分は上下水道管、通信グー
ブノペ空洞等の反射物体である。
Note that the portion indicated by the symbol Tx is a reflective object such as a water/sewage pipe or a communication goobunope cavity.

本体表示部10には、システム制御を行う制御部16と
、制御部1Gから同期用トリガ信号(S、)が供給され
、パルス信号を送信アンテナ12に送出する送信器18
とを有している。送信アンテナ12ではパルス信号をパ
ルス波(電磁波)PTwに生成して地中に放射する。
The main body display section 10 includes a control section 16 that performs system control, and a transmitter 18 that is supplied with a synchronization trigger signal (S,) from the control section 1G and sends out a pulse signal to the transmission antenna 12.
It has The transmitting antenna 12 generates a pulse signal into a pulse wave (electromagnetic wave) PTw and radiates it underground.

次いで、反射物体T’sからの反射波Plillに係る
受信信号が受信アンテナ14から供給されるサンプルホ
ールド回路20を存している。当該サンプルホールド回
路20の原理はサンプリングオシロスコープと同一であ
り、一定の周期で繰り返す高周波信号を制御部1Gから
のサンプリング用信号S1でサンプルし、取り扱いの容
易な低周波信号S2に変換する。さらに低周波信号S2
を所定の値に増幅する低周波増幅器22と、A/Dコン
バータ24と、信号処理器26とを有している。信号処
理器26はマイクロコンピュータが内蔵され、デジタル
化された反射波信号に対して、S/N比改善や分解能向
上を目的とした種々の信号処理を施す。さらにブラウン
管の表示、他の端末機器、例えば、データレコーダ、カ
ラーハードコピー装置、ホストコンピュータ等へデータ
の送出を行う。なお、前記の信号処理を行うためのキー
ボード等の操作手段26aが連設されている。前記A/
Dコンバータ24、信号処理器26には夫々制御部16
から同期等に必要な制御信号(クロック信号等)S< 
、Ssが供給されている。
Next, there is a sample and hold circuit 20 to which a received signal related to the reflected wave Plill from the reflective object T's is supplied from the receiving antenna 14. The principle of the sample and hold circuit 20 is the same as that of a sampling oscilloscope, and samples a high frequency signal that repeats at a constant cycle using a sampling signal S1 from the control unit 1G, and converts it into a low frequency signal S2 that is easy to handle. Furthermore, low frequency signal S2
It has a low frequency amplifier 22 that amplifies the signal to a predetermined value, an A/D converter 24, and a signal processor 26. The signal processor 26 has a built-in microcomputer, and performs various signal processing on the digitized reflected wave signal for the purpose of improving the S/N ratio and resolution. Furthermore, it performs display on a cathode ray tube and sends data to other terminal equipment such as a data recorder, color hard copy device, host computer, etc. Note that an operating means 26a such as a keyboard for performing the above-mentioned signal processing is provided in series. Said A/
The D converter 24 and the signal processor 26 each include a control section 16.
Control signals (clock signals, etc.) necessary for synchronization etc. from S<
, Ss are supplied.

なお、符号30はカラーブラウン管であり、反射波を種
々の形式で可視的に表示する。
Note that reference numeral 30 is a color cathode ray tube, which visually displays reflected waves in various formats.

本実施例は前記信号処理器26に係る処理過程、例えば
、積層舗装道路下の各層の厚さを計測する際の積層構造
における厚さ測定方法であり、以下その詳細を説明する
This embodiment is a processing process related to the signal processor 26, for example, a thickness measuring method in a laminated structure when measuring the thickness of each layer under a laminated pavement road, and the details thereof will be explained below.

先ず、測定対象物である表層(アスコン)At。First, the surface layer (ascon) At that is the object to be measured.

路盤(砕石)St、路床(土)Mtが積層される舗装道
路の構成(断面)を第1図に示す。次に、上記夫々の層
の比誘電率を下記の第1表に示す。
FIG. 1 shows the configuration (cross section) of a paved road on which a subgrade (crushed stone) St and a subgrade (soil) Mt are laminated. Next, the relative permittivity of each of the above layers is shown in Table 1 below.

表1 第1表に示されるように、比誘電率は夫々の層で異なる
。そして送信アンテナ12から送出されたパルス波PT
Wは舗装道路Mの表面Maと、表層At、路盤Stの夫
々の底面である境界で反射される。
Table 1 As shown in Table 1, the dielectric constants are different for each layer. Then, the pulse wave PT sent out from the transmitting antenna 12
W is reflected at the boundary between the surface Ma of the paved road M, the bottom surface of each of the surface layer At and the roadbed St.

ここで、受信アンテナI4で受波される反射波PRwを
第2図に示す。図から容易に理解されるように、反射波
PRwは、放射されたパルス波が前記の表面Maと、さ
らに表層At、路盤Stを通過し、且つ夫々の境界で反
射された波形の合成である。ここで合成反射波Wtの成
分(波形)は以下の通りである。
Here, the reflected wave PRw received by the receiving antenna I4 is shown in FIG. As can be easily understood from the figure, the reflected wave PRw is a composite of the waveforms of the emitted pulse wave that passes through the surface Ma, the surface layer At, and the roadbed St, and is reflected at each boundary. . Here, the components (waveform) of the composite reflected wave Wt are as follows.

合成反射波Wt=波形WIG十波形W1゜十波形W、2
+波形W 13 波形W、、 :送信系から受信系に回り込んだ波形であ
る。
Synthetic reflected wave Wt = waveform WIG 10 waveform W1° 10 waveform W, 2
+Waveform W 13 Waveform W, , : This is a waveform that wraps around from the transmitting system to the receiving system.

波形W11:表面Maからの反射波である。Waveform W11: This is a reflected wave from the surface Ma.

波形W1□:表層Atと路盤Stの境界面からの反射波
である。
Waveform W1□: This is a reflected wave from the interface between the surface layer At and the roadbed St.

波形W13:路盤Stと路床Mtの境界面からの反射波
である。
Waveform W13: This is a reflected wave from the boundary surface between the roadbed St and the roadbed Mt.

次いで、前記波形WIG乃至波形WH3の夫々の時間差
(位相差)Do乃至D3は以下の通りである(第2図参
照)。
Next, the time differences (phase differences) Do to D3 of the waveforms WIG to WH3 are as follows (see FIG. 2).

Do ;時間差は生起しない(この波形の時間軸の一点
を基準点とする)。
Do: No time difference occurs (one point on the time axis of this waveform is taken as the reference point).

Dl:送信アンテナ12、受信アンテナ14、表面Ma
の3点間の距離により決定され る。
Dl: transmitting antenna 12, receiving antenna 14, surface Ma
It is determined by the distance between the three points.

D2:表層Atの厚さにより決定される。D2: Determined by the thickness of the surface layer At.

D3 :路盤Stの厚さにより決定される。D3: Determined by the thickness of the roadbed St.

このような原理(特性)において、表層At、路盤St
、路床Mtの夫々の層の厚さは下記により求められる。
In such a principle (characteristic), the surface layer At, the roadbed St
, the thickness of each layer of the roadbed Mt is determined as follows.

先ず、合成反射波Wtから波形WIO乃至波形WIff
を抽出し、次いで、波形whoの時間軸の一点を基準と
して波形Wl+乃至波形W13の夫々の時間差り、乃至
り、を求める。
First, waveforms WIO to WIF are obtained from the composite reflected wave Wt.
Then, the time difference between the waveforms Wl+ to W13 is determined using one point on the time axis of the waveform who as a reference.

このような処理は、前記信号処理器26内の記憶部(図
示せず)に各処理波形信号が記憶され、次いで、処理(
演算)が行われ、ここで形成された波形を、前記記憶さ
れた波形を読み出した後、以下の連続した処理が行われ
ることにより達成される。
In such processing, each processed waveform signal is stored in a storage unit (not shown) in the signal processor 26, and then processed (
This is accomplished by performing the following continuous processing after reading out the stored waveform and the waveform formed here.

ここで各時間差をDとし、さらに層の比誘電率をεとす
ると、層の厚さL (mm)は、次式(1)により与え
られる。
Here, if each time difference is D and the dielectric constant of the layer is ε, then the thickness L (mm) of the layer is given by the following equation (1).

以下、波形W16乃至波形W+3の夫々の抽出について
説明する。
The extraction of each of waveforms W16 to W+3 will be described below.

波形WIOは送信系から受信系に回り込む(クロストー
ク)ものであり、装置の電気回路の特性によって決定さ
れる装置の固有の波形である。
The waveform WIO wraps around from the transmitting system to the receiving system (crosstalk), and is a unique waveform of the device determined by the characteristics of the electrical circuit of the device.

従って、測定した波形W1oを用いれば良い。Therefore, it is sufficient to use the measured waveform W1o.

表層Atの波形W11に関しては、先ず、送信アンテナ
12、受信アンテナ14の間の距離は一定であり、さら
に、送信アンテナ12、受信アンテナ14と表面Maと
の距離は、台車Dcの車輪直径により一定である。また
、空気および表層Atの比誘電率は通常の測定では一定
であり変動しない。故に、経験的に代表とされる部位の
波形W11を測定して用いれば良い。
Regarding the waveform W11 of the surface layer At, first, the distance between the transmitting antenna 12 and the receiving antenna 14 is constant, and furthermore, the distance between the transmitting antenna 12 and the receiving antenna 14 and the surface Ma is constant depending on the wheel diameter of the truck Dc. It is. Further, the relative dielectric constants of air and the surface layer At are constant and do not vary in normal measurements. Therefore, it is sufficient to measure and use the waveform W11 of a representative part based on experience.

波形Wl□は、先ず、第3図に示されるように、合成反
射波Wtから前記の波形WI0および波形W11を差し
引き、波形W12と波形w13の合成波を形成する。
To generate the waveform Wl□, first, as shown in FIG. 3, the aforementioned waveform WI0 and waveform W11 are subtracted from the composite reflected wave Wt to form a composite wave of the waveform W12 and the waveform w13.

ここで、表層Atと路盤Stの境界面からの波形W12
の時間差D2は、第3図に示されるように、路盤Stと
路床Mtの境界面からの波形Wlffの影響が含まれな
い波形w12中の初期の特徴的な点(ピークまたはゼロ
クロス)から求めるこきができる。
Here, the waveform W12 from the interface between the surface layer At and the roadbed St is
As shown in FIG. 3, the time difference D2 is determined from an initial characteristic point (peak or zero cross) in the waveform w12 that does not include the influence of the waveform Wlff from the interface between the subgrade St and the subgrade Mt. I can do Koki.

このようにして、時間差D2が実測されると、表層At
と路盤Stの境界面からの波形wI□は、以下の手順に
よるシミュレーションから求めることができる(第4図
(a)、ら)参照)。
In this way, when the time difference D2 is actually measured, the surface layer At
The waveform wI□ from the interface between the roadbed St and the roadbed St can be obtained from a simulation according to the following procedure (see FIG. 4(a), et al.).

■ 空気の比誘電率ε。と表層At(アスコン)比誘電
率ε、がら空気と表層Atの境界面透過係数Toを得る
■ Relative permittivity ε of air. and surface layer At (ascon) relative permittivity ε, and the interface permeability coefficient To between air and surface layer At.

■ 表層At(アスコン)の比誘電率ε1 と路盤St
の比誘電率ε2から表層Atと路盤Stの境界面反射係
数R0を得る。
■ Relative permittivity ε1 of surface layer At (ascon) and roadbed St
The interface reflection coefficient R0 between the surface layer At and the roadbed St is obtained from the dielectric constant ε2 of .

■ 波形W、。と同じとみなせる入力波形を形成する。■ Waveform W. Forms an input waveform that can be considered the same as

■ 波形W1□の大きさIW+zlを求める。■ Find the magnitude IW+zl of the waveform W1□.

W+21 =WIOX  (’ro)2XR■ 位相を
D+ +D2分シフトする。
W+21 =WIOX ('ro)2XR■ Shift the phase by D+ +D2.

■ 波形W12の波形を形成する。■ Form a waveform of waveform W12.

波形W13は、合成反射波Wtから波形W、。、波形W
11および理論的に求めた前記の波形W+2を差し引く
ことにより抽出される。これにより、波形W1.の時間
差り、は、第5図(a)、(b)1.:示されるように
、特徴的な点(ピークまたはゼロクロス)から求めるこ
とができる。なお、第5図ら)は波形W、1乃至W1.
の反射状態を模式的に示したものである。
The waveform W13 is a waveform W from the composite reflected wave Wt. , waveform W
11 and the theoretically determined waveform W+2. As a result, waveform W1. The time difference in Fig. 5 (a) and (b) 1. : Can be determined from characteristic points (peaks or zero crossings) as shown. Note that FIG. 5, etc.) are waveforms W, 1 to W1.
This is a schematic representation of the reflection state of .

従って、路盤Stの厚さり、 (mm) は、前記(1
)式を適用して、 L2  = 1/ 2 V−Ds により求められる。
Therefore, the thickness of the roadbed St (mm) is the above (1
) is obtained by L2 = 1/2 V-Ds.

上記の例では、路盤Stの厚さを求める事例を説明した
が、これに限定されない。例えば、4以上の積層舗装道
路の表面並びに夫々の層の底面の境界に係る合成反射波
を得、さらに夫々の波形が抽出された後、表面からの反
射波を基準とし、抽出した前記夫々の波形の時間差を検
出して、当該時間差と、予めデータとして得られる夫々
の層の比誘電率との演算処理により、夫々の層の厚さを
求めることも本発明に含まれる。
In the above example, a case has been described in which the thickness of the roadbed St is determined, but the present invention is not limited to this. For example, after obtaining a composite reflected wave from the surface of four or more laminated pavement roads and the boundaries of the bottom of each layer, and further extracting each waveform, the extracted waves are calculated based on the reflected wave from the surface. The present invention also includes detecting a time difference between waveforms and calculating the thickness of each layer by calculating the time difference and the dielectric constant of each layer obtained in advance as data.

また、上記の積層舗装道路のみならず各種の積層構造に
おける夫々の層の厚さ測定に供されることは勿論である
In addition, it goes without saying that it can be used to measure the thickness of each layer in various types of laminated structures, as well as the above-mentioned laminated pavement roads.

[発明の効果コ 以上のように、本発明の積層構造における厚さ測定方法
によれば、合成反射波は、表面並びに夫々の層の境界に
係る反射波に分解されて抽出される。次いで、表面から
の反射波を基準として、前記夫々の反射波における時間
差が検出され、当該時間差と、予めデータとして得られ
る夫々の層(物質)の比誘電率との演算処理により、各
層の厚さが算出される。
[Effects of the Invention] As described above, according to the method for measuring the thickness in a laminated structure of the present invention, a composite reflected wave is decomposed and extracted into reflected waves related to the surface and the boundaries of each layer. Next, the time difference between the respective reflected waves is detected using the reflected wave from the surface as a reference, and the thickness of each layer is calculated by calculating the time difference and the dielectric constant of each layer (substance) obtained in advance as data. is calculated.

これにより、パルス波が積層構造、例えば、積層舗装道
路に放射された後、夫々の層の境界に係る合成反射波か
ら、夫々の層の厚さが高精度に迅速、且つ連続的に計測
される効果を有し、加えて、積層舗装道路の維持修繕時
の工法の適正な選択が可能となり、さらに完成時の適正
なチエツク、例えば、厚さの維持状態等が迅速に測定さ
れる利点を有する。
As a result, after a pulse wave is emitted onto a laminated structure, such as a laminated pavement road, the thickness of each layer can be measured rapidly and continuously with high precision from the combined reflected waves at the boundaries of each layer. In addition, it enables the appropriate selection of construction methods when maintaining and repairing laminated pavement roads, and also has the advantage of being able to quickly measure the maintenance status of thickness, etc., at the time of completion. have

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の積層構造における厚さ測定方法に係る
実施例の説明に供される積層舗装道路の構造を示す断面
図、 第2図は第1図に示される積層舗装道路の各層の境界に
おいて形成される合成反射波並びに位相状態を示す波形
図、 第3図は処理過程の説明に供される図、第4図(a)、
ら)は処理過程におけるシミュレーションのフローチャ
ートおよびシミュレーションに係る参考図、 第5図(a)、(′b)は処理過程の説明に供される図
、第6図は本発明の実施例が適用される埋設物探査装置
を示す構成図、 第7図および第8図は従来の技術に係る説明に供される
図である。 10・・・本体表示部 14・・・受信アンテナ 26・・・信号処理器 At・・・表層(アスコン) Dc・・・台車 Mt・・・路床(土) W 16− W Hz・・・波形 12・・・送信アンテナ 16・・・制御部 Do”=Ds・・・時間差 St・・・路盤(砕石) Wt・・・合成反射波
FIG. 1 is a sectional view showing the structure of a laminated paved road, which is used to explain an embodiment of the method for measuring thickness in a laminated structure of the present invention, and FIG. 2 is a cross-sectional view of each layer of the laminated paved road shown in FIG. A waveform diagram showing the combined reflected wave and phase state formed at the boundary, Figure 3 is a diagram used to explain the processing process, Figure 4 (a),
Figures 5(a) and ('b) are diagrams used to explain the processing process, and Figure 6 is a flowchart of the simulation in the processing process and a reference diagram related to the simulation. FIG. 7 and FIG. 8 are diagrams illustrating a conventional buried object exploration device. 10...Main display unit 14...Receiving antenna 26...Signal processor At...Surface (ascon) Dc...Bogie Mt...Road bed (soil) W 16-W Hz... Waveform 12...Transmission antenna 16...Control unit Do"=Ds...Time difference St...Roadbed (crushed stone) Wt...Synthetic reflected wave

Claims (2)

【特許請求の範囲】[Claims] (1)積層構造にパルス波が放射された後、得られる夫
々の層の境界に係る合成反射波に基づいて、夫々の層の
厚さを計測する積層構造における厚さ測定方法において
、 合成反射波の表面からの反射波を基準とした時間差(D
)が形成される前記夫々の層の境界からの反射波を抽出
する第1の過程と、 前記夫々の層の比誘電率を知行する第2の過程と、 前記夫々の時間差(D)と、対応する比誘電率とにおい
て、前記夫々の層に係る厚さL(mm)を L=1/2×(3×10^1^0)/√ε×Dにおいて
求める第3の過程と、 を含むことを特徴とする積層構造における厚さ測定方法
(1) In a thickness measurement method for a laminated structure in which the thickness of each layer is measured based on the resulting synthesized reflected waves related to the boundaries of each layer after a pulse wave is radiated to the laminated structure, Time difference (D) based on the reflected wave from the wave surface
) is formed; a second process of determining the dielectric constant of each layer; and a time difference (D) between the respective layers; A third process of determining the thickness L (mm) of each layer with the corresponding dielectric constant as L=1/2×(3×10^1^0)/√ε×D; A method for measuring thickness in a laminated structure, comprising:
(2)請求項1記載の積層構造における厚さ測定方法に
おいて、第1の過程は、波形の時間軸の初期の特徴点の
抽出、波形間の減算、夫々の比誘電率に係るシミュレー
ションが採用されることを特徴とする積層構造における
厚さ測定方法。
(2) In the method for measuring thickness in a laminated structure according to claim 1, the first step employs extraction of initial feature points on the time axis of the waveform, subtraction between waveforms, and simulation related to the relative dielectric constant of each waveform. A method for measuring thickness in a laminated structure.
JP1254320A 1989-09-29 1989-09-29 Thickness measurement method in laminated structure Expired - Fee Related JPH0648179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1254320A JPH0648179B2 (en) 1989-09-29 1989-09-29 Thickness measurement method in laminated structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1254320A JPH0648179B2 (en) 1989-09-29 1989-09-29 Thickness measurement method in laminated structure

Publications (2)

Publication Number Publication Date
JPH03115806A true JPH03115806A (en) 1991-05-16
JPH0648179B2 JPH0648179B2 (en) 1994-06-22

Family

ID=17263364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1254320A Expired - Fee Related JPH0648179B2 (en) 1989-09-29 1989-09-29 Thickness measurement method in laminated structure

Country Status (1)

Country Link
JP (1) JPH0648179B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517471A (en) * 2022-04-20 2022-05-20 西南交通大学 High-speed railway foundation effective hard layer detection method, device, equipment and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235660A (en) * 1975-09-13 1977-03-18 Tokyo Keiki Co Ltd Device for measuring thickness or like of dielectric material
JPS59216073A (en) * 1983-05-24 1984-12-06 Toshiba Corp Position detector for moving body
JPS63122910A (en) * 1986-11-13 1988-05-26 Sumitomo Heavy Ind Ltd Pavement thickness measuring apparatus in asphalt finisher
JPH01158309A (en) * 1987-12-16 1989-06-21 New Japan Radio Co Ltd Remote measuring apparatus of thickness of ice

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235660A (en) * 1975-09-13 1977-03-18 Tokyo Keiki Co Ltd Device for measuring thickness or like of dielectric material
JPS59216073A (en) * 1983-05-24 1984-12-06 Toshiba Corp Position detector for moving body
JPS63122910A (en) * 1986-11-13 1988-05-26 Sumitomo Heavy Ind Ltd Pavement thickness measuring apparatus in asphalt finisher
JPH01158309A (en) * 1987-12-16 1989-06-21 New Japan Radio Co Ltd Remote measuring apparatus of thickness of ice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517471A (en) * 2022-04-20 2022-05-20 西南交通大学 High-speed railway foundation effective hard layer detection method, device, equipment and readable storage medium

Also Published As

Publication number Publication date
JPH0648179B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
US5835053A (en) Roadway ground penetrating radar system
US5819859A (en) Apparatus and method for detecting an underground structure
AU703330B2 (en) A method for simultaneously measuring the positions of more than one surface in metallurgic processes
JPH02196960A (en) Measuring instrument for compaction of soil
Kofman et al. Detection of model voids by identifying reverberation phenomena in GPR records
Yang et al. Curvelet transform‐based identification of void diseases in ballastless track by ground‐penetrating radar
JP2000508056A (en) measuring device
JP2000121577A (en) Measuring method for relative permittivity of concrete
Ye et al. Application of transient electromagnetic radar in quality evaluation of tunnel composite lining
Choi et al. Array type miniaturized ultrasonic sensors to detect urban sinkholes
Lauro et al. Estimation of subsurface dielectric target depth for GPR planetary exploration: Laboratory measurements and modeling
AU8036000A (en) Interferometric processing method to identify bed boundaries
CN109541695B (en) Method for rapidly imaging visual resistivity of remote region of electric field gradient of artificial field source frequency domain
Liu et al. A 3D image reconstruction model for long tunnel geological estimation
JPH03115806A (en) Method for measuring thickness in laminated structure
RU2735312C1 (en) Method for measuring parameters of pavement layers
Maierhofer et al. Non-destructive investigation of sluices using radar and ultrasonic impulse echo
Padaratz et al. A theoretical evaluation of impulse radar wave propagation through concrete
JP2528148B2 (en) Method and device for detecting underground buried objects
Peng et al. Fine geological radar processing and interpretation
Feng et al. Electromagnetic image reconstruction for damage detection
JPH09133642A (en) Method for detecting cavity in asphalt mixture layer
US20020010546A1 (en) Apparatus and method for determining the propagation velocity of an electromagnetic signal in a subsurface medium utilizing ground penetrating radar
Li et al. Extracting rebar's reflection from measured GPR data
JP2557682B2 (en) Underground exploration device with a dielectric constant measurement function in the soil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees