JPH01158309A - Remote measuring apparatus of thickness of ice - Google Patents

Remote measuring apparatus of thickness of ice

Info

Publication number
JPH01158309A
JPH01158309A JP62317875A JP31787587A JPH01158309A JP H01158309 A JPH01158309 A JP H01158309A JP 62317875 A JP62317875 A JP 62317875A JP 31787587 A JP31787587 A JP 31787587A JP H01158309 A JPH01158309 A JP H01158309A
Authority
JP
Japan
Prior art keywords
ice
microwave
phase shift
phase
shift amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317875A
Other languages
Japanese (ja)
Inventor
Kaoru Mitsuzuka
三塚 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP62317875A priority Critical patent/JPH01158309A/en
Publication of JPH01158309A publication Critical patent/JPH01158309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To measure the thickness of an ice layer without contact, by providing a means, which measures the phase shifting difference between the reflected wave of a microwave from the surface of the ice, and the reflected wave from the surface of the freezing ice or the surface of the melting ice, and providing a laser light projecting means, which melts the ice layer, at the same time. CONSTITUTION:This apparatus is constituted with a laser light projecting apparatus 1 and a microwave system 2 and provided at a high place, e.g., at the side of a road. A transmitting part 21 of the microwave system 2 transmits a microwave to a specified part 4a of an ice layer 5. The microwave, which is reflected from the interface is received with a receiving part 22. The phase shifting difference (phase difference) between the transmitted and received waves is detected with a phase-shift amount detector 23. The phase shift amount is outputted as a value, which is proportional to distances l1 and l2 to the reflecting surface of the microwave. For example, the phase shift amounts between the case (Figure A), where the reflecting surface is an icing surface 5a of the specified part 4a, and the case (Figure B), where the reflecting surface is the interface after the ice layer 5 at the specified part 4a is melted with the laser projecting device 1, are obtained. The changing quantity DELTAl of distance based on the difference between both phase amounts is computed with an operator 24. The value is the thickness of the ice.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、結氷厚さ遠隔測定装置に関し、特に、マイク
ロ波を利用したりモートセンシングにより道路等の被氷
結面上の氷層厚さを測定するに好適な結氷厚さ遠隔測定
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ice thickness remote measuring device, and in particular, to a device for measuring ice thickness on ice-covered surfaces such as roads by using microwaves or moat sensing. The present invention relates to a telemetry device suitable for measuring ice thickness.

[従来の技術] 例えば、道路上に凍結した氷の厚さを自動的に非接触で
測定し、これを道路交通情報として提供することが要請
されている。
[Prior Art] For example, there is a demand for automatically measuring the thickness of ice frozen on a road in a non-contact manner and providing this as road traffic information.

結氷厚さを非接触で測定する技術として、マイクロ波を
利用したりモートセンシングが想定されるが、波動の要
素たる振幅1位相のうちいずれかを結氷厚さの情報とし
て採用するかが問題となる。
The use of microwaves and moat sensing are envisioned as technologies for non-contact measurement of ice thickness, but the question is whether to use one of the amplitude and one-phase waves, which are elements of wave motion, as information on ice thickness. Become.

[解決すべき問題点] ■測定対象となる水の比誘電率は約3.0〜3.2で、
道路を形成するアスファルトのそれは約4.0程度であ
り1両者近似しているから、道路上に結氷層がある場合
とない場合とでは、照射されたマイクロ波の反射率に大
差がなく、従って振幅情報で結氷状態を判別することは
困難である。
[Problems to be solved] ■The dielectric constant of the water to be measured is approximately 3.0 to 3.2.
The asphalt that forms the road has a value of about 4.0, which is close to 1.Therefore, there is no significant difference in the reflectance of the irradiated microwaves depending on whether there is an ice layer on the road or not. It is difficult to determine the ice state based on amplitude information.

■また、マイクロ波の氷に対する浸透深さ(透過したマ
イクロ波パワーがl / e、に減衰するまでの距離)
は、平面波で周波数10GHzの場合には、約3mと大
きく、マイクロ波の吸収が少ないので。
■Also, the penetration depth of microwaves into ice (distance until the transmitted microwave power is attenuated to l/e)
In the case of a plane wave with a frequency of 10 GHz, the distance is as large as approximately 3 m, and there is little absorption of microwaves.

氷表面より浸透したマイクロ波が水層では充分吸収され
ず、道路表面で反射された後再び氷表面より戻って来て
しまい、氷表面からの反射波と道路表面からの反射波と
が混合され、その識別が困難になる。
Microwaves penetrating through the ice surface are not absorbed sufficiently by the water layer, and after being reflected from the road surface, they return from the ice surface again, and the waves reflected from the ice surface and the waves reflected from the road surface are mixed. , its identification becomes difficult.

[発明の目的] 本発明は、上記問題点を解決するものであり、その目的
は、振幅情報を用いることなく、氷層の厚さを非接触で
測定し得る結氷厚さ遠隔測定装置を提供することにある
[Object of the Invention] The present invention solves the above problems, and its purpose is to provide an ice thickness telemetry device that can measure the thickness of an ice layer in a non-contact manner without using amplitude information. It's about doing.

[問題点の解決手段] 上記目的を達成するため、本発明に係る結氷厚さ遠隔測
定装置は1次の構成要件を有する。
[Means for Solving Problems] In order to achieve the above object, the ice thickness remote measuring device according to the present invention has the following primary structural requirements.

■被氷結面上に氷結した氷層の特定部位に向けレーザ光
を照射してその部位を解氷するレーザ照射手段があるこ
と。
■There must be a laser irradiation means that irradiates a laser beam to a specific part of the frozen ice layer on the frozen surface to thaw that part.

■マイクロ波を該特定部位に向け入射させその反射波を
受信するマイクロ波送受信器があること。
(2) There is a microwave transmitter/receiver that directs microwaves toward the specific area and receives the reflected waves.

■該送受信マイクロ波の移相量を検出する移相量検出手
段があること。
(2) There is a phase shift detection means for detecting the phase shift of the transmitted and received microwaves.

・り該移相量信号を受け該特定部位の結氷状態における
移相量及び解氷状態における移相量からその差に対応す
る距離変化量を算出する演算手段があること。
- There is a calculation means that receives the phase shift amount signal and calculates a distance change amount corresponding to the difference from the phase shift amount in the frozen state and the phase shift amount in the thawed state of the specific part.

ここで「解氷状態」とは、特定部位の被氷結面を露出さ
せる完全解氷状態のほか、それまでの解氷過程や再結氷
過程をも含む。
Here, the term "de-ice state" includes not only a complete de-ice state in which the frozen surface of a specific part is exposed, but also the previous de-icing process and the re-freezing process.

[作用] 上記構成によれば、マイクロ波送受信器は氷層の特定部
位に向けマイクロ波を送信放射しその界面で反射したマ
イクロ波を受信するが、同時に、移相量検出手段によっ
て、送信マイクロ波と受信マイクロ波の移相量(位相差
)が検出される。その移相量はマイクロ波反射面までの
距離に比例する値として出力されるが、例えば、上記の
マイクロ波送信放射によりマイクロ波反射面が特定部位
の結氷表面の場合における移相量とレーザ照射手段によ
って該特定部位の氷層が解氷された後の境界面の場合に
おける移相量とが得られる。演算手段によって両移相量
の差に基づいて距離変化量が算出される。この距離変化
量は結氷厚さを与える。またレーザ照射中での移相量の
検出が行なわれた場合には、解氷過程における解氷厚さ
の変化が経時的に得られることとなる。
[Function] According to the above configuration, the microwave transmitter/receiver transmits and radiates microwaves toward a specific part of the ice layer and receives the microwaves reflected at the interface, but at the same time, the phase shift detection means detects the transmitted microwave. The amount of phase shift (phase difference) between the wave and the received microwave is detected. The amount of phase shift is output as a value proportional to the distance to the microwave reflecting surface. By this means, the amount of phase shift in the case of the boundary surface after the ice layer at the specific portion has been thawed can be obtained. The distance change amount is calculated by the calculation means based on the difference between the two phase shift amounts. This distance change gives the ice thickness. Furthermore, if the amount of phase shift is detected during laser irradiation, changes in the melting thickness during the ice melting process can be obtained over time.

[実施例] 次に、本発明の実施例を添付図面に基づいて説明する。[Example] Next, embodiments of the present invention will be described based on the accompanying drawings.

第1図は1本発明に係る結氷厚さ遠隔測定装置の一実施
例を示すブロック図である。
FIG. 1 is a block diagram showing an embodiment of an ice thickness remote measuring device according to the present invention.

実施例装置は、レーザ光照射装置lとマイクロ波系2と
から概略構成されており、例えば道路脇の高所に設置さ
れる。
The embodiment device is roughly composed of a laser beam irradiation device 1 and a microwave system 2, and is installed, for example, at a high place beside a road.

レーザ光照射袋211は制御部3により所定のシーケン
スでレーザ光を道路4上の特定部位4aに向けて照射し
、道路4上に凍結した水層5のうち少なくとも特定部位
4aの結氷部分5aを解氷するものである0本実施例に
おけるレーザ光照射袋W1tとしてはCO2レーザが使
用されており、高エネルギを効率良く伝送する。レーザ
光のコヒーレント性によって、標的箇所たる結氷部分5
atl−迅速且つ確実に解氷できる。
The laser light irradiation bag 211 irradiates laser light toward a specific portion 4a on the road 4 in a predetermined sequence by the control unit 3, and at least removes the frozen portion 5a of the specific portion 4a of the water layer 5 frozen on the road 4. A CO2 laser is used as the laser beam irradiation bag W1t in this embodiment, which is used to melt ice, and transmits high energy efficiently. Due to the coherent nature of the laser beam, the frozen area 5, which is the target area, is
atl - can quickly and reliably thaw ice.

マイクロ波系2は、マイクロ波送信部21.マイクロ波
受信部22.移相量検出部23.及び演算部24から構
成されている。
The microwave system 2 includes a microwave transmitter 21. Microwave receiving section 22. Phase shift amount detection section 23. and an arithmetic unit 24.

マイクロ波送信部21は発振マイクロ波を送信アンテナ
21aを介して特定部位4aに向け入射せしめるもので
、マイクロ波受信部22はその特定部位4aで反射した
マイクロ波を受信アンテナ22aを介して受信するもの
である0本実施例では、送信アンテナ21a及び受信ア
ンテナ22aとしては高指向特性のアンテナが使用され
、入射角と反射角を一致させであるが、送受信兼用のア
ンテナを利用しても良く、入射方向と反射方向を合致さ
せ、レーザ光軸線上に斉一させても良い、移相量検出部
23は送信部21からの送信マイクロ波と受信部22か
らの受信マイクロ波とを受け、その移相量を比較検出す
るものである。演算部24は例えばマイクロコンピュー
タで構成され、移相量信号に基づき特定部位4aにおけ
る反射波界面までの距離を測定するもので、後述するシ
ーケンスで、移相量検出部23からの特定部位4aの結
氷状態における移相酸に対応する距#交l及び解氷状態
における移相量に対応する距離交2を算出して、その変
化量Δ文を求める演算を行なうものである。
The microwave transmitter 21 directs the oscillated microwave to a specific part 4a via a transmitting antenna 21a, and the microwave receiver 22 receives the microwave reflected from the specific part 4a via a receiving antenna 22a. In this embodiment, antennas with high directivity characteristics are used as the transmitting antenna 21a and the receiving antenna 22a, and the angle of incidence and the angle of reflection are made to match, but antennas for both transmitting and receiving purposes may be used. The phase shift detecting section 23 receives the transmitted microwave from the transmitting section 21 and the received microwave from the receiving section 22, and detects the shift. It is used to comparatively detect the phase amount. The calculation unit 24 is composed of, for example, a microcomputer, and measures the distance to the reflected wave interface at the specific portion 4a based on the phase shift amount signal. A calculation is performed to calculate the distance #intersection 1 corresponding to the phase shift amount in the frozen state and the distance intersection 2 corresponding to the phase shift amount in the thawed state, and to obtain the amount of change Δ statement.

第2図は、上記実施例のマイクロ波系2の具体的構成を
示すブロック図である。
FIG. 2 is a block diagram showing a specific configuration of the microwave system 2 of the above embodiment.

マイクロ波送信部21は、マイクロ波周波数8.4GH
zを発振するマグネトロン等の送信用発振器21bと、
アイソレータ21cと、送信アンテナ21aに接続され
た方向性結合器21dとから構成されている。受信部2
2は、局部発振器22b、方向性結合器22C,ミキサ
ー22d、中間周波数増幅器22e、ダウン・コンバー
タ22f、アイソレータ22g、ミキサー22h、及び
位相同期ループ22iから構成されている。移相量検出
部23は、遅延回路23aと位相比較器23bを有する
The microwave transmitter 21 has a microwave frequency of 8.4GH.
a transmitting oscillator 21b such as a magnetron that oscillates z;
It is composed of an isolator 21c and a directional coupler 21d connected to a transmitting antenna 21a. Receiving section 2
2 is composed of a local oscillator 22b, a directional coupler 22C, a mixer 22d, an intermediate frequency amplifier 22e, a down converter 22f, an isolator 22g, a mixer 22h, and a phase locked loop 22i. The phase shift amount detection section 23 includes a delay circuit 23a and a phase comparator 23b.

発振器21bからの発振マイクロ波はアイソレータ21
cを介して方向性結合器21dの主導波管を通り、送信
アンテナ21aへ給電される。送信アンテナ21aから
放射されたマイクロ波は第3図(A)に示すように特定
部位4aに向け入射する。入射ブイクロ波は氷表面で反
射され、その反射マイクロ波は受信アンテナ22aにて
受信される。方向性結合器21dの副導波管に導入され
た一部の送信波は。
The oscillating microwave from the oscillator 21b is transmitted to the isolator 21.
The power is fed to the transmitting antenna 21a through the main wave tube of the directional coupler 21d via the power source C. The microwaves radiated from the transmitting antenna 21a are directed toward the specific portion 4a as shown in FIG. 3(A). The incident microwave is reflected by the ice surface, and the reflected microwave is received by the receiving antenna 22a. Some of the transmission waves introduced into the sub-waveguide of the directional coupler 21d are as follows.

位相同期ループ22iにより同期のとれた局部発振器2
2bの局部発振周波数とミキサー22hにて混合されて
中間周波数に変換され、更にダウン・コンバータ22f
でビートダウンされる。
Local oscillator 2 synchronized by phase-locked loop 22i
The local oscillation frequency of 2b is mixed with the mixer 22h, converted to an intermediate frequency, and further converted to a down converter 22f.
will be beat down.

一方、受信アンテナで捕捉された受信波は、ミキサー2
2dにて混合されて中間周波数に変換され、中間周波数
増幅器22eで増幅された後、更にダウン・コンバータ
22fでビートダウンされる。
On the other hand, the received waves captured by the receiving antenna are sent to the mixer 2.
2d and converted to an intermediate frequency, amplified by an intermediate frequency amplifier 22e, and then beat down by a down converter 22f.

間中間周波数信号の回路遅延差を補正すべく、−方の中
間周波数信号を遅延回路23aを通した後、間中間周波
数信号は位相比較器23bへ供給される0位相比較器2
3bにおいて、両信号の位相差(移相fit)が比較検
出され、その移相量に相当する移相量直流信号が出力さ
れる。
In order to correct the circuit delay difference between the intermediate frequency signals, the - intermediate frequency signal is passed through the delay circuit 23a, and then the intermediate frequency signal is supplied to the phase comparator 23b.
3b, the phase difference (phase shift fit) between both signals is compared and detected, and a phase shift amount DC signal corresponding to the phase shift amount is output.

一般的に、マイクロ波放射によって移相量直流信号が得
られるが、反射面までの距離をfL(入射角9反射角は
0°とする)、光速度をC1受信波の受電までの要する
遅延時間をτとすれば、2文=τC…■ の関係式が得られる。
Generally, a phase-shifted DC signal is obtained by microwave radiation, but the distance to the reflecting surface is fL (the angle of incidence is 9 and the angle of reflection is 0°), and the speed of light is the delay required to receive the C1 received wave. If time is τ, then the relational expression 2 sentences=τC...■ is obtained.

またマイクロ波の波長を入とすれば、移相量Φは、 φ=  Cai/入)2π= (τC/入)2π・・・
■で与えられる。かかる移相量φに基づいて、演算部2
4によって反射面までの距@lが算出される。
Also, if the wavelength of the microwave is input, the phase shift amount Φ is as follows: φ = Cai / input) 2π = (τC / input) 2π...
■It is given by. Based on the phase shift amount φ, the calculation unit 2
4, the distance @l to the reflecting surface is calculated.

第3図(A)に示すように、第1回目のマイクロ波放射
時における反射面即ち氷表面までの距離を立1とすれば
、その移相酸φ1は、 φ1  =  (2fL1 /入)2π       
 ・・・l■で与えられる。第1回目のマイクロ波放射
においては、結氷部分5a内に浸透し、道路表面で反射
した波も一部受信されるが、移相量の測定は距離変化部
に応じた情報であり、道路表面からの反射波の移相量は
絶えず一定であるので、距離変化情報の妨げとはならな
い。
As shown in FIG. 3(A), if the distance to the reflecting surface, that is, the ice surface during the first microwave emission is 1, the phase shift acid φ1 is φ1 = (2fL1 /in)2π
・・・It is given by l■. In the first microwave radiation, some of the waves that have penetrated into the frozen part 5a and reflected on the road surface are also received, but the measurement of the amount of phase shift is information according to the distance change part, and the road surface Since the amount of phase shift of the reflected wave from the distance is always constant, it does not interfere with distance change information.

次に、制御部3の制御によりレーザ光照射装置1からレ
ーザ光が特定箇所4aへ向け氷層部分5aに照射し、第
3図(B)に示すように短時間内に氷層部分5aを解氷
する。これにより道路4の表面が露出する。なお、レー
ザ光の照射は氷表面までの距sitが算出された後実行
される。
Next, under the control of the control unit 3, the laser beam from the laser beam irradiation device 1 is directed toward the specific location 4a and irradiates the ice layer portion 5a, and the ice layer portion 5a is irradiated within a short time as shown in FIG. 3(B). Thaw the ice. This exposes the surface of the road 4. Note that the laser beam irradiation is performed after the distance sit to the ice surface is calculated.

次に、第2回目のマイクロ波照射が実行される。送信ア
ンテナ21aから放射されたマイクロ波は特定箇所4a
の道路表面で反射し、その反射波が受信アンテナ22a
で受信される。これにより、第1回目の距離測定の場合
と同様に、道路表面までの距l1lli2に比例する移
相量φ2が出力される。
Next, a second microwave irradiation is performed. The microwave radiated from the transmitting antenna 21a is transmitted to a specific location 4a.
reflected from the road surface, and the reflected wave is transmitted to the receiving antenna 22a.
received at As a result, as in the case of the first distance measurement, a phase shift amount φ2 proportional to the distance l1lli2 to the road surface is output.

即ち、 φ2 = (2J12 /λ)2π       ・・
・tりで与えられる。
That is, φ2 = (2J12 /λ)2π...
・Given by t.

次に、演算部24は第1回目の移相量φlと第2回目の
移相量φ2とに基づいてその差Δφ=φ、2−φl、即
ち、 Δφ=4π(愛2−立1)/入     ・・・(シを
求め、 この(9式から距離変化量Δ文=12−見l、即ち、 Δ文=入ΔΦ/4π           ・・・■が
得られる。この距離変化量Δ立は反射面の変位分で、氷
層5の解氷厚さに相当するものである。
Next, the calculation unit 24 calculates the difference Δφ=φ, 2−φl, based on the first phase shift amount φl and the second phase shift amount φ2, that is, Δφ=4π(Ai2−Tachi1) /in ...(shi) is obtained, and from this (9 equation), the distance change amount Δ sentence = 12 - m, i.e., Δ sentence = input ΔΦ / 4π ... ■ is obtained. This distance change amount Δ is This is the displacement of the reflecting surface, which corresponds to the thickness of the ice layer 5 after it has melted.

ところで、本実施例においてはマイクロ波周波数は9.
4 GHzで、移相量ΔΦを10°とした場合、結氷厚
さΔ文が0.31の測定が可能である。また例えば、マ
イクロ波周波数を24 GHzとし、移相量Δφの10
”の検出が可能な場合には、0.17amの測定が可能
となる。
By the way, in this example, the microwave frequency is 9.
At 4 GHz, when the phase shift amount ΔΦ is 10°, it is possible to measure the ice thickness Δ 0.31. For example, if the microwave frequency is 24 GHz and the phase shift amount Δφ is 10
”, it is possible to measure 0.17 am.

なお、上記実施例においては、氷層5の結氷部分5aを
完全に解氷した後、第2回目のマイクロ波放射で移相量
を測定しているが、制御部3によりレーザ光照射装置l
とマイクロ波系2を種々のタイミングで制御することが
できる0例えば、解氷中に連続的な移相量の測定を実行
しても良く、かかる場合その移相量の変化が止ったとき
、解氷が完了したことを検出することができる。その解
氷時間の長短を勘案することにより、結氷厚さの相関関
係を得ることができる。また−度解氷した後、再び結氷
してから、移相量の測定を行なっても良い。
In the above embodiment, the amount of phase shift is measured by the second microwave radiation after the frozen portion 5a of the ice layer 5 is completely thawed.
and the microwave system 2 can be controlled at various timings. For example, continuous measurement of the amount of phase shift may be carried out during ice melting, and in such a case, when the amount of phase shift stops changing, Completion of thawing can be detected. By considering the length of the ice melting time, it is possible to obtain a correlation between the ice thickness. Alternatively, the amount of phase shift may be measured after the ice has been thawed and refrozen.

[発明の効果] 以上説明したように、本発明に係る結氷厚さ遠隔測定装
置は、マイクロ波を利用した氷表面での反射波とその被
氷結面又は解氷中の氷表面での反射波との移相量を測定
する手段と、氷層を解氷するレーザ光照射手段とを併有
した点に特徴を有するものであるから1次の効果を奏す
る。
[Effects of the Invention] As explained above, the ice thickness remote measuring device according to the present invention uses microwaves to detect waves reflected from the ice surface and waves reflected from the frozen surface or the ice surface during melting. Since it is characterized in that it has both a means for measuring the amount of phase shift between the ice layer and a laser beam irradiation means for melting the ice layer, it has a first-order effect.

■結氷状態での移相量の検出と、その結氷状!出を解氷
してマイクロ波反射面を積極的に変化させ、その移相量
の検出とを以て、その変位量を結氷厚さとして捉えて測
定するものであるので、結氷厚さの測定が容易且つ高精
度となる。
■Detection of phase shift amount in frozen state and its frozen state! By actively changing the microwave reflecting surface by melting the ice and detecting the amount of phase shift, the amount of displacement is captured as the ice thickness and measured, making it easy to measure the ice thickness. Moreover, it becomes highly accurate.

−■特に、解氷手段としてレーザ光照射手段を採用して
いる点から、解氷を非接触で瞬間解氷を実現でき、短時
間測定が可能となる。また、レーザ光照射手段及びマイ
クロ波送受信器の遠隔制御が可能であるから、無人化計
測及び集中監視システムを実現できる。
-■ In particular, since a laser beam irradiation means is adopted as the ice-breaking means, instantaneous ice-breaking can be achieved without contact, and measurement can be carried out in a short period of time. Further, since the laser beam irradiation means and the microwave transmitter/receiver can be remotely controlled, an unmanned measurement and centralized monitoring system can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る結氷厚さ遠隔測定装置の一実施
例を示すブロック図である。 第2図゛は、同、実施例におけるマイクロ波系の具体的
構成を示すブロック図である。 第3図(A)  、 (B) 、 (C)は、同実施例
による測定態様を示す概略図である。 [主要符号の説明] l・・・レーザ光照射装置、2・・・マイクロ波系、2
1・・・送信部、21&・・・送信アンテナ、22・・
・受信部、22a・・・受信アンテナ、23・・・移相
量検出部、24・・・演算部、4・・・道路、4a・・
・特定部位、5・・・氷層、 5a・・・氷層部分。 出願人    新日本無線株式会社 第3図 /Aノ                      
 (B)(C)
FIG. 1 is a block diagram showing an embodiment of an ice thickness telemetry device according to the present invention. FIG. 2 is a block diagram showing a specific configuration of the microwave system in the same embodiment. FIGS. 3(A), 3(B), and 3(C) are schematic diagrams showing the measurement mode according to the same example. [Explanation of main symbols] l...Laser light irradiation device, 2...Microwave system, 2
1... Transmission unit, 21 &... Transmission antenna, 22...
- Receiving unit, 22a...Receiving antenna, 23...Phase shift amount detection unit, 24...Calculating unit, 4...Road, 4a...
・Specific part, 5...Ice layer, 5a...Ice layer part. Applicant: New Japan Radio Co., Ltd. Figure 3/A-no.
(B) (C)

Claims (1)

【特許請求の範囲】[Claims] 被氷結面上に氷結した氷層の特定部位に向けレーザ光を
照射してその部位を解氷するレーザ光照射手段と、マイ
クロ波を該特定部位に向け入射させその反射波を受信す
るマイクロ波送受信器と、該送受信マイクロ波の移相量
を検出する移相量検出手段と、該移相量信号を受け該特
定部位の結氷状態における移相量及び解氷状態における
移相量からその差に対応する距離変化量を算出する演算
手段と、を有することを特徴とする結氷厚さ遠隔測定装
置。
Laser light irradiation means that irradiates a laser beam to a specific part of an ice layer frozen on a frozen surface to de-ice that part; and a microwave that directs the microwave to the specific part and receives the reflected wave. a transmitter/receiver, a phase shift amount detection means for detecting the amount of phase shift of the transmitted/received microwave, and receiving the phase shift amount signal and detecting the difference between the phase shift amount in the frozen state and the phase shift amount in the thawing state of the specific part. An ice thickness remote measuring device comprising: calculation means for calculating a distance change amount corresponding to the distance change amount.
JP62317875A 1987-12-16 1987-12-16 Remote measuring apparatus of thickness of ice Pending JPH01158309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317875A JPH01158309A (en) 1987-12-16 1987-12-16 Remote measuring apparatus of thickness of ice

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317875A JPH01158309A (en) 1987-12-16 1987-12-16 Remote measuring apparatus of thickness of ice

Publications (1)

Publication Number Publication Date
JPH01158309A true JPH01158309A (en) 1989-06-21

Family

ID=18093033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317875A Pending JPH01158309A (en) 1987-12-16 1987-12-16 Remote measuring apparatus of thickness of ice

Country Status (1)

Country Link
JP (1) JPH01158309A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115806A (en) * 1989-09-29 1991-05-16 Japan Radio Co Ltd Method for measuring thickness in laminated structure
CN103941261A (en) * 2014-04-16 2014-07-23 中国极地研究中心 Phase sensitivity type fixed point ice measuring system
CN108534655A (en) * 2018-03-22 2018-09-14 中国南方电网有限责任公司超高压输电公司曲靖局 A kind of overhead transmission line grounded-line icing measuring system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115806A (en) * 1989-09-29 1991-05-16 Japan Radio Co Ltd Method for measuring thickness in laminated structure
CN103941261A (en) * 2014-04-16 2014-07-23 中国极地研究中心 Phase sensitivity type fixed point ice measuring system
CN108534655A (en) * 2018-03-22 2018-09-14 中国南方电网有限责任公司超高压输电公司曲靖局 A kind of overhead transmission line grounded-line icing measuring system and method
CN108534655B (en) * 2018-03-22 2024-01-09 中国南方电网有限责任公司超高压输电公司曲靖局 Overhead transmission line ground wire icing measurement system and method

Similar Documents

Publication Publication Date Title
US6466168B1 (en) Differential time of flight measurement system
US4995720A (en) Pulsed coherent Doppler laser radar
US20110248882A1 (en) Method for interferometric radar measurements
US7453392B2 (en) Methods and systems utilizing Doppler prediction to enable fusing
JP5712644B2 (en) Radar equipment
JPS60142285A (en) Radar equipment
US4041494A (en) Distance measuring method and apparatus
Polivka An overview of microwave sensor technology
JPH01158309A (en) Remote measuring apparatus of thickness of ice
JP2001021644A (en) Obstacle detecting system, on-vehicle radar apparatus, and portable radar device
Hoffman et al. A 94-GHz radar for space object identification
JP2000065923A (en) Radar apparatus and its control method
JPH1164500A (en) Radar
RU2402787C1 (en) Method of finding vessels in distress
Yonemoto et al. Multi-static millimeter wave radar connected by radio over fiber for foreign object detection on runways
EP0933647B1 (en) Pulse radar system
RU2106606C1 (en) Device for measurement of liquid metal level
JPH11183602A (en) Distance measuring apparatus, moving body, automatic running system and distance measuring method
George et al. Networking CSU-CHILL and CSU-Pawnee to form a bistatic radar system
JPH0560860A (en) Radio distance-measuring device
CA3240438A1 (en) Rate of penetration/depth monitor for a borehole formed with millimeter-wave beam
JP2006226721A (en) Surface state discrimination device
Motley et al. Detection of lower hybrid waves within a plasma by microwave scattering
US2867800A (en) Microwave phasing system
JPH06160517A (en) On-vehicle radar device