JPH0311549A - Generator for extreme infra-red rays - Google Patents

Generator for extreme infra-red rays

Info

Publication number
JPH0311549A
JPH0311549A JP14378189A JP14378189A JPH0311549A JP H0311549 A JPH0311549 A JP H0311549A JP 14378189 A JP14378189 A JP 14378189A JP 14378189 A JP14378189 A JP 14378189A JP H0311549 A JPH0311549 A JP H0311549A
Authority
JP
Japan
Prior art keywords
bulb
far
film
infrared
infra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14378189A
Other languages
Japanese (ja)
Inventor
Isamu Sato
勇 佐藤
Shozo Maeno
正蔵 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP14378189A priority Critical patent/JPH0311549A/en
Publication of JPH0311549A publication Critical patent/JPH0311549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To cut costs as well as to improve wear resistance by applying an infra-red ray radiation substance onto the bulb surface of an incandescent lamp furnished with a bulb made up from soft glass until it is thickened to a specified thickness. CONSTITUTION:A generator 1 for extreme infra-red rays is composed of an incandescent lamp 2 the bulb 2a of which is made of soft glass such as lead glass or soda lime glass which is normally used for this particular purpose, and of a film 3 covering the surface of the bulb 2a, which is formed from an infra-red radiation material such as, for example, ZrO2. When said film 3 is thickened up to the range of 0.05 to 0.5mum, it is possible to prevent the film from being peeled off, and also prevent the bulb from being cracked with wear resistance improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば食品の鮮度保存のために使用される遠
赤外線の発生装置に関するものであり、詳細には電球形
状とされたものに係る。
The present invention relates to a far-infrared ray generator used, for example, to preserve the freshness of food, and specifically relates to a far-infrared ray generator shaped like a light bulb.

【従来の技術】[Conventional technology]

従来の、この種の遠赤外線発生装置31としては第3図
に示すようなものがあり、ヒータ32を内装したガラス
管33の表面に、液状あるいはペースト状としたZrO
2(酸化ジルコニュウム)など遠赤外線放射物質を塗装
など適宜な手段で被着させ、被膜34を形成したもので
ある。
A conventional far-infrared ray generator 31 of this type is shown in FIG.
The film 34 is formed by applying a far-infrared emitting substance such as zirconium oxide (zirconium oxide) by coating or other suitable means.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、前記した従来の遠赤外線発生装置31は
、第一に前記した遠赤外線放射物質が非常に高価なもの
であることで、スプレー塗装など厚塗りとなり且つ付着
効率の低い被膜34の形成手段を経るものは、遠赤外線
発生装置31が非常に高価なものとなり使用範囲が限定
されると云う問題点を生ずるものとなり、第二には前記
被膜34が比較的に厚膜(−船釣に30〜40μm)と
して形成されるので使用中の温度変化による膨張係数の
差により前記ガラス管33の表面がら剥渾1すると云う
問題点も生ずるものとなり、これらの問題点の解決が遠
赤外線発生装置31の課題とされるものとなっていた。
However, in the conventional far-infrared ray generator 31 described above, firstly, the above-mentioned far-infrared ray emitting material is very expensive, and therefore a means of forming the film 34, such as spray painting, is thick and has low adhesion efficiency. However, the far infrared ray generator 31 becomes very expensive and its range of use is limited.Secondly, the coating 34 is relatively thick (-30 mL for boat fishing). ~40 μm), therefore, there is a problem that the surface of the glass tube 33 peels due to the difference in expansion coefficient due to temperature changes during use. This was considered to be an issue.

【課題を解決するだめの手段】[Means to solve the problem]

本発明は前記した従来の課題を解決するための具体的手
段として、軟質ガラスで形成されたバルブを仔する白熱
電球の前記バルブ表面に遠赤外線放射物質が0.05〜
0.5μmの膜厚の被膜で被覆してあることを特徴とす
る遠赤外線発生装置を提供し、更に、軟質ガラスで形成
されたバルブを存する白熱電球をジルコニュウムアルコ
キシド10%溶液中に浸漬して所定速度で引き」二げ、
その後に400 ℃の焼成を行うことで前記バルブの表
面に前記遠赤外線放射物質の0.05〜0.5μmの膜
厚の被膜を形成することを特徴とする遠赤外線発生装置
の製造方法を提供することで、コストダウンと耐久性の
向」ことを同時に可能として、前記した従来の課題を解
決するものである。
The present invention is a specific means for solving the above-mentioned conventional problems, and provides that a far-infrared emitting substance of 0.05 to
Provided is a far-infrared ray generator characterized by being coated with a film having a thickness of 0.5 μm, and further includes an incandescent light bulb having a bulb formed of soft glass, immersed in a 10% solution of zirconium alkoxide. and then pull it at a predetermined speed.
Provided is a method for manufacturing a far-infrared generating device, characterized in that a film of the far-infrared emitting material with a thickness of 0.05 to 0.5 μm is formed on the surface of the bulb by subsequently performing baking at 400°C. By doing so, it is possible to reduce costs and improve durability at the same time, thereby solving the above-mentioned conventional problems.

【実 施 例】 つぎに、本発明を図に示す一実施例に基づいて詳細に説
明する。 第1図に句号1て示すものは遠赤外線発生装置であり、
この遠赤外線発生装置1は、鉛ガラスあるいはソーダ石
灰ガラスなと極めて通常にこの目的の部材として使用さ
れている軟質ガラスでバルブ2aが形成された白熱電球
2と、前記バルブ2aの表面に例えばZ r O2なと
遠赤外線放射物質で形成された被膜3とで成るものであ
り、特に前記被膜3は本発明により0.05〜0.5μ
mの膜厚とされているものである。 ここで、本発明の要旨である前記被膜3を膜厚0.05
〜0.5μmとした作用効果に伺いて更に詳細に説明を
行えば、前記バルブ2aが形成された軟質ガラスの熱膨
張係数は略100×10/degであり、これに対して
、前記遠赤外線放射物質の例えばZ r O2の熱膨張
係数、即ち前記被膜3の熱膨張係数は略8 X 10−
7/ degである。 よって、前記バルブ2aの表面に被膜3を密着して形成
したときには、前記白熱電球2の点灯などによる発熱に
より両者に剥離現象を生じ易いものとなるが、発明者の
この発明を成すための試作検討の結果で(注、前記被膜
3を0.5μm以下とすることで前記した剥離を防止す
ることが可能となることが確認され、更には上記のよう
に極度に熱膨張係数が異なる部材による被膜3をバルブ
2aの表面に被覆した場合に往々にして生ずるバルブ2
a側のクラックも防止できることが確認された。 また
、同時に上記の試作検討においては前記被膜3の膜厚を
0.05μm以下とすることは極度に遠赤外線(波長4
〜25μm)の発生効率を低下させるものであることが
確認され、遠赤外線発生装置1としての前記被膜3の膜
厚は、前記数値の範囲が適正なものであると確認され決
定された。 以上の結果から、本発明の遠赤外線発生装置1は、極め
て通常の白熱電球2と、従来例のものに比較して1/4
0〜1/800の膜厚、即ち使用量とした遠赤外線放射
物質とで飛躍的なコストダウンが可能となるものである
。 第2図に示すものは前記遠赤外線発生装置1の製造方法
であり、前記した極めて通常にこの目的の部材として使
用されている軟質ガラスでバルブ2aが形成された白熱
電球2を、ジルコニュウムアルコキシド10%溶液10
中に浸漬し、この電球2を2 w / secの速度で
引」二げるデイツプ塗装法により前記バルブ2aの表面
に前記溶液10を付着させ、その後に400 ℃中て略
10分間の焼成を行うことで、前記ジルコニュウムアル
コキシド10%溶液10は、ジルコニュウムが析出され
更に酸化されて遠赤外線放射物質であるジルコニア(酸
化ジルコニュウム−ZrO2)となり、且つ前記した所
定の膜厚の被膜3として生成されるものとなり、前記し
たデイツプ塗装法としたことで付着効率を高め前記溶液
10の使用率を向上させる。 尚、前記したジルコニュウムアルコキシド10%溶液1
0を得るときにはジルコニュウムアルコキシドを所定量
のアルコールに溶解することで容易に得られるものとな
る。 また、発明者の試作検問の結果では、上記工程により得
られるジルコニア(z 1−02 ) ノ被膜3はアモ
ルファス状の透明膜として得られるものであり、これに
より前記遠赤外線発生装置1は本来の白熱電球2として
の照明作用を損なうことが無いものであることが確認さ
れ、例えば冷蔵庫内の食品の鮮度保存の目的で使用する
ときには同時に庫内の照明も行わせることが可能である
効果も確認された。
[Embodiment] Next, the present invention will be explained in detail based on an embodiment shown in the drawings. What is indicated by the symbol 1 in Figure 1 is a far-infrared generator,
This far-infrared ray generator 1 includes an incandescent light bulb 2 in which a bulb 2a is formed of a soft glass such as lead glass or soda-lime glass, which is very commonly used as a member for this purpose, and a surface of the bulb 2a with, for example, Z. rO2 and a coating 3 formed of a far-infrared emitting substance, and in particular, the coating 3 has a thickness of 0.05 to 0.5μ according to the present invention.
The film thickness is said to be m. Here, the coating 3, which is the gist of the present invention, has a thickness of 0.05
To explain in more detail the effect of setting the thickness to 0.5 μm, the thermal expansion coefficient of the soft glass on which the bulb 2a is formed is approximately 100×10/deg, whereas the far infrared rays The thermal expansion coefficient of a radiation material such as ZrO2, that is, the thermal expansion coefficient of the coating 3 is approximately 8 x 10-
It is 7/deg. Therefore, when the coating 3 is formed in close contact with the surface of the bulb 2a, the peeling phenomenon is likely to occur between the two due to heat generation caused by lighting of the incandescent light bulb 2, etc. As a result of the study (note), it was confirmed that it is possible to prevent the above-mentioned peeling by reducing the thickness of the coating 3 to 0.5 μm or less. The valve 2 that often occurs when the coating 3 is coated on the surface of the valve 2a.
It was confirmed that cracks on the a side can also be prevented. At the same time, in the above trial production study, it was found that setting the film thickness of the coating 3 to 0.05 μm or less is extremely infrared rays (wavelength 4
It was confirmed that the film thickness of the coating 3 as the far-infrared ray generating device 1 was determined by confirming that the above numerical value range was appropriate. From the above results, the far infrared ray generator 1 of the present invention is 1/4 as compared to an extremely ordinary incandescent light bulb 2 and a conventional one.
A dramatic cost reduction is possible with a film thickness of 0 to 1/800, that is, a usage amount of the far infrared emitting material. What is shown in FIG. 2 is a method of manufacturing the far-infrared ray generator 1, in which an incandescent lamp 2 with a bulb 2a formed of soft glass, which is very commonly used as a member for this purpose, is replaced with a zirconium lamp. Alkoxide 10% solution 10
The solution 10 is applied to the surface of the bulb 2a by a dip coating method in which the bulb 2 is immersed in the solution and pulled out at a rate of 2 w/sec, and then baked at 400° C. for about 10 minutes. By doing this, zirconium is precipitated in the 10% zirconium alkoxide solution 10, which is further oxidized to become zirconia (zirconium oxide-ZrO2), which is a far-infrared emitting material, and is produced as the coating 3 having a predetermined thickness. By using the dip coating method described above, the adhesion efficiency is increased and the usage rate of the solution 10 is improved. In addition, the above-mentioned 10% zirconium alkoxide solution 1
0 can be easily obtained by dissolving zirconium alkoxide in a predetermined amount of alcohol. Further, according to the inventor's test results, the zirconia (z 1-02 ) coating 3 obtained through the above process is obtained as an amorphous transparent film, and as a result, the far-infrared ray generating device 1 is It has been confirmed that the incandescent light bulb 2 does not impair its illumination effect, and it has also been confirmed that, for example, when used for the purpose of preserving the freshness of food in a refrigerator, it is possible to simultaneously illuminate the inside of the refrigerator. It was done.

【発明の効果】【Effect of the invention】

以」二に説明したように本発明により、軟質ガラスで形
成されたバルブを有する白熱電球の前記バルブ表面に遠
赤外線放射物質が0.05〜0.5μmの膜厚の被°膜
で被覆しである遠赤外線発生装置及びその製造方法を提
供したことで、極めて一般的に市場なとに大量に供給さ
れている安価な白熱電球と、従来例に比較して極めて少
量の使用量の遠赤外線放射物質とで、この遠赤外線発生
装置を製造可能とし飛躍的なコストダウンを可能として
、この種の遠赤外線発生装置の使用可能な対象を広くす
ると云う優れた効果を奏するものであり、この時に前記
遠赤外線放射物質の被膜の膜厚を0905〜0.5μm
の範囲としたことて、被膜の剥離およびバルブのクラッ
クも無くシ、この種の遠赤外線発生装置の耐久性を著し
く向」ニさせる効果も併せて奏するものである。 更には、前記製造方法による前記被膜はアモルファス状
の透明被膜と成り、前記白熱電球の本来の照明作用も損
なうことなく、遠赤外線の放射と照明とを同時に行うこ
とが可能となる効果も奏するものとなる。
As explained in 2 below, according to the present invention, the bulb surface of an incandescent light bulb having a bulb made of soft glass is coated with a far-infrared emitting material with a film thickness of 0.05 to 0.5 μm. By providing a far-infrared ray generator and its manufacturing method, we have succeeded in producing inexpensive incandescent light bulbs, which are commonly supplied in large quantities in the market, and far-infrared rays, which are used in an extremely small amount compared to conventional methods. It has the excellent effect of making it possible to manufacture far-infrared ray generators with radioactive materials, dramatically reducing costs, and widening the range of applications for which this type of far-infrared ray generator can be used. The thickness of the coating of the far-infrared emitting material is 0905 to 0.5 μm.
In this range, there is no peeling of the coating or cracking of the bulb, and the durability of this type of far-infrared generator is significantly improved. Furthermore, the coating produced by the manufacturing method becomes an amorphous transparent coating, which also has the effect of allowing far-infrared radiation and illumination to be performed simultaneously without impairing the original illumination effect of the incandescent light bulb. becomes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る遠赤外線発生装置の一実施例を示
す要部の断面図、第2図は同じ遠赤外線発生装置の製造
工程を示す説明図、第3図は従来例を示す断面図である
。 1−・・・・・・遠赤外線発生装置 2−−−−−−−一白熱電球 2 a−一一一・−・−バルブ 3−・・−・被膜
Fig. 1 is a sectional view of essential parts showing an embodiment of a far-infrared ray generator according to the present invention, Fig. 2 is an explanatory view showing the manufacturing process of the same far-infrared ray generator, and Fig. 3 is a sectional view of a conventional example. It is a diagram. 1-...Far-infrared ray generator 2--Incandescent light bulb 2 a-111--Bulb 3--Coating

Claims (2)

【特許請求の範囲】[Claims] (1)軟質ガラスで形成されたバルブを有する白熱電球
の前記バルブ表面に遠赤外線放射物質が0.05〜0.
5μmの膜厚の被膜で被覆してあることを特徴とする遠
赤外線発生装置。
(1) An incandescent light bulb having a bulb made of soft glass has a far-infrared emitting substance on the bulb surface of 0.05 to 0.
A far-infrared ray generator characterized by being coated with a film having a thickness of 5 μm.
(2)軟質ガラスで形成されたバルブを有する白熱電球
をジルコニニュウムアルコキシド10%溶液中に浸漬し
て所定速度で引き上げ、その後に400℃の焼成を行う
ことで前記バルブの表面に前記遠赤外線放射物質の0.
05〜0.5μmの膜厚の被膜を形成することを特徴と
する遠赤外線発生装置の製造方法。
(2) An incandescent light bulb with a bulb made of soft glass is immersed in a 10% solution of zirconium alkoxide, pulled up at a predetermined speed, and then fired at 400°C to infuse the surface of the bulb with the far-infrared rays. 0 of radioactive materials.
A method for manufacturing a far-infrared ray generator, characterized by forming a film having a thickness of 0.05 to 0.5 μm.
JP14378189A 1989-06-06 1989-06-06 Generator for extreme infra-red rays Pending JPH0311549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14378189A JPH0311549A (en) 1989-06-06 1989-06-06 Generator for extreme infra-red rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14378189A JPH0311549A (en) 1989-06-06 1989-06-06 Generator for extreme infra-red rays

Publications (1)

Publication Number Publication Date
JPH0311549A true JPH0311549A (en) 1991-01-18

Family

ID=15346860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14378189A Pending JPH0311549A (en) 1989-06-06 1989-06-06 Generator for extreme infra-red rays

Country Status (1)

Country Link
JP (1) JPH0311549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424821B1 (en) 1997-02-14 2002-07-23 Nt Engineering Kabushiki Kaisha Working machine and its communication method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424821B1 (en) 1997-02-14 2002-07-23 Nt Engineering Kabushiki Kaisha Working machine and its communication method

Similar Documents

Publication Publication Date Title
US5143445A (en) Glass reflectors lpcvd coated with optical interference film
ES2160194T3 (en) SCAMOUS ALUMINUM OXIDE AND PERLESCENT PIGMENT, AND PRODUCTION OF THE SAME.
SE7709255L (en) HEAT REFLECTIVE GLASS SHEET AND PROCEDURES FOR ITS MANUFACTURE
JPH0311549A (en) Generator for extreme infra-red rays
US5658612A (en) Method for making a tantala/silica interference filter on the surface of a tungsten-halogen incandescent lamp
US5843518A (en) Method for making a tantala/silica interference using heat treatment
US2151686A (en) Electric lamp and process of making the same
US5648115A (en) Method for making a tantala/silica interference filter on a vitreous substrate and an electric lamp made thereby
JPS59221968A (en) Method of forming scattering membrane
US2096084A (en) Ornamental lamp bulb or the like and method of making the same
JP2793267B2 (en) Manufacturing method of one end sealed incandescent lamp
JPS63276890A (en) Heater lamp
GB773515A (en) Improvements in and relating to thin layers with coloured light transmission for optical or decorative purposes
SU371636A1 (en) LAMP OF THE GRAINING OF THE PRESSED TYPE WITH INTERFERENCE COATING
JPS6451347A (en) Production of multilayered film of metal oxide
JPH03230470A (en) Electric bulb
JPS5618340A (en) Manufacture of pickup tube target
JPH04352102A (en) Antireflection film for plastic optical member and formation thereof
JPH10314179A (en) Tip rod member and manufacture therefor
JPH0433842A (en) Functional film and forming method thereof, and bulb and manufacture thereof
JPH0756792B2 (en) Heater lamp
JPS601723A (en) Formation of pick-up tube target
JPS6246074B2 (en)
JPS52118980A (en) Plating method for a flourscent lamp
JPH02160363A (en) Manufacture of colored cap and electric tube