JPH03115192A - Device for growing crystal by molecular beam epitaxy - Google Patents
Device for growing crystal by molecular beam epitaxyInfo
- Publication number
- JPH03115192A JPH03115192A JP25667489A JP25667489A JPH03115192A JP H03115192 A JPH03115192 A JP H03115192A JP 25667489 A JP25667489 A JP 25667489A JP 25667489 A JP25667489 A JP 25667489A JP H03115192 A JPH03115192 A JP H03115192A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- epitaxial growth
- light beam
- epitaxial
- temp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 37
- 238000001451 molecular beam epitaxy Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 127
- 238000009826 distribution Methods 0.000 claims abstract description 37
- 238000013461 design Methods 0.000 claims abstract description 11
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000001931 thermography Methods 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 20
- 229910052753 mercury Inorganic materials 0.000 description 19
- 230000003287 optical effect Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910004613 CdTe Inorganic materials 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 229910052714 tellurium Inorganic materials 0.000 description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000001947 vapour-phase growth Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
分子線エピタキシャル結晶成長装置に関し、水銀を含む
化合物半尋体のエピタキシャル結晶が所定の組成で得ら
れるような分子線エピタキシャル結晶成長装置を目的と
し、
エピタキシャル成長容器と、
該容器の内部に設置されたエピタキシャル成長用基板と
、
該基板に対向して設置され、エピタキシャル成長用ソー
ス材料を収容したソース坩堝と、前記エピタキシャル成
長用基板に光を照射する光照射手段と、
該光照射手段の光ビームを走査する光ビーム走査手段と
、該光ビーム強度を調節する光ビーム強度制御手段と、
前記基板表面温度分布の設計値を記憶する記憶装置とか
らなり、
前記記憶装置の記憶情報により前記光ビーム走査手段と
前記光ビーム強度制御手段を作動させて前記エピタキシ
ャル成長用基板の温度を制御しながらエピタキシャル成
長するようにして構成する。[Detailed Description of the Invention] [Summary] Regarding a molecular beam epitaxial crystal growth apparatus, the present invention is directed to a molecular beam epitaxial crystal growth apparatus capable of obtaining epitaxial crystals of a compound semidiagonal containing mercury with a predetermined composition, and an epitaxial growth vessel. a substrate for epitaxial growth placed inside the container; a source crucible placed opposite to the substrate and containing a source material for epitaxial growth; and a light irradiation means for irradiating the substrate for epitaxial growth with light. comprising: a light beam scanning means for scanning the light beam of the light irradiation means; a light beam intensity control means for adjusting the intensity of the light beam; and a storage device for storing the design value of the substrate surface temperature distribution; The light beam scanning means and the light beam intensity control means are operated according to stored information to perform epitaxial growth while controlling the temperature of the epitaxial growth substrate.
本発明は分子線エピタキシャル結晶成長装置に関する。 The present invention relates to a molecular beam epitaxial crystal growth apparatus.
赤外線センサ等の光電変換装置には、エネルギーバンド
ギャップの狭い水銀・カドミウム・テルル(Hg+−x
Cd3 Te)のような化合物半導体結晶が用いられ
ている。Photoelectric conversion devices such as infrared sensors use mercury, cadmium, and tellurium (Hg+-x), which have narrow energy band gaps.
A compound semiconductor crystal such as Cd3Te) is used.
このような赤外線センサは、益々多画素化、高性能化お
よび低価格化が要求されており、そのため、サファイア
やガリウム砒素(GaAs)等の安価で大型の基板が容
易に人手できる基板上に該基板と格子定数等の結晶特性
が異なる水銀・カドミウム・テルル(Hg1−X Cd
X Te)の化合物半導体結晶が高品質で得られるよう
にした方法や、装置が要望されている。Such infrared sensors are increasingly required to have a higher number of pixels, higher performance, and lower cost. Therefore, inexpensive and large substrates such as sapphire and gallium arsenide (GaAs) are required to be mounted on substrates that can be easily handled. Mercury, cadmium, tellurium (Hg1-X Cd
There is a need for a method and an apparatus that enable high quality compound semiconductor crystals of X Te) to be obtained.
前記したGaAs基板やサファイア基板上に、該基板と
格子定数の異なるHg+−x CdXTeの結晶を成長
するには、平衡状態で結晶成長が行われる液相エピタキ
シャル成長法では良好な結晶が得られず、異種基板上に
も良好な結晶が得られる分子線エピタキシャル成長法等
の気相成長の開発が進められている。In order to grow a Hg+-x CdXTe crystal having a lattice constant different from that of the substrate on the GaAs substrate or sapphire substrate described above, a liquid phase epitaxial growth method in which crystal growth is performed in an equilibrium state cannot obtain a good crystal. The development of vapor phase growth methods such as molecular beam epitaxial growth methods, which can obtain good crystals even on different types of substrates, is underway.
また液相エピタキシャル成長方法では、成長温度が高い
ために、基板とエピタキシャル結晶のごとき組成の異な
る結晶間で相互拡散が生じるため、高機能デバイス作成
のために必要な急峻なペテロ界面や、微細な組成分布パ
ターンを実現することが困難であり、低温成長が可能な
気相エピタキシャル成長技術の開発が待たれている。In addition, in the liquid phase epitaxial growth method, due to the high growth temperature, interdiffusion occurs between crystals with different compositions, such as the substrate and epitaxial crystal. It is difficult to realize a distributed pattern, and the development of a vapor phase epitaxial growth technique that allows low-temperature growth is awaited.
一方、成長すべきエピタキシャル結晶成分に蒸発し易い
水銀を含んでいると、基板温度の掻く僅かな温度差によ
っても、基板への水銀固着係数が大幅に異なるため、形
成されるエピタキシャル結晶の組成が一定にならない。On the other hand, if the epitaxial crystal component to be grown contains mercury, which evaporates easily, the mercury adhesion coefficient to the substrate will vary significantly even with a slight difference in substrate temperature, resulting in a change in the composition of the epitaxial crystal to be formed. It doesn't become constant.
従来の気相成長技術では充分な温度制御が実現できず、
成長装置を改善して基板温度分布が設計値通りに精度良
く制御できる装置が望まれる。Conventional vapor phase growth technology cannot achieve sufficient temperature control;
It is desired to improve the growth apparatus so that the substrate temperature distribution can be precisely controlled according to the designed value.
第4図は従来の分子線エピタキシャル結晶成長装置の模
式図で、図示するようにエピタキシャル成長容器1の上
部の基板設置台2にはGaAs基板等のエピタキシャル
成長用基板3が設置されている。FIG. 4 is a schematic diagram of a conventional molecular beam epitaxial crystal growth apparatus. As shown in the figure, an epitaxial growth substrate 3 such as a GaAs substrate is placed on a substrate mounting table 2 above an epitaxial growth container 1.
更に該基板設置台2には該エピタキシャル成長用基板3
を加熱するための加熱ヒータ4が内蔵されている。Furthermore, the epitaxial growth substrate 3 is placed on the substrate installation stand 2.
A heater 4 for heating is built-in.
上記エピタキシャル成長容器1の底部で、前記エピタキ
シャル成長用基板3と対向する位置には、該基板上にエ
ピタキシャル成長すべきHg+−x CdxTeの結晶
の形成材料である所定の重量のCdTeを収容したCd
Teソース坩堝5、所定の重量の水銀を収容したHgソ
ース坩堝6、所定の重量のテルルを収容したTeソース
坩堝7が設置されている。そして上記エピタキシャル成
長用基板3と各ソース坩堝との間には遮蔽板8が設置さ
れている。またエピタキシャル成長容器内には、二重構
造の内部側壁9が設けられ、該二重の内部側壁内には液
体窒素が流入され、エピタキシャル成長の過程で未反応
の水銀原子を該内部側壁に付着するようしており、更に
該内部側壁に付着した水銀を収容するための水銀回収器
11がエピタキシャル成長容器の下部に接続されている
。At the bottom of the epitaxial growth container 1, at a position facing the epitaxial growth substrate 3, a CdTe containing a predetermined weight of CdTe, which is a forming material of the Hg+-xCdxTe crystal to be epitaxially grown on the substrate, is placed.
A Te source crucible 5, a Hg source crucible 6 containing a predetermined weight of mercury, and a Te source crucible 7 containing a predetermined weight of tellurium are installed. A shielding plate 8 is installed between the epitaxial growth substrate 3 and each source crucible. Further, inside the epitaxial growth container, an internal side wall 9 having a double structure is provided, and liquid nitrogen is flowed into the double internal side wall to cause unreacted mercury atoms to adhere to the internal side wall during the epitaxial growth process. Furthermore, a mercury collector 11 for storing mercury attached to the inner side wall is connected to the lower part of the epitaxial growth container.
更に該エピタキシャル成長容器全体を10””torr
程度の高真空に排気するための真空排気装置12が容器
に接続されている。Furthermore, the entire epitaxial growth container is heated to 10"" torr.
A vacuum evacuation device 12 for evacuation to a relatively high vacuum is connected to the container.
このような従来の装置を用いて、エピタキシャル成長用
基板上にHgI−x Cdx Teのエピタキシャル結
晶を成長する場合、前記基板設置台2にエピタキシャル
成長用基板3を設置した後、各ソース坩・堝とエピタキ
シャル成長用基板との間に遮蔽板8を介在させた状態で
、各ソース坩堝の周囲に設けた加熱ヒータ(図示せず)
を加熱し、該ソース坩堝の温度が所定の温度に到達した
時点で、前記遮蔽板8を移動させ、ソース坩堝からの各
ソースの蒸発成分を基板上に照射させるとともに、エピ
タキシャル成長用基板を加熱して該基板上にHg+−x
CdXTeのエピタキシャル結晶を気相成長している。When growing an epitaxial crystal of HgI-x Cdx Te on a substrate for epitaxial growth using such a conventional apparatus, after installing the substrate 3 for epitaxial growth on the substrate mounting table 2, each source crucible and the epitaxial growth A heater (not shown) is provided around each source crucible with a shielding plate 8 interposed between the source crucible and the source crucible.
When the temperature of the source crucible reaches a predetermined temperature, the shield plate 8 is moved to irradiate the substrate with the evaporated components of each source from the source crucible, and the epitaxial growth substrate is heated. Hg+-x on the substrate
CdXTe epitaxial crystals are grown in a vapor phase.
ところで、CdTeやTeのソース材料は高温で加熱さ
れているのに対し、エピタキシャル成長用基板3の温度
は200℃の比較的低温に保たないと水銀が基板上に付
着しない問題がある。Incidentally, while source materials such as CdTe and Te are heated at high temperatures, there is a problem that mercury will not adhere to the substrate unless the temperature of the epitaxial growth substrate 3 is kept at a relatively low temperature of 200°C.
然し、ソース材料より発生する輻射熱等が影響してエピ
タキシャル成長用基板表面の温度が基板全体で均一な温
度に成らない問題がある。エピタキシャル成長用基板全
体の温度を上昇させると基板表面の温度分布制御は比較
的容易となるが、水銀の基板への固着係数が極端に低下
しHg+−x CdxTeのエピタキシャル成長が不可
能となる。However, there is a problem in that the temperature of the surface of the substrate for epitaxial growth does not become uniform over the entire substrate due to the influence of radiant heat generated from the source material. Increasing the temperature of the entire epitaxial growth substrate makes it relatively easy to control the temperature distribution on the substrate surface, but the adhesion coefficient of mercury to the substrate is extremely reduced, making epitaxial growth of Hg+-x CdxTe impossible.
一方、エピタキシャル成長用基板3の温度が所定の温度
より低下すると、形成されるエピタキシャル結晶の組成
がずれるのみならず、エピタキシャル成長用基板上に過
剰の水銀が付着して形成されるエピタキシャル結晶の結
晶性が極端に悪くなる問題が生じる。On the other hand, if the temperature of the epitaxial growth substrate 3 falls below a predetermined temperature, not only will the composition of the epitaxial crystal to be formed shift, but also the crystallinity of the epitaxial crystal to be formed will change due to excessive mercury adhering to the epitaxial growth substrate. A problem arises that gets worse.
従来の装置に於いては、エピタキシャル成長用基板温度
の温度制御が充分確保できていないため、水銀を成分と
して含む化合物半導体の分子線エピタキシャル結晶成長
は組成、結晶性とも再現性が悪く、実用的な技術と成っ
ていない。In conventional equipment, sufficient temperature control of the substrate temperature for epitaxial growth cannot be ensured, so molecular beam epitaxial crystal growth of compound semiconductors containing mercury as a component has poor reproducibility in both composition and crystallinity, making it impractical for practical use. It has not become a technology.
そのため、エピタキシャル成長用基板温度を均一にする
ために基板裏面に均熱板や、加熱ヒータを設ける等の従
来の装置では、必要とする精度で基板温度の絶対値と分
布を制御できない結果、基板への水銀固着係数が場所的
に、時間的に一定でないため、エピタキシャル結晶の組
成が成長ロフト間で異なり、エピタキシャル結晶の組成
の均一性も悪くなる問題が生じる。Therefore, with conventional equipment such as installing a soaking plate or a heater on the back side of the substrate to make the substrate temperature uniform for epitaxial growth, it is not possible to control the absolute value and distribution of the substrate temperature with the required accuracy. Since the mercury fixation coefficient of the epitaxial crystal is not constant depending on the location or time, the composition of the epitaxial crystal differs between growth lofts, resulting in a problem that the uniformity of the composition of the epitaxial crystal deteriorates.
本発明は上記した問題点を除去し、基板の表面温度分布
が均一に、或いは設計値どおりに正確に制御できるよう
な分子線エピタキシャル結晶成長装置の提供を目的とす
る。An object of the present invention is to eliminate the above-mentioned problems and provide a molecular beam epitaxial crystal growth apparatus in which the surface temperature distribution of a substrate can be uniformly controlled or precisely controlled according to a designed value.
上記目的を達成する本発明の分子線エピタキシャル結晶
成長装置は第1図の原理図に示すように、エピタキシャ
ル成長容器lと、該容器の内部に設置されたエピタキシ
ャル成長用基板3と、該基板に対向して設置されエピタ
キシャル成長用ソース材料を収容したソース坩堝5.6
.7と、前記エピタキシャル成長用基板に光を照射する
光照射手段22と、該光照射手段の光ビームを走査する
光ビーム走査手段23と、該光ビーム強度を調節する光
ビーム強度制御手段24と、前記基板表面温度分布の設
計値を記憶する記憶装置25とからなり、前記記憶装置
25の記憶情報により前記光ビーム走査手段23と、前
記光ビーム強度制御手段24を作動させて前記エピタキ
シャル成長用基板の温度を制御しながらエピタキシャル
成長するようにして構成する。As shown in the principle diagram of FIG. 1, the molecular beam epitaxial crystal growth apparatus of the present invention which achieves the above object includes an epitaxial growth container l, an epitaxial growth substrate 3 placed inside the container, and an epitaxial growth substrate 3 facing the substrate. Source crucible 5.6 installed at
.. 7, a light irradiation means 22 for irradiating the epitaxial growth substrate with light, a light beam scanning means 23 for scanning the light beam of the light irradiation means, a light beam intensity control means 24 for adjusting the intensity of the light beam, The storage device 25 stores the design value of the substrate surface temperature distribution, and the information stored in the storage device 25 operates the light beam scanning means 23 and the light beam intensity control means 24 to control the epitaxial growth substrate. It is structured so that epitaxial growth is performed while controlling the temperature.
本発明の装置では第1図および第2図に示すように、レ
ーザ光の光強度を制御しながら、レーザ光スポットをエ
ピタキシャル成長用基板3の表面に走査することにより
、基板表面温度分布を制御している。基板表面温度分布
を熱像映像化装置26で計測するようにし、計測された
基板表面の温度分布に対する信号出力と、記憶装置25
に予め記憶しておいた所定の温度分布(設計温度分布)
に対する信号出力とを演算器27で比較演算して、その
演算結果を光ビーム強度制御手段(光減衰器)24や、
光ビーム走査手段(光学走査器)23にフィードバック
して光照射手段(炭酸ガスレーザ管)22の基板への光
ビームの走査位置や、照射する光ビーム強度を制御する
ようにしている。As shown in FIGS. 1 and 2, the apparatus of the present invention controls the substrate surface temperature distribution by scanning the laser beam spot on the surface of the epitaxial growth substrate 3 while controlling the light intensity of the laser beam. ing. The temperature distribution on the substrate surface is measured by the thermal imaging device 26, and a signal output for the measured temperature distribution on the substrate surface and the storage device 25 are provided.
A predetermined temperature distribution stored in advance (design temperature distribution)
The arithmetic unit 27 compares and calculates the signal output for
The light beam is fed back to the light beam scanning means (optical scanner) 23 to control the scanning position of the light beam on the substrate of the light irradiation means (carbon dioxide laser tube) 22 and the intensity of the irradiated light beam.
従って、熱像映像化装置26で計測した実際の基板表面
の温度分布と、記憶装置25に記憶されている基板表面
温度分布の設計値とに差異が有る場合には、その差異に
応じて光減衰器24を用いて光ビームの強度を制御し、
或いは光ビーム走査手段23で光ビーム走査速度を変化
させることによって、基板表面温度分布を設計温度分布
にほぼ一致させることが出来る。Therefore, if there is a difference between the actual substrate surface temperature distribution measured by the thermal imaging device 26 and the designed value of the substrate surface temperature distribution stored in the storage device 25, the optical controlling the intensity of the light beam using an attenuator 24;
Alternatively, by changing the light beam scanning speed by the light beam scanning means 23, the substrate surface temperature distribution can be made to substantially match the designed temperature distribution.
以下、図面を用いて本発明の一実施例につき詳細に説明
する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第2図は本発明の分子線エピタキシャル成長装置の模式
図である。FIG. 2 is a schematic diagram of the molecular beam epitaxial growth apparatus of the present invention.
図示するようにエピタキシャル成長容器1内の上部の基
板設置台2上には、GaAsよりエピタキシャル成長用
基板3が設置されている。As shown in the figure, an epitaxial growth substrate 3 made of GaAs is placed on an upper substrate installation table 2 in an epitaxial growth container 1 .
そして該基板の下部には、前記したCdTeソース坩堝
5、Hgソース坩堝6およびTeソース坩堝7が設置さ
れ、該エピタキシャル成長用基板と前記ソース坩堝との
間には遮蔽板8が設けられている。The above-described CdTe source crucible 5, Hg source crucible 6, and Te source crucible 7 are installed below the substrate, and a shielding plate 8 is provided between the epitaxial growth substrate and the source crucible.
前記エピタキシャル成長容器1の側壁には、斜め方向よ
り基板を下部より覗くような鏡筒31が設けられ、この
鏡筒31の端部には光透過基板21が設けられている。A lens barrel 31 is provided on the side wall of the epitaxial growth container 1 so that the substrate can be viewed from below in an oblique direction, and a light transmitting substrate 21 is provided at the end of this lens barrel 31.
この光透過基板21とエピタキシャル成長用基板3とを
結んだ線上にエピタキシャル成長用基板の基板表面温度
分布を測定するための赤外線カメラ、例えばIRCCD
のような熱像映像化装置26が設置されている。An infrared camera, for example, IRCCD, is used to measure the substrate surface temperature distribution of the epitaxial growth substrate on a line connecting the light-transmitting substrate 21 and the epitaxial growth substrate 3.
A thermal imaging device 26 such as the one shown in FIG.
また前記鏡筒31の下部には、更に鏡筒32が設けられ
、該鏡筒32には前記エピタキシャル成長用基板3を覗
くような光透過基板21が設置され、該基板21とエピ
タキシャル成長用基板3とを結んだ線上には、第3図に
示すように、炭酸ガスレーザ管22より照射されるレー
ザ光のスポットを基板のX方向に走査するX方向走査鏡
41と、該レーザ光のスポットを基板のY方向に走査す
るY方向走査鏡42と前記走査鏡を駆動させる駆動用電
磁コイル43゜44とよりなる光ビーム走査手段23と
、第2図に示す該レーザ光の光強度を所定の強度に保つ
ための入射光に対する角度が可変なハーフミラ−で構成
された可変型ビームスプリッタ等の光減衰器24が設置
され、更に前記した炭酸ガスレーザ管22が設置されて
いる。Further, a lens barrel 32 is further provided at the bottom of the lens barrel 31, and a light transmitting substrate 21 is installed on the lens barrel 32 so as to look into the epitaxial growth substrate 3, and the substrate 21 and the epitaxial growth substrate 3 are connected to each other. As shown in FIG. 3, on the line connecting the A light beam scanning means 23 includes a Y-direction scanning mirror 42 that scans in the Y direction, a driving electromagnetic coil 43° 44 that drives the scanning mirror, and a light beam scanning means 23 that adjusts the light intensity of the laser beam to a predetermined intensity as shown in FIG. An optical attenuator 24 such as a variable beam splitter configured with a half mirror whose angle relative to the incident light is variable is installed to maintain the incident light, and the carbon dioxide laser tube 22 described above is also installed.
そして上記光ビーム走査手段23や、光減衰器24は前
記熱像映像化装置26で計測された値と、設計値の基板
表面温度が記憶された記憶装置25からの値を演算器2
7で演算比較し、この演算器27で得られた値に応じて
前記光ビーム走査手段23に於ける走査鏡の移動角度を
変化させたり、或いは光減衰器の可変型ビームスプリフ
タ等を作動させて基板表面の各位置に於けるレーザスポ
ット光の照度を変えるようにしている。The light beam scanning means 23 and the optical attenuator 24 send the values measured by the thermal imaging device 26 and the values from the storage device 25 in which the design value of the substrate surface temperature is stored to the computing unit 24.
7, and according to the value obtained by the calculator 27, the movement angle of the scanning mirror in the light beam scanning means 23 is changed, or the variable beam splitter of the optical attenuator is operated. In this way, the illuminance of the laser spot light at each position on the substrate surface is changed.
上記した記憶装置25にはエピタキシャル成長用基板の
設計温度分布の情報が記憶されている。The above-mentioned storage device 25 stores information on the designed temperature distribution of the epitaxial growth substrate.
この設計温度分布は基板全体が均一となるような温度パ
ターンか、或いは基板が部分的に温度の上下があるよう
な温度パターンに設計されている。This designed temperature distribution is designed to be a temperature pattern in which the entire substrate is uniform, or a temperature pattern in which the temperature of the substrate partially varies.
上記した熱像映像化袋W126は、常にエピタキシャル
成長用基板3の表面を撮影している。輻射率の等しい物
体に付いては、温度の高い物体程多くの赤外線を放射し
ているので、この赤外線強度を映像化する熱像映像化装
置によってエピタキシャル成長用基板表面の温度が計測
できる。然し、エピタキシャル成長用基板3の表面は一
般に鏡面であり、反射係数(=1−輻射率)が大きいた
め、熱像映像化装置より見て基板表面で反射して見える
場所より多くの赤外線が放射されていると、基板表面で
反射して熱像映像化装置に入射し、正確な基板表面温度
分布が計測出来なくなる。The thermal imaging bag W126 described above always photographs the surface of the epitaxial growth substrate 3. For objects with the same emissivity, the higher the temperature of the object, the more infrared rays it emits, so the temperature of the surface of the epitaxial growth substrate can be measured using a thermal imaging device that visualizes the intensity of this infrared ray. However, since the surface of the epitaxial growth substrate 3 is generally a mirror surface and has a large reflection coefficient (=1 - emissivity), more infrared rays are emitted from the area where it is reflected from the substrate surface when viewed from a thermal imager. If so, it will be reflected off the substrate surface and incident on the thermal imaging device, making it impossible to accurately measure the temperature distribution on the substrate surface.
上記反射で熱像映像化装置に入射する赤外線量を一定と
し、演算器で差し引けるようにするには、熱像映像化装
置より見て、基板表面で反射して見える場所に温度の均
一な低温黒体を設置するのが望ましい。In order to keep the amount of infrared rays incident on the thermal imager due to the above reflection constant and to be able to subtract it with a calculator, it is necessary to keep the temperature uniform in the area visible from the thermal imager as seen by the reflection from the substrate surface. It is desirable to install a low-temperature blackbody.
そのため、更に前記エピタキシャル成長容器lの左側の
側壁部に、前記エピタキシャル成長用基板3を斜め下部
方向より覗くような鏡筒33を設け、該鏡筒33に前記
基板表面から反射される赤外線を透過するゲルマニウム
板より成る赤外線透過窓34、および赤外線を反射しな
いカーボンよりなる低温黒体35が設置されている。Therefore, a lens barrel 33 is further provided on the left side wall of the epitaxial growth container l so as to look into the epitaxial growth substrate 3 from an obliquely lower direction, and the lens barrel 33 is made of germanium that transmits infrared rays reflected from the substrate surface. An infrared transmitting window 34 made of a plate and a low-temperature black body 35 made of carbon that does not reflect infrared rays are installed.
そしてより高精度にエピタキシャル成長用基板の温度分
布を計測するには、前記反射によって熱像映像化装置に
入射される赤外線を一定にする丈でなく、できる丈減少
させる必要があり、そのためには前記した黒体を低温に
保つことが必要となる。In order to measure the temperature distribution of the epitaxial growth substrate with higher accuracy, it is necessary to reduce the length of the infrared rays incident on the thermal imaging device rather than keeping the infrared rays incident on the thermal imaging device constant. It is necessary to keep the black body at a low temperature.
然し、水銀を含むエピタキシャル結晶の成長に於いては
、エピタキシャル成長用基板に固着されなかった水銀分
子がエピタキシャル成長容器l内に浮遊して低温部に付
着するので、上記したように低温黒体35は、水銀が付
着しない高温の赤外線透過窓34で保護されている。上
記赤外線透過窓34からの赤外線放射は、透過窓の輻射
率(=1−透過率)は小さいため、反射で透過窓より熱
像映像化装置に入射する赤外線は増加しない。However, in the growth of epitaxial crystals containing mercury, mercury molecules that are not fixed to the epitaxial growth substrate float inside the epitaxial growth container l and adhere to the low temperature part, so as described above, the low temperature black body 35 It is protected by a high temperature infrared transmitting window 34 to which mercury does not adhere. Since the infrared radiation from the infrared transmission window 34 has a small emissivity (=1-transmittance) of the transmission window, the amount of infrared rays incident on the thermal imaging device from the transmission window does not increase due to reflection.
更にこの装置全体を排気するための真空排気装置12や
、前記内部側壁9内に蓄積される未反応の水銀を回収す
るための水銀回収器11が前記エピタキシャル成長容器
1に接続されて配置されている。Further, a vacuum evacuation device 12 for evacuating the entire apparatus and a mercury recovery device 11 for recovering unreacted mercury accumulated in the inner side wall 9 are connected to and arranged in the epitaxial growth container 1. .
このような本発明の分子線エピタキシャル成長装置の動
作に付いて説明する。The operation of such a molecular beam epitaxial growth apparatus of the present invention will be explained.
まず前記した基板設置台2にエピタキシャル成長用基l
l13を設置した後、エピタキシャル成長容器1内を真
空排気装置12を用いて10− ” torrの真空度
に成る迄排気する。First, an epitaxial growth substrate l is placed on the substrate mounting table 2 described above.
113, the inside of the epitaxial growth container 1 is evacuated using the vacuum evacuation device 12 until a vacuum level of 10-'' torr is reached.
次いで各々のソース坩堝を加熱し、これ等のソース坩堝
の温度が所定の温度に成った時点で前記遮蔽板8を該ソ
ース坩堝の上部より、横方向に移動させる。Next, each source crucible is heated, and when the temperature of these source crucibles reaches a predetermined temperature, the shielding plate 8 is moved laterally from the top of the source crucible.
次いで前記光減衰器24の減衰率を下げて、炭酸ガスレ
ーザ管22からのレーザ光がエピタキシャル成長用基板
3の所定位置に到達するように光学走査器23を走査す
る。Next, the attenuation rate of the optical attenuator 24 is lowered, and the optical scanner 23 is scanned so that the laser beam from the carbon dioxide laser tube 22 reaches a predetermined position on the epitaxial growth substrate 3.
この状態で所定時間レーザ光をエピタキシャル成長用基
板上に照射し、該基板の温度が所定の温度に上昇した段
階で、前記基板表面の所定の位置の温度を熱像映像化装
置26で計測する。In this state, a laser beam is irradiated onto the epitaxial growth substrate for a predetermined period of time, and when the temperature of the substrate rises to a predetermined temperature, the temperature at a predetermined position on the substrate surface is measured by the thermal imaging device 26.
そしてこの温度を前記記憶装置25に記憶されている所
定位置の基板表面温度の設計値温度と比較検知し、この
比較した値を演算器27で演算し、該演算した情報に基
づいて前記した光学走査器23の走査鏡を基板の所定位
置にレーザ光が到達するように走査し、又光減衰器24
のハーフミラ−のレーザ光の入射光に対する角度を変え
るようにしてレーザ光の光スポットの強度を調節する。Then, this temperature is compared and detected with the design value temperature of the substrate surface temperature at a predetermined position stored in the storage device 25, and this compared value is calculated by the calculator 27, and based on the calculated information, the above-described optical The scanning mirror of the scanner 23 is scanned so that the laser beam reaches a predetermined position on the substrate, and the optical attenuator 24
The intensity of the light spot of the laser light is adjusted by changing the angle of the half mirror with respect to the incident light of the laser light.
また前記した基板で反射した赤外光が、前記熱像映像化
装置に入り込んで、該装置の計測値の値が前記反射赤外
光の影響を受けるのを防止するために、本発明の装置に
於けるように、前記熱像映像化装置より見て、前記基板
で反射して見える位置に赤外光を反射せず、かつ殆ど放
射もしない低温黒体35と赤外光を透過し、殆ど放射し
ない赤外線透過窓34を設けることで、反射赤外光が熱
像映像化装置に入射しなく、更にエピタキシャル成長装
置の信頼度が向上する。Further, in order to prevent the infrared light reflected by the substrate described above from entering the thermal imaging device and the measured values of the device being influenced by the reflected infrared light, the device of the present invention is provided. As seen from the thermal imaging device, the infrared light is transmitted through a low-temperature black body 35 that does not reflect infrared light and hardly radiates the infrared light to a position where it can be seen reflected by the substrate, By providing the infrared transmitting window 34 that emits almost no radiation, reflected infrared light does not enter the thermal imaging device, further improving the reliability of the epitaxial growth device.
尚、本発明の変形例として、基板表面で反射して熱像映
像化装置に入射する赤外線の低減手段を低温黒体と赤外
透過窓の組み合わせとしたが、均一温度の黒体のみで構
成しても良い。As a modification of the present invention, the means for reducing infrared rays reflected on the substrate surface and incident on the thermal imaging device is a combination of a low-temperature black body and an infrared transmitting window, but it is possible to use only a black body with a uniform temperature. You may do so.
また上記実施例では、熱像映像化装置から計測された基
板表面温度分布の計測値を、レーザ光の照射強度にフィ
ードバックしているが、設計温度分布情報を記憶してい
る記憶装置からの出力だけでレーザ光照射強度を制御し
ても良い。Furthermore, in the above embodiment, the measured value of the substrate surface temperature distribution measured by the thermal imaging device is fed back to the laser beam irradiation intensity, but the output from the storage device that stores the design temperature distribution information is The laser beam irradiation intensity may be controlled solely by
またエピタキシャル成長基板の温度は、レーザ光だけで
制御しているが、基板の裏面にヒータや均温板を設ける
等の補助加熱手段や、補助温度分布手段を付設しても良
い。Further, although the temperature of the epitaxial growth substrate is controlled only by laser light, auxiliary heating means such as a heater or a temperature equalizing plate provided on the back surface of the substrate, or auxiliary temperature distribution means may be provided.
C発明の効果〕
以上の説明から明らかなように本発明によれば、基板表
面の温度分布を設計温度分布通りにできるため、上記設
計温度分布を均一温度と設定すれば基板表面は均一温度
になり、基板全体にわたって均一、かつ所定の組成を有
するエピタキシャル結晶が成長でき、この結晶を用いて
赤外線エリアセンサ等を製作すれば、画素間の特性が均
一なセンサが得られる。C. Effects of the Invention] As is clear from the above description, according to the present invention, the temperature distribution on the substrate surface can be made to match the designed temperature distribution. Therefore, if the above-mentioned design temperature distribution is set to be a uniform temperature, the substrate surface will have a uniform temperature. Therefore, an epitaxial crystal having a uniform and predetermined composition can be grown over the entire substrate, and if an infrared area sensor or the like is manufactured using this crystal, a sensor with uniform characteristics between pixels can be obtained.
また設計温度分布を部分的に異なる温度パターンに設定
すると、基板表面に所定の温度パターンが精度良く実現
でき、この温度パターンに応じてX値の異なるHgr−
x Cdz Teのエピタキシャル結晶が基板の所定位
置に選択成長でき、このような選択成長されたエピタキ
シャル結晶を用いて赤外線センサを形成すると高機能の
赤外線センサが得られる効果がある。Furthermore, by setting the design temperature distribution to partially different temperature patterns, a predetermined temperature pattern can be achieved on the substrate surface with high accuracy, and the Hgr-
An epitaxial crystal of x Cdz Te can be selectively grown at a predetermined position on a substrate, and if an infrared sensor is formed using such a selectively grown epitaxial crystal, a highly functional infrared sensor can be obtained.
第1図は本発明の装置の原理図、
第2図は本発明の装置の一実施例の模式図、第3図は本
発明の要部を示す模式図、
第4図は従来の装置の模式図である。
図において、
1はエビクキシャル成長容器、2は基板設置台、3はエ
ピタキシャル成長用基板、5はCdTeソース坩堝、6
はHgソース坩堝、7はTeソース坩堝、8は遮蔽板、
9は内部側壁、11は回収手段(水銀回収器)、12は
排気手段(真空排気装置)、21は光透過基板、22は
光照射手段(lie−Neレーザ管)、23は光ビーム
走査手段(光学走査器)、24は光ビーム強度制御手段
(光減衰器)、25は記憶装置、26は熱像映像化装置
、27は演算器、31.32.33は鏡筒、34は赤外
線透過窓、35は低温黒体を示す。
滲発’1l−i 1/−L tJP*;i−IINKm
第3図Fig. 1 is a diagram of the principle of the device of the present invention, Fig. 2 is a schematic diagram of an embodiment of the device of the present invention, Fig. 3 is a schematic diagram showing the main parts of the present invention, and Fig. 4 is a diagram of the conventional device. It is a schematic diagram. In the figure, 1 is an eviaxial growth container, 2 is a substrate installation table, 3 is an epitaxial growth substrate, 5 is a CdTe source crucible, and 6 is a CdTe source crucible.
is a Hg source crucible, 7 is a Te source crucible, 8 is a shielding plate,
9 is an internal side wall, 11 is a recovery means (mercury collector), 12 is an exhaust means (vacuum exhaust device), 21 is a light transmitting substrate, 22 is a light irradiation means (lie-Ne laser tube), 23 is a light beam scanning means (optical scanner), 24 is a light beam intensity control means (optical attenuator), 25 is a storage device, 26 is a thermal image visualization device, 27 is a computing unit, 31, 32, 33 is a lens barrel, 34 is an infrared transmitting device Window 35 indicates a low temperature black body. effusion'1l-i 1/-L tJP*;i-IINKm
Figure 3
Claims (3)
3)と、 該基板に対向して設置されエピタキシャル成長用ソース
材料を収容したソース坩堝(5、6、7)と、前記エピ
タキシャル成長用基板に光を照射する光照射手段(22
)と、 該光照射手段の光ビームを走査する光ビーム走査手段(
23)と、該光ビーム強度を調節する光ビーム強度制御
手段(24)と、 前記基板表面温度分布の設計値を記憶する記憶装置(2
5)とからなり、 前記記憶装置の記憶情報により前記光ビーム走査手段と
前記光ビーム強度制御手段を作動させて前記エピタキシ
ャル成長用基板の温度を制御しながらエピタキシャル成
長するようにしたことを特徴とする分子線エピタキシャ
ル結晶成長装置。(1) An epitaxial growth container (1) and an epitaxial growth substrate (
3), a source crucible (5, 6, 7) placed opposite to the substrate and containing a source material for epitaxial growth, and a light irradiation means (22) for irradiating light to the substrate for epitaxial growth.
), and a light beam scanning means (
23), a light beam intensity control means (24) for adjusting the light beam intensity, and a storage device (2) for storing the design value of the substrate surface temperature distribution.
5), wherein the light beam scanning means and the light beam intensity control means are operated according to information stored in the storage device to perform epitaxial growth while controlling the temperature of the epitaxial growth substrate. Line epitaxial crystal growth equipment.
計測する熱像映像化装置(26)を設け、該熱像映像化
装置で測定された測定値と、前記記憶装置に蓄積された
基板表面温度分布の設計値とを演算器(27)で比較演
算し、該比較演算された情報により前記光ビーム走査手
段(23)と、光ビーム強度制御手段(24)を作動さ
せることを特徴とする請求項(1)記載の分子線エピタ
キシャル結晶成長装置。(2) A thermal imaging device (26) is provided to measure the surface temperature distribution of the epitaxial growth substrate, and the measured values measured by the thermal imaging device and the substrate surface temperature distribution are stored in the storage device. A calculation unit (27) performs a comparison operation with a design value of , and the light beam scanning means (23) and the light beam intensity control means (24) are operated based on the information obtained by the comparison operation. (1) The molecular beam epitaxial crystal growth apparatus described in (1).
ル成長用基板(3)で反射した赤外光が入射しないよう
な赤外線低減手段(34、35)を設けたことを特徴と
する請求項(1)または(2)に記載の分子線エピタキ
シャル結晶成長装置。(3) The thermal imaging device (26) is provided with infrared reducing means (34, 35) for preventing infrared light reflected by the epitaxial growth substrate (3) from entering. The molecular beam epitaxial crystal growth apparatus according to 1) or (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25667489A JPH03115192A (en) | 1989-09-29 | 1989-09-29 | Device for growing crystal by molecular beam epitaxy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25667489A JPH03115192A (en) | 1989-09-29 | 1989-09-29 | Device for growing crystal by molecular beam epitaxy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03115192A true JPH03115192A (en) | 1991-05-16 |
Family
ID=17295894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25667489A Pending JPH03115192A (en) | 1989-09-29 | 1989-09-29 | Device for growing crystal by molecular beam epitaxy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03115192A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002346380A (en) * | 2001-05-24 | 2002-12-03 | Asahi Kasei Corp | Oil adsorption sheet for grease interceptor |
-
1989
- 1989-09-29 JP JP25667489A patent/JPH03115192A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002346380A (en) * | 2001-05-24 | 2002-12-03 | Asahi Kasei Corp | Oil adsorption sheet for grease interceptor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4806321A (en) | Use of infrared radiation and an ellipsoidal reflection mirror | |
US4945254A (en) | Method and apparatus for monitoring surface layer growth | |
US5254207A (en) | Method of epitaxially growing semiconductor crystal using light as a detector | |
US9453721B2 (en) | Curvature measurement apparatus and method | |
JP2000500226A (en) | Temperature detection system with fast response calibration device | |
Hellman et al. | Infra-red transmission spectroscopy of GaAs during molecular beam epitaxy | |
Bajaj et al. | Uniform low defect density molecular beam epitaxial HgCdTe | |
US4770895A (en) | Control of uniformity of growing alloy film | |
JPH03115192A (en) | Device for growing crystal by molecular beam epitaxy | |
US6142663A (en) | Temperature measuring method for semiconductor wafers and processing apparatus | |
JPS5948786B2 (en) | Molecular beam crystal growth method | |
US20210233787A1 (en) | Warp measurement device, vapor deposition apparatus, and warp measurement method | |
JP3600873B2 (en) | Substrate temperature measurement unit | |
Sitter et al. | Exact determination of the real substrate temperature and film thickness in vacuum epitaxial growth systems by visible laser interferometry | |
JP2877123B2 (en) | Interference filter temperature control device and laser radar device | |
KR950007482B1 (en) | Method for vapor deposition | |
Sidorov et al. | Molecular-beam epitaxy of narrow-band Cdx Hg12 x Te. Equipment and technology | |
Bergunde et al. | Automated emissivity corrected wafer-temperature measurement in Aixtrons planetary reactors | |
JPS61220414A (en) | Apparatus for generating molecular beam | |
JPH042690A (en) | Method for epitaxial growth | |
JPS6027689A (en) | Method for molecular beam crystal growing of algaas crystal | |
JPH0238396A (en) | Hot-wall epitaxial growth apparatus | |
JPH04104990A (en) | Equally heating plate for molecular beam epitaxial growth | |
KR20240140129A (en) | Method for emissivity-corrected high-temperature measurements | |
JP3216950B2 (en) | Substrate temperature controller |