JPH03115017A - Powder supply method and device - Google Patents

Powder supply method and device

Info

Publication number
JPH03115017A
JPH03115017A JP25288189A JP25288189A JPH03115017A JP H03115017 A JPH03115017 A JP H03115017A JP 25288189 A JP25288189 A JP 25288189A JP 25288189 A JP25288189 A JP 25288189A JP H03115017 A JPH03115017 A JP H03115017A
Authority
JP
Japan
Prior art keywords
powder
pipe
filled
pressurized gas
reaction layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25288189A
Other languages
Japanese (ja)
Inventor
Kenya Mori
森 賢也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP25288189A priority Critical patent/JPH03115017A/en
Publication of JPH03115017A publication Critical patent/JPH03115017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To prevent the crack generation and unequalization of an reaction layer at a powder supply device whose purpose is to form a reaction layer for a gas diffusion electrode, by arranging so that powder may be filled into a pipe body, and a powder filled layer may be dashed into pieces of mixture by advancing stirring blade bodies from one end at a fixed speed, and sending out of the pieces may be conducted by pressurized gas. CONSTITUTION:A filled layer 1 is formed by filling powder into a pipe body 2, and its left end is closed, and a slip pipe 5 and a pressurized gas supply pipe 6 are furnished on its right end through a seal body 3. A motor 4 and blade plates 8 are rotatably supported at the tip of the slip pipe 5. In this constitution, the motor 4 and blade bodies 8 are advanced rotatingly inside the pipe body 2 by means of the slip pipe 5, and the powder filled layer 1 is dashed to pieces and mixture is made. And, powder thus dashed and mixed is sent out through a sending out pipe 9 in the slip pipe 5 by means of pressurized gas from the supply pipe 6.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、一定量の一定濃度の粉体を供給して例えば均
一なガス拡散電極の反応層等を形成するための方法及び
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method and apparatus for supplying a constant amount of powder at a constant concentration to form, for example, a uniform reaction layer of a gas diffusion electrode.

(従来技術とその問題点) ガス拡散電極は、燃料電池、二次電池、電気化学的リア
クタ等として幅広く利用されている。該ガス拡散電極は
、一般に親水性の反応層に、撥水性のガス拡散層を接合
し、該ガス拡散層の前記反応層の反対側表面に集電体を
接合することにより形成されている。
(Prior art and its problems) Gas diffusion electrodes are widely used in fuel cells, secondary batteries, electrochemical reactors, and the like. The gas diffusion electrode is generally formed by bonding a water-repellent gas diffusion layer to a hydrophilic reaction layer, and bonding a current collector to the surface of the gas diffusion layer opposite to the reaction layer.

該ガス拡散電極の例えば前記反応層は、一般に親水性の
カーボンブラックとポリテトラフルオロエチレン(以下
PTFEという)と撥水性のカーボンブラックより成り
、必要に応じて触媒が担持されている。該反応層の形成
方法として数種類の方法が知られているが、いずれの方
法でも前記各粉体物質を均一に混合する必要がある。
For example, the reaction layer of the gas diffusion electrode is generally made of hydrophilic carbon black, polytetrafluoroethylene (hereinafter referred to as PTFE), and water-repellent carbon black, and supports a catalyst if necessary. Several methods are known for forming the reaction layer, but all methods require uniform mixing of the powder substances.

従来は下記の2種類の方法が採用されている。Conventionally, the following two methods have been adopted.

第1の方法はフィルタートランス法と称され、反応層用
原料の混合物をミリポア上で濾過し、その濾過面とカー
ボンペーパーを重ね、更に吸水用濾紙に挾んで数回プレ
スを繰り返し、次いで例えば窒素雰囲気炉で300〜3
50℃で10間分熱処理し反応層を得る方法である。
The first method is called the filter trans method, in which the mixture of raw materials for the reaction layer is filtered on Millipore, the filtration surface is overlapped with carbon paper, and the filter is sandwiched between water-absorbing filter papers and pressed several times, and then, for example, nitrogen 300~3 in atmosphere furnace
This is a method of heat-treating at 50° C. for 10 minutes to obtain a reaction layer.

しかしながら、該方法では熱処理あるいは焼成時に反応
層表面に亀裂が発生し、燃料電池等の電極として該ガス
拡散電極が動作する際に電解液の漏れを生ずる等の電極
の欠陥となる。これを回避するためには加圧脱水が必要
となり、反応層に強い圧力を掛けることになり十分な気
孔率を確保することが困難になる。
However, in this method, cracks occur on the surface of the reaction layer during heat treatment or firing, resulting in electrode defects such as electrolyte leakage when the gas diffusion electrode operates as an electrode in a fuel cell or the like. In order to avoid this, pressurized dehydration is required, and strong pressure is applied to the reaction layer, making it difficult to ensure sufficient porosity.

第2の方法はクララデイ法と称され、前記フィルタート
ランス法の欠点を解消した方法である。
The second method is called the Claraday method, which eliminates the drawbacks of the filter transformer method.

即ち反応層用原料混合物を濾布上で濾過して一定サイズ
のケーキを形成し、該ケーキを乾式粉砕装置で製粉し直
ちにカーボンペーパーを収容したチャンバに導き該チャ
ンバ内の前記原料の雲状を形成し、更に反対側を負圧に
維持したカーボンペーパー上に前記原料を付着させ加圧
成形し、更に大気中で焼成を行って反応層を形成する方
法である。
That is, the raw material mixture for the reaction layer is filtered on a filter cloth to form a cake of a certain size, the cake is milled with a dry grinding device, and immediately introduced into a chamber containing carbon paper to form a cloud of the raw material in the chamber. In this method, the raw material is adhered to a carbon paper whose opposite side is maintained under negative pressure, pressure-molded, and then fired in the atmosphere to form a reaction layer.

該方法は亀裂か生ずる恐れは殆どないが、生成する粉末
の粒径を均一にコントロールすることが非常に困難であ
り、熟練した高度の技術により注意深くコントロールし
ても均一性の達成には限度がある。前記粉体の形成及び
供給には従来から第2図に示すようなミキサが使用され
ている。該ミキサは、蓋体Aが設置された中空本体B内
に凝集させた粉体Cを充填し、該中空本体内にエアポン
プDから流量計E、及び加圧パイプ孔Fを通して加圧空
気を供給してするとともに本体Bの底部に設置した羽根
体Gを回転させて前記凝集した粉体を徐々に粉砕しかつ
送出パイプHから前記粉体を所定個所へ搬送するように
している。しかし該ミキサは時間の経過に伴って中空体
B内の粉体濃度が減少して前記送出パイプH内の粉体濃
度も減少し従って前記所定個所における粉体濃度も減少
して均一濃度の粉体を得ることができない。
Although this method has little risk of cracking, it is very difficult to uniformly control the particle size of the powder produced, and even with careful control using highly skilled techniques, there are limits to achieving uniformity. be. Conventionally, a mixer as shown in FIG. 2 has been used to form and supply the powder. The mixer fills the agglomerated powder C in a hollow body B in which a lid body A is installed, and supplies pressurized air into the hollow body from an air pump D through a flow meter E and a pressurizing pipe hole F. At the same time, the blade G installed at the bottom of the main body B is rotated to gradually crush the aggregated powder and transport the powder from the delivery pipe H to a predetermined location. However, with the passage of time, the powder concentration in the hollow body B decreases, and the powder concentration in the delivery pipe H also decreases, and the powder concentration at the predetermined location also decreases, resulting in a uniform concentration of powder. Can't get the body.

このようなガス拡散電極の反応層形成以外にも均一濃度
の粉体を供給する必要性があることが多く、種々の業界
から均一な粉体を供給する方法や装置が要請されている
In addition to forming a reaction layer of a gas diffusion electrode, there is often a need to supply powder with a uniform concentration, and various industries are demanding methods and devices for supplying uniform powder.

(発明の目的) 本発明は、均一濃度の粉体供給方法及び装置、特にガス
拡散電極の反応層形成のための従来技術の欠点つまり亀
裂の発生と不均一な反応層の形成を回避し、均一で性能
の良好なガス拡散電極用反応層を形成するために有用な
粉体の供給方法及び装置を提供することを目的とする。
OBJECTS OF THE INVENTION The present invention provides a uniform concentration powder supply method and apparatus, in particular for the formation of a reaction layer of a gas diffusion electrode, which avoids the drawbacks of the prior art, namely the occurrence of cracks and the formation of a non-uniform reaction layer; It is an object of the present invention to provide a powder supply method and apparatus useful for forming a reaction layer for a gas diffusion electrode that is uniform and has good performance.

(問題点を解決するための手段) 本発明は、第1に、粉体を筒体内に充填し、該粉体充填
層の一方方向から一定速度で該充填層に対して進入する
撹拌羽根体で前記粉体充填層を徐々に粉砕混合し、加圧
ガスにより前記羽根体の近傍に一端が設置された送出パ
イプから、前記筒体外の所定個所へ前記粉砕された均一
濃度の粉体を供給することを特徴とする粉体供給方法で
あり、第2に、該方法に使用可能な粉体供給装置である
(Means for Solving the Problems) The present invention provides, firstly, a stirring blade which is filled with powder in a cylindrical body and which enters the packed powder bed from one direction at a constant speed. The packed powder bed is gradually pulverized and mixed, and the pulverized powder having a uniform concentration is supplied to a predetermined location outside the cylindrical body from a delivery pipe whose one end is installed near the blade body using pressurized gas. The present invention is a powder supply method characterized by: and secondly, a powder supply device that can be used in the method.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明者は、前記した第2図の装置が羽根体により粉砕
された粉体が垂直方向に重力に逆らって上昇する形態で
あるため、中空体内の粉体濃度の減少に従って所定個所
に供給される粉体濃度が徐々に減少することに鑑み、前
記中空体に相当する筒体を設置し、該筒体内に充填した
粉体の層の一方方向から羽根体を進入させかつガスを供
給することにより、常にほぼ均一濃度の粉体を供給可能
にしたことを特徴としている。
The present inventor has discovered that the apparatus shown in FIG. 2 has a configuration in which the powder pulverized by the blades rises vertically against gravity, so that the powder is supplied to a predetermined location as the powder concentration in the hollow body decreases. In view of the fact that the powder concentration gradually decreases, a cylindrical body corresponding to the hollow body is installed, and the impeller enters the layer of powder filled in the cylindrical body from one direction and supplies gas. This makes it possible to always supply powder with an almost uniform concentration.

本発明装置では、従来技術と異なり粉体充填層の粉体を
粉砕混合するために羽根体自体を移動させるため、該羽
根体へ回転を与えるモータ等の動力源も同様に移動する
ことが多く、装置自体は従来装置より複雑になる。
In the device of the present invention, unlike the conventional technology, the blade itself is moved in order to pulverize and mix the powder in the powder packed bed, so the power source such as a motor that rotates the blade is often moved as well. , the device itself is more complex than conventional devices.

本発明装置を使用する場合には、カーボンブラック等の
粉体を所定サイズに粉砕し、合成樹脂等の他の添加物が
ある場合には該添加物も同様に微粉砕した後、両者を均
一に混合して、粉体供給装置本体の筒体内に充填する。
When using the device of the present invention, powder such as carbon black is pulverized to a predetermined size, and if other additives such as synthetic resin are used, the additives are also finely pulverized, and both are uniformly ground. and fill it into the cylindrical body of the powder supply device main body.

この粉体充填層の一端を開放して該開放面に回転する前
記羽根体を当接させて前記粉体充填層を粉砕混合し、該
粉体を前記羽根体の近傍に設置した送出パイプから前記
筒体外の所定個所に搬送する。
One end of this powder packed bed is opened and the rotating blade is brought into contact with the open surface to pulverize and mix the powder packed bed, and the powder is sent from a delivery pipe installed near the blade. It is transported to a predetermined location outside the cylindrical body.

この装置によると、前記羽根体の移動速度を一定にする
ことにより、前記粉体充填層の粉体濃度に変化がな(速
度を一定にして単位時間当たりの供給粉体量を一定にす
ることができ、従って前記送出パイプから外部へ搬送さ
れる粉体の濃度も均一にすることが可能になる。更に前
記粉体充填層の他端側まで羽根体を移動させることによ
り粉体充填層全体を無駄無く供給することができる。
According to this device, by keeping the moving speed of the blade constant, the powder concentration in the powder packed bed does not change (by keeping the speed constant and the amount of powder supplied per unit time constant). Therefore, it is possible to make the concentration of the powder conveyed to the outside from the delivery pipe uniform.Furthermore, by moving the impeller to the other end of the powder packed bed, the entire powder packed bed can be uniformized. can be supplied without waste.

前記送出パイプから外部へ供給される粉体の濃度は前記
羽根体の移動速度や加圧ガスの供給速度により用途に応
じて最適値に設定することができる。
The concentration of the powder supplied to the outside from the delivery pipe can be set to an optimum value depending on the application by the moving speed of the blade and the supply speed of the pressurized gas.

本発明を例えば燃料電池等のガス拡散電極用反応層を形
成するために使用する場合には、微細な親水性カーボン
ブラック粉末やPTFE粉末の混合物、あるいはこの他
に触媒粒子を添加して前記粉体充填層を形成し、前述の
通り該粉体充填層を粉砕混合させて送出パイプを経て外
部に搬送し、前記送出パイプの先端に前記反応層の基材
となる例えばカーボンペーパーを近接させて、前記送出
パイプの先端を一定速度で前記カーボンペーパー上を走
査するよう移動させることにより均一濃度を有する粉体
層を形成することができる。その後プレスや加熱焼成工
程を経て前記反応層を提供することができる。
When the present invention is used to form a reaction layer for a gas diffusion electrode such as a fuel cell, a mixture of fine hydrophilic carbon black powder or PTFE powder, or other catalyst particles may be added to the powder. As described above, the powder packed bed is pulverized and mixed, and then transported to the outside through a delivery pipe, and a carbon paper, for example, which is a base material of the reaction layer, is brought close to the tip of the delivery pipe. By moving the tip of the delivery pipe to scan over the carbon paper at a constant speed, a powder layer having a uniform concentration can be formed. Thereafter, the reaction layer can be provided through pressing or heating and baking steps.

本発明により均一な粉体層を形成すると、濃度のばらつ
きを±2%以内に抑えることができ、得られる燃料電池
用の反応層等は性能のばらつきが殆どない長期に亘って
安定操業が可能な粉体層となる。
By forming a uniform powder layer according to the present invention, the variation in concentration can be suppressed to within ±2%, and the resulting reaction layer for fuel cells can operate stably over a long period of time with almost no variation in performance. A fine powder layer is formed.

(実施例) 以下、本発明の実施例を記載するが該実施例は本発明を
限定するものではない。
(Examples) Examples of the present invention will be described below, but the examples do not limit the present invention.

実施例 第1図に示す粉体供給装置を使用してカーボンペーパー
上に粉体層を形成した。
EXAMPLE A powder layer was formed on carbon paper using the powder supply device shown in FIG.

粉体の充填層1を左端を閉塞した筒体2の他端側にシー
ル体3を嵌合し、該シール体3に前記筒体2内に移動可
能に設置したモータ4を支持するためのスリップパイプ
5と加圧ガス供給バイブロが嵌合し、前記モータ4には
スリップ板7を筒体2との間にわずかの間隙を有する状
態で設置し更に該スリップ板7の他面側に合成樹脂製の
羽根体8を回転自体に設置し、該スリップ板7を前記筒
体2の内面を摺動させることにより、前記羽根体8を定
速で前記粉体充填層lに接触させかつその表面を徐々に
粉砕混合させるようにしている。該羽根体8の近傍には
送出パイプ9の一端が位置し、該送出パイプ9の他端側
は前記スリップパイプ5内を通って外部に達し、前記カ
ーボンペーパー(図示略)の近傍に位置している。なお
、10は前記加圧ガス供給バイブロから筒体2内にガス
を供給するためのエアポンプ、11は前記ガスの流量計
である。
A seal body 3 is fitted to the other end side of the cylinder 2 with the left end of the packed bed 1 of powder closed. The slip pipe 5 and the pressurized gas supply vibro are fitted together, and a slip plate 7 is installed on the motor 4 with a slight gap between it and the cylinder body 2, and a slip plate 7 is attached to the other side of the slip plate 7. A blade body 8 made of resin is installed on the rotating body, and the slip plate 7 is slid on the inner surface of the cylinder body 2, so that the blade body 8 is brought into contact with the powder-filled bed l at a constant speed and The surface is gradually ground and mixed. One end of a delivery pipe 9 is located near the blade body 8, and the other end of the delivery pipe 9 passes through the inside of the slip pipe 5 and reaches the outside, and is located near the carbon paper (not shown). ing. Note that 10 is an air pump for supplying gas into the cylinder 2 from the pressurized gas supply vibro, and 11 is a flow meter for the gas.

このような構成から成る粉体供給装置の前記筒体2(内
径25.4mm)内に、10重量%の白金触媒を担持さ
せた平均粒径450人の親水性カーボンブラック70重
量%と、平均粒径0.3μのPTFE30重量%から成
る1gの混合粉体を充填し、前記モータ4を駆動させて
前記羽根体8を回転させながら50m++n/分の速度
で前記羽根体を移動させ、かつダイアフラムポンプを用
い、前記加圧ガス供給バイブロから212/分で空気を
供給した。
In the cylinder 2 (inner diameter 25.4 mm) of the powder supply device constructed as described above, 70% by weight of hydrophilic carbon black with an average particle size of 450 particles carrying 10% by weight of a platinum catalyst and an average Filled with 1 g of mixed powder consisting of 30% by weight of PTFE with a particle size of 0.3 μm, the motor 4 was driven to rotate the blade body 8 and move the blade body at a speed of 50 m++n/min, and the diaphragm Air was supplied from the pressurized gas supply vibro at a rate of 212/min using a pump.

図示を省略した前記送出パイプ9の他端を、辺が11c
mの前記カーボンペーパー」二を1分間で1往復させて
前記カーボンペーパー上に前述の混合粉体を付着させた
。該カーボンペーパーの表面をスポンジロールで加圧し
て前記粉体をカーボンペーパーに密着させた後、50k
g/cnfの圧力で再加圧し、更に330℃の窒素雰囲
気中で10分間焼成した。
The other end of the delivery pipe 9 (not shown) has a side of 11c.
The above-mentioned mixed powder was deposited on the carbon paper by making the carbon paper 2 reciprocate once in 1 minute. After pressurizing the surface of the carbon paper with a sponge roll to bring the powder into close contact with the carbon paper, 50k
It was pressurized again at a pressure of g/cnf, and further fired for 10 minutes at 330° C. in a nitrogen atmosphere.

該カーボンペーパーを縦横とも5等分して計25片とし
、外片の重量分布を測定した結果、ばらつきは±2%以
下であった。
The carbon paper was divided into 5 pieces both vertically and horizontally to give a total of 25 pieces, and the weight distribution of the outer pieces was measured, and the variation was ±2% or less.

比較例 粉体供給装置として第2図に示すミキサを使用し、ダイ
アフラムポンプを用い、前記加圧ガス供給バイブロから
21/分で空気を供給して、実施例と同一の混合粉体を
同一条件でカーボンペーパー上に付着させた。但し供給
粉体濃度が徐々に薄くなるため、送出パイプを7分間で
7往復させることが必要であった。実施例と同様に25
片に切断し各月の重量分布を測定した結果、ばらつきは
±3%以下であった。また混合粉体が10%分残ってし
まった。
Comparative Example Using the mixer shown in Figure 2 as a powder supply device, using a diaphragm pump, and supplying air at 21/min from the pressurized gas supply vibro, the same mixed powder as in the example was fed under the same conditions. It was attached onto carbon paper. However, since the concentration of the supplied powder gradually decreased, it was necessary to move the delivery pipe back and forth seven times in seven minutes. 25 as in the example
As a result of cutting it into pieces and measuring the weight distribution for each month, the variation was less than ±3%. Also, 10% of the mixed powder remained.

(発明の効果) 本発明は、筒体内に充填される粉体充填層に対して一方
方向から羽根体を近接させて前記粉体充填層を粉砕混合
させるようにしている。従って供給される粉体濃度が重
力に影響されることなく、残存する粉体充填層の量に無
関係にほぼ一定に維持される。
(Effects of the Invention) In the present invention, a blade is brought close to the powder-filled bed filled in the cylinder from one direction to pulverize and mix the powder-filled bed. Therefore, the concentration of the supplied powder is not affected by gravity and is maintained almost constant regardless of the amount of the remaining powder packed bed.

これにより従来のように供給される粉体濃度の不均一性
に起因する不都合例えばカーボンペーパー上に混合粉体
を付着させる場合に、走査を何度も繰り返して行わなけ
ればならないといった不都合が解消され、短時間で均一
な粉体層等を形成することが可能になる。
This eliminates the inconvenience caused by non-uniformity in the concentration of powder supplied in the past, such as the need to repeat scanning many times when depositing mixed powder on carbon paper. , it becomes possible to form a uniform powder layer etc. in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係わる粉体供給装置の一実施例を示
す概念図、 第2図は、 従来の粉体供給装 置を示す概略図である。
FIG. 1 is a conceptual diagram showing an embodiment of a powder supply device according to the present invention, and FIG. 2 is a schematic diagram showing a conventional powder supply device.

Claims (2)

【特許請求の範囲】[Claims] (1)粉体を筒体内に充填し、該粉体充填層の一方方向
から一定速度で該粉体充填層に対して進入する撹拌羽根
体で前記粉体充填層を徐々に粉砕混合し、加圧ガスによ
り前記羽根体の近傍に一端が設置された送出パイプから
、前記筒体外の所定個所へ前記粉砕された均一濃度の粉
体を供給することを特徴とする粉体供給方法。
(1) Filling a cylinder with powder, gradually pulverizing and mixing the powder-filled bed with a stirring blade that enters the powder-filled bed from one direction of the powder-filled bed at a constant speed; A powder supply method characterized in that the pulverized powder having a uniform concentration is supplied to a predetermined location outside the cylindrical body from a delivery pipe whose one end is installed near the vane body using pressurized gas.
(2)その中に粉体を充填した筒体、該粉体充填層の一
方方向から一定速度で該粉体充填層に対して進入して前
記粉体充填層を徐々に粉砕混合する撹拌羽根体、該羽根
体の近傍に一端が設置され加圧ガスにより粉砕された均
一濃度の前記粉体を前記筒体外の所定個所へ搬送するた
めの送出パイプとを含んで成る粉体供給装置。
(2) A cylindrical body filled with powder; a stirring blade that enters the powder-filled bed at a constant speed from one direction of the powder-filled bed to gradually crush and mix the powder-filled bed; A powder supply device comprising: a body; and a delivery pipe, one end of which is installed near the blade body, for conveying the powder of uniform concentration pulverized by pressurized gas to a predetermined location outside the cylinder body.
JP25288189A 1989-09-28 1989-09-28 Powder supply method and device Pending JPH03115017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25288189A JPH03115017A (en) 1989-09-28 1989-09-28 Powder supply method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25288189A JPH03115017A (en) 1989-09-28 1989-09-28 Powder supply method and device

Publications (1)

Publication Number Publication Date
JPH03115017A true JPH03115017A (en) 1991-05-16

Family

ID=17243462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25288189A Pending JPH03115017A (en) 1989-09-28 1989-09-28 Powder supply method and device

Country Status (1)

Country Link
JP (1) JPH03115017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058001A (en) * 2016-10-03 2018-04-12 三協パイオテク株式会社 Powder dispersion device
JP2021020820A (en) * 2019-07-25 2021-02-18 株式会社トクヤマ Production method for aluminum nitride powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155580A (en) * 1974-11-07 1976-05-15 Kohan Kiko Kk Funtainohansohohoto sonosochi
JPS51116585A (en) * 1975-04-05 1976-10-14 Matsushita Electric Works Ltd Pneumatic transfer apparatus for materials to be molded

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155580A (en) * 1974-11-07 1976-05-15 Kohan Kiko Kk Funtainohansohohoto sonosochi
JPS51116585A (en) * 1975-04-05 1976-10-14 Matsushita Electric Works Ltd Pneumatic transfer apparatus for materials to be molded

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058001A (en) * 2016-10-03 2018-04-12 三協パイオテク株式会社 Powder dispersion device
JP2021020820A (en) * 2019-07-25 2021-02-18 株式会社トクヤマ Production method for aluminum nitride powder

Similar Documents

Publication Publication Date Title
US4129633A (en) Process and apparatus for manufacture of an electrode
US4233181A (en) Automated catalyst processing for cloud electrode fabrication for fuel cells
US4317789A (en) Method of making thin porous strips for fuel cell electrodes
CN1230934C (en) Electrode for fuel cell and making method thereof
WO2013031060A1 (en) Method for producing catalyst ink, method for producing fuel cell, and fuel cell
EP2124275A1 (en) Apparatus for manufacturing electrode for polymer electrolyte fuel cell, and method of manufacturing the same
CN106669520A (en) Lithium ion battery slurry preparation apparatus and method thereof
CN102324529A (en) Preparation method of conductive plastic bipolar plate of vanadium battery
JPH03115017A (en) Powder supply method and device
Manjunath et al. Electrochemical sensing of dopamine and antibacterial properties of ZnO nanoparticles synthesized from solution combustion method
CN109251786B (en) Preparation method of cutting fluid for cutting SiC crystal
CN211886683U (en) Ternary solid polymer lithium battery anode slurry manufacturing system
US5732463A (en) Method of preparing a fuel cell electrode
FR2468219A1 (en) METHOD FOR THE CONTINUOUS PRODUCTION BY PAPER TECHNIQUE OF POROUS THIN STRIPS AND PRODUCTS OBTAINED, ESPECIALLY ELECTRODES FOR FUEL CELLS
CN114162800B (en) Production method of lithium ion battery anode material
JPH09180727A (en) Electrode for fuel cell, manufacture thereof, and apparatus therefor
CN113102159B (en) High-viscosity battery paste rotary scattering feeding device, coating device and coating method
JPS5916393B2 (en) How to manufacture fuel cell matrices
CN210552258U (en) Stirring device for plastic track material
CN215396057U (en) Improved cement supply device in continuous cement concrete stirring equipment
CN106423437B (en) A kind of graphene slurry dispersion grinder for generating electrostatic field
CN215782856U (en) Improved generation pilot-test material blender
CN108947529A (en) A kind of nonmetallic ion-doped wolframic acid lanthanum type mixing protonic-electronic conductor hydrogen permeating material and the preparation method and application thereof
CN214021006U (en) Carbon black grinding device
CN212855729U (en) Heating reaction device for producing water reducing agent