JPH03114636A - Manufacture of rapidly cooled metallic thin strip - Google Patents

Manufacture of rapidly cooled metallic thin strip

Info

Publication number
JPH03114636A
JPH03114636A JP25073089A JP25073089A JPH03114636A JP H03114636 A JPH03114636 A JP H03114636A JP 25073089 A JP25073089 A JP 25073089A JP 25073089 A JP25073089 A JP 25073089A JP H03114636 A JPH03114636 A JP H03114636A
Authority
JP
Japan
Prior art keywords
gas
roll
cooling roll
molten metal
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25073089A
Other languages
Japanese (ja)
Other versions
JPH0581347B2 (en
Inventor
Nobuyuki Morito
森戸 延行
Toru Sato
徹 佐藤
Kiyoshi Shibuya
清 渋谷
Masakatsu Nara
正功 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25073089A priority Critical patent/JPH03114636A/en
Publication of JPH03114636A publication Critical patent/JPH03114636A/en
Publication of JPH0581347B2 publication Critical patent/JPH0581347B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To perfectly detach the metallic strip from the roll and to stably manufacture the metallic strip of long size by using the gas knife of the specific gas for detaching off the metallic strip from the roll in the case of manufacturing the amorphous metallic strip by injecting the molten metal on the single roll of high speed revolution. CONSTITUTION:The molten metal in the tundish 7 is injected from the molten metal injecting nozzle 1 on the cooling roll 2 which rotates at a high speed, is super-rapidly cooled on the roll 2 and is formed to the amorphous metallic thin belt 3 and then is detached from the cooling roll 2 with the gas knife and is formed to the path-line at the position of the deflector roll 5 and the amorphous metallic thin belt 6 which is detached off from the cooling roll 2 is held with the pinch roll 9 and wound up. In this case, by using, as the injecting gas from the gas knife 4, the gas having <=0 deg.C dew point or the gas which is mixed with 0.001weight% of the oil, or the gas having the above both conditions, the amorphous metallic thin belt 6 is easily detached from the cooling roll 2 and the amorphous metallic thin belt of excellent surface property is stably manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は単ロール法によって非晶質金属薄帯などの急冷
金属薄帯を連続的に安定に製造するための製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a manufacturing method for continuously and stably manufacturing a quenched metal ribbon such as an amorphous metal ribbon by a single roll method.

〔従来の技術1 近年、単ロール法や双ロール法などの液体急冷法によっ
て、溶融金属(合金を含む。以下同じ。)を直接金属薄
帯に加工する製造技術の開発が進められている。これら
の直接製板技術における重要な要素技術の第一は板厚の
均一性や表面性状などに関する製板技術そのものである
が、工業的な生産を考えた場合には、それと同等に重要
な技術として、コイル状に巻き取るための巻取技術の確
立が肝要である。
[Prior art 1] In recent years, the development of manufacturing technology for directly processing molten metal (including alloys; the same applies hereinafter) into metal ribbons has been progressing by liquid quenching methods such as the single roll method and the twin roll method. The first important elemental technology in these direct plate manufacturing technologies is the plate making technology itself related to plate thickness uniformity and surface texture, but when considering industrial production, there are equally important technologies. Therefore, it is important to establish a winding technology to wind it into a coil.

単ロール法によって非晶質合金薄帯を製板する場合、注
湯ノズルから射出された溶融金属は高速回転する冷却ロ
ール表面で超急冷凝固し、非晶質合金薄帯になるととも
に、冷却ロール表面に密着してロールと一緒に回転する
。したがって冷却ロールから剥離するための何らかの手
段を有しないかぎり、冷却ロール表面に巻きついた非晶
質合金薄帯は一回転したのち、注湯ノズルに衝突して、
多(の場合セラミックス製のノズルを破損することにな
る。
When making an amorphous alloy ribbon using the single roll method, the molten metal injected from the pouring nozzle is ultra-rapidly solidified on the surface of a cooling roll rotating at high speed, becoming an amorphous alloy ribbon, and the cooling roll It sticks to the surface and rotates with the roll. Therefore, unless there is some means to separate it from the cooling roll, the amorphous alloy ribbon wrapped around the cooling roll surface will collide with the pouring nozzle after making one rotation.
If it is too large, the ceramic nozzle will be damaged.

このようなトラブルを避けるために、冷却ロル円周上に
おいて、注湯ノズルから半周ないし3/4周下流の位置
に空気や窒素などのガスナイフを設置して、非晶質合金
薄帯を冷却ロールから剥離することが従来から行われて
いる。
In order to avoid such troubles, a gas knife such as air or nitrogen is installed on the circumference of the cooling roll at a position half a turn to 3/4 turn downstream from the pouring nozzle, and a gas knife of air or nitrogen is installed on the circumference of the cooling roll to cool the amorphous alloy ribbon. Conventionally, peeling from the surface has been carried out.

このガスナイフに使用する気体の種類及び性状に関して
、これまで特に注意が払われたことはない。たとえば空
気圧縮機で加圧された空気などがそのまま用いられるこ
とが多い。実験室的に少量の非晶質合金薄帯を製板する
場合には、ガスナイフに使用する気体の種類及び性状が
製板状況におよぼす影響は小さく、その違いはほとんど
問題にならなかった。しかしながら工業的に長時間の製
板を行う場合には、安定な製板操業に及ぼすガスナイフ
の気体性状の影響を無視できないことが見出されたので
ある。
Until now, no particular attention has been paid to the type and properties of the gas used in this gas knife. For example, air pressurized by an air compressor is often used as is. When manufacturing a small amount of amorphous alloy ribbon in a laboratory, the type and properties of the gas used in the gas knife have little effect on the sheet manufacturing process, and the difference has hardly been a problem. However, it has been found that when industrial plate making is carried out over a long period of time, the influence of the gas properties of the gas knife on stable plate making operations cannot be ignored.

すなわち冷却ロールの周速、ロール材質及び表面性状、
注湯ノズルの材質及び先端形状、溶融合金の温度及び射
出圧力、ノズルとロール間の間隙などの鋳造条件を一定
にしていても、時として非晶質合金薄帯の表面性状が悪
くなったり、また極端な場合にはノズルの前方あるいは
後方に溶融金属の飛沫が飛び、安定な製板を実現できな
いこともあった。
In other words, the circumferential speed of the cooling roll, the roll material and surface properties,
Even if casting conditions such as the material and tip shape of the pouring nozzle, the temperature and injection pressure of the molten alloy, and the gap between the nozzle and the roll are kept constant, the surface quality of the amorphous alloy ribbon may sometimes deteriorate. Furthermore, in extreme cases, molten metal droplets may fly in front or behind the nozzle, making it impossible to produce stable plates.

[発明が解決しようとする課題1 本発明はこのような従来技術における不安定要因を解決
すべく、数多くの製造実験を繰り返した操業データと鋳
造プロセスに関する解析を基にして得られたものである
[Problem to be Solved by the Invention 1] The present invention was achieved based on operational data obtained through repeated manufacturing experiments and analysis of the casting process in order to solve the instability factors in the prior art. .

単ロール法による急冷金属薄帯の製造に際して、これま
でもガスナイフによる急冷金属薄帯の剥離が一般的に行
われてきた。工業的な規模で長時間の製板実験を繰り返
したところ、ガスナイフの気体の性状によって製板状況
が顕著に変化することが見出された。すなわち非晶質合
金薄帯の表面性状が悪くなったり、また極端な場合には
ノズルの前方あるいは後方に溶融金属の飛沫が飛び、安
定な製板を実現できなくなることがあった。
When manufacturing a quenched metal ribbon using the single roll method, it has been common practice to peel the quenched metal ribbon using a gas knife. After repeated long-term plate-making experiments on an industrial scale, it was discovered that the plate-making conditions significantly changed depending on the properties of the gas in the gas knife. That is, the surface quality of the amorphous alloy ribbon deteriorates, and in extreme cases, molten metal droplets fly in front or behind the nozzle, making it impossible to achieve stable sheet production.

本発明の目的は非晶質合金薄帯のような急冷金属薄帯の
製板を行うに際し、工業的に順調な製板状況を続行し、
これを損なわない適切なガスナイフの気体の性状を提案
することである。
The purpose of the present invention is to continue the industrially favorable plate manufacturing situation when manufacturing quenched metal ribbons such as amorphous alloy ribbons,
The purpose is to propose suitable gas properties for gas knives that do not impair this.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は高速回転する冷却ロール表面に、溶融金属を注
湯ノズルから射出して急冷凝固させ急冷金属薄帯を製造
するに際し、冷却ロール表面に密着して製造される急冷
金属薄帯を、露点が0℃以下の気体を用いたガスナイフ
を使用して剥離することを特徴とする急冷金属薄帯の製
造方法である。
In the present invention, when manufacturing a quenched metal ribbon by injecting molten metal from a pouring nozzle onto the surface of a cooling roll that rotates at high speed and rapidly solidifying it, the quenched metal ribbon that is manufactured in close contact with the cooling roll surface has a dew point This is a method for producing a quenched metal ribbon, characterized in that peeling is performed using a gas knife using gas at 0° C. or lower.

またこの場合に、露点が0℃以下の気体の代りに、油分
混入量をo、ooi重量%以下に制限した気体を用いた
ガスナイフを使用して剥離すると好結果を得られるし、
さらに露点が0℃以下でかつ油分混入量を0.001重
量%以下に制限した気体を用いたガスナイフを使用して
剥離するとさらに好適である。
In addition, in this case, good results can be obtained by using a gas knife that uses a gas with a limited amount of oil mixed in to less than o, ooi weight percent, instead of a gas with a dew point of 0°C or less.
Further, it is more preferable to use a gas knife using a gas whose dew point is 0° C. or lower and the amount of oil mixed in is limited to 0.001% by weight or less.

[イ乍用] 急冷金属薄帯が冷却ロールに密着して製造される単ロー
ル法では、ガスナイフによる急冷金属薄帯の剥離が一般
的に行われている。これは、機械的な剥離手段では非晶
質合金薄帯のように極めて薄(、しかも密着力の大きい
急冷金属薄帯を冷却ロールから剥離することが不可能な
ためである。
[For further use] In the single roll method in which a quenched metal ribbon is produced in close contact with a cooling roll, the quenched metal ribbon is generally peeled off using a gas knife. This is because mechanical peeling means cannot peel a quenched metal ribbon, which is extremely thin (and has strong adhesion) such as an amorphous alloy ribbon, from the cooling roll.

本発明において、ガスナイフの気体性状に目を向けるよ
うになった契機は空気圧縮機の乾燥系の故障であった。
In the present invention, the reason for focusing on the gas properties of the gas knife was a failure in the drying system of the air compressor.

ある時圧縮機の乾燥系が故障したことに気付かずに鋳造
したところ、それまで正常な製板操業を行っていたのに
拘らず、注湯ノズルの前方あるいは後方に溶融金属の飛
沫が飛び、安定な製板ができなかった。
One day, I was casting without noticing that the drying system of the compressor had malfunctioned, and even though I had been working normally until then, molten metal splashed in front or behind the pouring nozzle. It was not possible to make stable plates.

原因を種々検討した結果、ガスナイフに使用した空気の
露点が20℃もあり、また冷却ロールの内部を強制冷却
する水の温度が18℃であったため、冷却ロール表面で
結露していたことに気付くに到ったのである。すなわち
冷却ロール表面の微小な水滴の上に高温の溶融金属が注
がれたために、水滴が気化して一気に膨張し溶融金属の
飛沫を飛散させたものと理解された。
After investigating various causes, it was discovered that the dew point of the air used for the gas knife was 20°C, and the temperature of the water used to forcibly cool the inside of the cooling roll was 18°C, resulting in dew condensation on the surface of the cooling roll. It was reached. In other words, it was understood that because high-temperature molten metal was poured onto minute water droplets on the surface of the cooling roll, the water droplets vaporized and expanded all at once, scattering droplets of molten metal.

そこで本発明においては、溶融金属が注湯ノズル先端か
ら射出され、冷却ロール面に衝突すると同時に超急冷さ
れて凝固し、急冷金属薄帯になる凝固プロセスを冷却ロ
ール面の付着物の観点から考察した。つまり、冷却ロー
ル表面に高温の溶融金属が接触しても、湯留まりの破壊
が生じないように、ガスナイフの気体性状を限定し、ガ
スナイフによってロール面を汚染しないようにした。
Therefore, in the present invention, molten metal is injected from the tip of the pouring nozzle, collides with the cooling roll surface, and at the same time is ultra-quenched and solidified, and the solidification process into a rapidly cooled metal ribbon is considered from the perspective of deposits on the cooling roll surface. did. In other words, the gas properties of the gas knife are limited so that even if high temperature molten metal comes into contact with the surface of the cooling roll, the molten metal retainer will not be destroyed, and the gas knife will not contaminate the roll surface.

付着物の融点及び沸点が溶融金属の温度よりも高(、溶
融金属と接触しても固体のままであるならば、この付着
物の存在によって溶融金属・冷却ロール間の熱伝達係数
が変化したとしても、凝固プロセスにおよぼす影響はさ
ほど大きくないと推測される。
If the melting point and boiling point of the deposit is higher than the temperature of the molten metal (and remains solid when in contact with the molten metal, the heat transfer coefficient between the molten metal and the cooling roll has changed due to the presence of this deposit) However, it is presumed that the effect on the coagulation process is not so great.

急冷金属薄帯のための凝固プロセスを考えた場合、もっ
とも危険な状況は溶融金属が冷却ロールの表面に直接的
に接触できないことによって、円滑な冷却・凝固が進行
しないことである。すなわち液相あるいは気相が溶融金
属とロール面間に介在することであろう。殊に溶融金属
の高温に晒されることによって介在物が気化する場合、
溶融金属と冷却ロールの界面で爆発的な体積膨張が生じ
ることになるから、注湯ノズルからロール面に至る湯溜
りが完全に破壊されるので、満足できる急冷金属薄帯を
製造することができないことになる。
When considering the solidification process for quenched metal ribbon, the most dangerous situation is that the molten metal cannot directly contact the surface of the cooling roll, which prevents smooth cooling and solidification. That is, a liquid phase or a gas phase may be present between the molten metal and the roll surface. Especially when inclusions are vaporized by exposure to high temperatures of molten metal,
Since explosive volumetric expansion occurs at the interface between the molten metal and the cooling roll, the pool from the pouring nozzle to the roll surface is completely destroyed, making it impossible to produce a satisfactory quenched metal ribbon. It turns out.

冷却ロール面に付着する付着物の起源には幾つかあるが
、本発明では単ロール法において必須であるガスナイフ
の気体について、先ず水分すなわち露点の面から詳細に
調べた。
There are several origins of deposits that adhere to the cooling roll surface, but in the present invention, the gas in the gas knife, which is essential in the single roll method, was first investigated in detail from the viewpoint of moisture content, or dew point.

工業的な鋳造では冷却ロールを内部から冷却するために
必ず循環水が使用され、鋳造開始時のロール表面温度は
ほとんど冷却水の温度に等しい。冷却水は大量に循環使
用され、通常は水槽に蓄えられているので、季節毎の気
温変動によって冷却水温も変化し、夏季の約30℃から
冬季の約5℃まで、25℃はどの差がある。この温度は
そのまま冷却ロールの表面温度に反映する。ロール面に
おける結露の観点から見れば、ガスナイフの気体の露点
は5℃未満であればよいことになるが、安全を考えれば
0℃以下であることがより好ましい。事実、故意に気体
の露点を冷却水温よりも高(して、すなわち冷却水温が
20℃の時に、ガスナイフ用気体の露点を25℃とした
ところ、冷却ロール表面では結露が生じ、注湯と同時に
パドルブレークが発生して、安定な製板に到達できなか
った。
In industrial casting, circulating water is always used to cool the cooling roll from the inside, and the roll surface temperature at the start of casting is almost equal to the temperature of the cooling water. Cooling water is circulated in large quantities and is usually stored in an aquarium, so the temperature of the cooling water changes with seasonal temperature fluctuations, ranging from about 30°C in the summer to about 5°C in the winter, with a difference of 25°C. be. This temperature is directly reflected in the surface temperature of the cooling roll. From the viewpoint of dew condensation on the roll surface, the dew point of the gas in the gas knife should be less than 5°C, but in terms of safety, it is more preferably 0°C or less. In fact, when the dew point of the gas was intentionally set higher than the cooling water temperature (i.e., when the cooling water temperature was 20°C, the dew point of the gas for the gas knife was set to 25°C, condensation occurred on the surface of the cooling roll, and at the same time as pouring A paddle break occurred and stable board production could not be achieved.

ガスナイフ用気体の露点を0℃以下とするには、具体的
には冷媒で冷却したエアクーラ内に圧縮空気を通過させ
るなどにより除湿することができる。
In order to make the dew point of the gas for the gas knife 0° C. or lower, specifically, the compressed air can be dehumidified by passing it through an air cooler cooled with a refrigerant.

次に工業的使用に適した空気及び窒素などの圧縮気体に
ついて、冷却ロール面に付着し易い不純物を検討したと
ころ、最も可能性の高い不純物は油分であった。これは
圧縮機あるいは配管施工などからの混入が具体的に経験
された。そこで製板状況に影響を与えない上限濃度を調
べたところ、油分が約0.001重量%以下にすれば問
題にならないことが判ったので、本発明における上限濃
度とした。
Next, we investigated the impurities that tend to adhere to the cooling roll surface for compressed gases such as air and nitrogen that are suitable for industrial use, and found that the most likely impurity was oil. This was specifically experienced as contamination from compressors or piping construction. Therefore, when we investigated the upper limit concentration that would not affect the plate-making situation, we found that there would be no problem if the oil content was about 0.001% by weight or less, so this was set as the upper limit concentration in the present invention.

気体中の油分をこの濃度以下にするには、通常の圧縮機
に用いられているオイルセパレータの使用のみでは不充
分であり、さらにミクロミストフィルターや活性炭フィ
ルターなどを重複使用する必要がある。
In order to reduce the oil content in the gas to below this concentration, it is insufficient to use only the oil separator used in ordinary compressors, and it is also necessary to use micro mist filters, activated carbon filters, etc.

ガスナイフに使用する気体は空気、窒素あるいはアルゴ
ンなどの安全なものであれば、その種類は問わないが、
コスト面及び設備周辺での酸欠への配慮からは空気を有
利に用いることができる。
The type of gas used in the gas knife does not matter as long as it is safe, such as air, nitrogen, or argon.
Air can be advantageously used from the viewpoint of cost and consideration to oxygen deficiency around the equipment.

広幅の非晶質合金薄帯を確実に剥離するために使用する
ナイフガス量は1時間当たり2000ないし250ON
rrl’にも到達することから、空気を使用することが
安全性及び経済上有利である。
The amount of knife gas used to reliably peel off a wide amorphous alloy ribbon is 2000 to 250 ON per hour.
It is safe and economically advantageous to use air because it also reaches rrl'.

[実施例] 本発明の方法について非晶質合金薄帯の製造を例にとっ
て具体的に説明する。
[Example] The method of the present invention will be specifically explained by taking the production of an amorphous alloy ribbon as an example.

第1図は注湯ノズル1から射出された溶融金属が高速回
転する冷却ロール2の表面において超急冷されて凝固し
、非晶質金属薄帯3を形成したのち、ガスナイフ4によ
って冷却ロール2から剥離され、巻取機(図示せず)側
に飛翔する様子を示している。同図中には巻取機によっ
て張力を与えられ、デフレフクロール5の位置でパスラ
インを形成している際の非晶質金属薄帯6の状況も点線
で示されている。
FIG. 1 shows that molten metal injected from a pouring nozzle 1 is ultra-rapidly cooled and solidified on the surface of a cooling roll 2 rotating at high speed, forming an amorphous metal ribbon 3, and then being removed from the cooling roll 2 by a gas knife 4. It shows how it peels off and flies toward a winder (not shown). In the figure, the state of the amorphous metal ribbon 6 when tension is applied by the winder and a pass line is formed at the position of the deflation crawl 5 is also shown by dotted lines.

十分に予熱したタンデイツシュ7内に1300℃に保持
したFe7BMnl B125 i7 C1組成(原子
%)の溶融合金を供給したのち、注湯ノズル1上方のス
トッパ8を開放して、注湯ノズルlの開口スロットから
、25m/秒で高速回転する内部水冷型の銅合金製冷却
ロール2の表面上に溶湯を一気に射出したところ、冷却
ロール面に密着して100mm幅の非晶質合金薄帯3が
作製された。
After supplying the molten alloy having a Fe7BMnl B125 i7 C1 composition (atomic %) maintained at 1300°C into the sufficiently preheated tandy dish 7, the stopper 8 above the pouring nozzle 1 is opened, and the opening slot of the pouring nozzle l is opened. When the molten metal was injected all at once onto the surface of an internal water-cooled copper alloy cooling roll 2 rotating at a high speed of 25 m/s, an amorphous alloy ribbon 3 with a width of 100 mm was produced in close contact with the cooling roll surface. Ta.

次いで圧縮機によって加圧された後、除湿及び清浄化し
、圧力調整弁により約3kg/crri″に制御された
空気(露点ニー10℃、油分=0.0001重量%)の
面状高速気流によって形成したガスナイフ4によって、
冷却ロール2面に密着した非晶質合金薄帯3を剥離し、
巻取機側に飛翔させた。台車10上のピンチロール9に
よって、この飛翔する非晶質合金薄帯を捕捉したのち、
台車10を巻取機後方まで移動させ、冷却ロールと同速
で回転する図示しない巻取機の巻取りリールに接着させ
て巻取りを始めた。巻取機による巻取り張力を2〜4k
g/crn’に制御したところ、安定なパスラインが形
成され、連続的な製板・巻取りが実現された。
Next, after being pressurized by a compressor, it is dehumidified and purified, and is formed by a planar high-speed air flow of air (dew point: 10°C, oil content: 0.0001% by weight), which is controlled at approximately 3 kg/cri'' by a pressure regulating valve. With the gas knife 4,
Peel off the amorphous alloy ribbon 3 that is in close contact with the cooling roll 2 surface,
It flew toward the winder. After catching this flying amorphous alloy ribbon with the pinch roll 9 on the trolley 10,
The trolley 10 was moved to the rear of the winding machine, and was adhered to a winding reel of a winding machine (not shown) that rotates at the same speed as the cooling roll, and winding was started. The winding tension by the winding machine is 2 to 4k.
When controlled to g/crn', a stable pass line was formed and continuous plate making and winding were realized.

この状態で約20分はど製板を持続したのち、ガスナイ
フ4を使用しながら、鋳造を停止するために注湯ノズル
lを冷却ロール2から離すように移動させた。これによ
って製板は終了し、尾端の薄帯は冷却ロール2に巻きつ
くことなく、ガスナイフ4によって、冷却ロール2から
離れて飛翔した。そのため製板中は勿論のこと、製板終
了時でも注湯ノズル1が破損することはなかった。・製
板過程において、注湯ノズル先端では極めて安定な湯溜
まりが形成され、円滑な鋳造が行われた。
After continuing plate making in this state for about 20 minutes, the pouring nozzle 1 was moved away from the cooling roll 2 while using the gas knife 4 to stop casting. As a result, the plate making was completed, and the ribbon at the tail end flew away from the cooling roll 2 by the gas knife 4 without being wound around the cooling roll 2. Therefore, the pouring nozzle 1 was not damaged not only during the plate making but also at the end of the plate making.・During the plate-making process, an extremely stable pool of molten metal was formed at the tip of the pouring nozzle, resulting in smooth casting.

〔発明の効果1 本発明によれば、単ロール法による急冷金属薄帯の製板
を円滑に進めることができるので、工業的に急冷金属薄
帯を製造する場合、本発明の有効性は極めて大きい。
[Effect of the invention 1] According to the present invention, the production of quenched metal ribbons by the single roll method can proceed smoothly, so the effectiveness of the present invention is extremely high when manufacturing quenched metal ribbons industrially. big.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は急冷薄帯凝固プロセスの説明図である。 FIG. 1 is an explanatory diagram of the quenched ribbon solidification process.

Claims (1)

【特許請求の範囲】 1 高速回転する冷却ロール表面に、溶融金属を注湯ノ
ズルから射出して急冷凝固させ急冷金属薄帯を製造する
に際し、冷却ロール表面に密着して製造される急冷金属
薄帯を、露点が0℃以下の気体を用いたガスナイフを使
用して剥離することを特徴とする急冷金属薄帯の製造方
法。 2 露点が0℃以下の気体に代えて、油分混入量が0.
001重量%以下の気体を用いる請求項1記載の急冷金
属薄帯の製造方法。 3 露点が0℃以下でかつ油分混入量が0.001重量
%以下の気体を用いる請求項1記載の急冷金属薄帯の製
造方法。
[Claims] 1. A quenched metal thin strip that is produced in close contact with the surface of a cooling roll when molten metal is injected from a pouring nozzle onto the surface of the cooling roll rotating at high speed and rapidly solidified to produce a quenched metal ribbon. A method for producing a rapidly cooled metal ribbon, which comprises peeling the ribbon using a gas knife using a gas having a dew point of 0° C. or lower. 2. Instead of using a gas with a dew point of 0°C or lower, the amount of oil mixed in is 0.
2. The method for producing a quenched metal ribbon according to claim 1, wherein less than 0.001% by weight of the gas is used. 3. The method for producing a quenched metal ribbon according to claim 1, wherein a gas having a dew point of 0° C. or less and an oil content of 0.001% by weight or less is used.
JP25073089A 1989-09-28 1989-09-28 Manufacture of rapidly cooled metallic thin strip Granted JPH03114636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25073089A JPH03114636A (en) 1989-09-28 1989-09-28 Manufacture of rapidly cooled metallic thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25073089A JPH03114636A (en) 1989-09-28 1989-09-28 Manufacture of rapidly cooled metallic thin strip

Publications (2)

Publication Number Publication Date
JPH03114636A true JPH03114636A (en) 1991-05-15
JPH0581347B2 JPH0581347B2 (en) 1993-11-12

Family

ID=17212188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25073089A Granted JPH03114636A (en) 1989-09-28 1989-09-28 Manufacture of rapidly cooled metallic thin strip

Country Status (1)

Country Link
JP (1) JPH03114636A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103406510A (en) * 2013-08-21 2013-11-27 青岛云路新能源科技有限公司 Nozzle pack for amorphous belt manufacturing
CN104755191A (en) * 2013-01-30 2015-07-01 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910452A (en) * 1982-07-12 1984-01-19 Nippon Steel Corp Production of ultraquickly cooled light-gage metallic strip
JPS60158964A (en) * 1984-01-30 1985-08-20 Nippon Steel Corp Method for supplying cooling medium to cooling roll
JPS6245455A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Method and apparatus for producing thin sheet by quick cooling of molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910452A (en) * 1982-07-12 1984-01-19 Nippon Steel Corp Production of ultraquickly cooled light-gage metallic strip
JPS60158964A (en) * 1984-01-30 1985-08-20 Nippon Steel Corp Method for supplying cooling medium to cooling roll
JPS6245455A (en) * 1985-08-23 1987-02-27 Hitachi Ltd Method and apparatus for producing thin sheet by quick cooling of molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755191A (en) * 2013-01-30 2015-07-01 丰田自动车株式会社 Up-drawing continuous casting apparatus and up-drawing continuous casting method
CN103406510A (en) * 2013-08-21 2013-11-27 青岛云路新能源科技有限公司 Nozzle pack for amorphous belt manufacturing

Also Published As

Publication number Publication date
JPH0581347B2 (en) 1993-11-12

Similar Documents

Publication Publication Date Title
SU1184436A3 (en) Method of continuous casting of metal strip from amorphous alloy
US4166495A (en) Ingot casting method
KR20040027464A (en) Method and apparatus for producing amorphous alloy sheets
CA1110425A (en) Method of manufacturing an amorphous alloy
JPH03114636A (en) Manufacture of rapidly cooled metallic thin strip
JPS6188904A (en) Manufacture of quenched fine crystalline thin-strip and its device
US5230381A (en) Method and apparatus for manufacturing a thin metal strip by quenching and solidification
KR101286205B1 (en) Twin roll strip caster for casting martensitic stainless steel strip and method for casitng martensitic stainless steel strip by twin roll strip caster
JP3507400B2 (en) Removal equipment for the early part of rapidly solidified ribbon casting
JPH01107943A (en) Continuous casting method for phosphor bronze strip
JPS6053096B2 (en) Copper alloy for molten metal quenching roll
JPH03133552A (en) Manufacture of quenced thin metallic strip
KR101130718B1 (en) Method for manufacturing high Manganese steel by the twin roll strip casting process
JP3386272B2 (en) Control method of quenched metal ribbon temperature
JP2517614B2 (en) Method for starting pouring of metal strip continuous casting equipment
JPS58176061A (en) Production of belt-like metal by quick cooling with liquid
JPH01170553A (en) Device for manufacturing rapid cooling metal thin strip
JP4238950B2 (en) Method for producing B-containing austenitic stainless steel continuous casting slab
JP3373316B2 (en) Winding method of rapidly solidified ribbon
JPH02112857A (en) Device for introducing and conveying rapid cooled metal strip
JP2005021950A (en) Method for manufacturing amorphous alloy thin strip
JPH0647502A (en) Manufacture of rapidly solidified high cr-al steel strip
JP2001087841A (en) Continuous casting method of thin cast slab excellent in surface quality
JP2625055B2 (en) Winding method of Fe-Cu alloy slab in twin roll continuous casting
JP2023057649A (en) Method and apparatus for producing amorphous-alloy foil strip, and amorphous-alloy foil strip produced by the producing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees