JPH01107943A - Continuous casting method for phosphor bronze strip - Google Patents
Continuous casting method for phosphor bronze stripInfo
- Publication number
- JPH01107943A JPH01107943A JP26455087A JP26455087A JPH01107943A JP H01107943 A JPH01107943 A JP H01107943A JP 26455087 A JP26455087 A JP 26455087A JP 26455087 A JP26455087 A JP 26455087A JP H01107943 A JPH01107943 A JP H01107943A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor bronze
- cooling
- rolls
- plate
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 229910000906 Bronze Inorganic materials 0.000 title claims abstract description 29
- 239000010974 bronze Substances 0.000 title claims abstract description 29
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 title claims abstract description 29
- 238000009749 continuous casting Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 14
- 238000001816 cooling Methods 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 5
- 238000005266 casting Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000007788 liquid Substances 0.000 abstract description 11
- 229910052718 tin Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 238000005096 rolling process Methods 0.000 description 21
- 239000002184 metal Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、溶湯から直接的に割れの無い健全なリン青銅
の薄板を連続的に製造する方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for continuously producing crack-free, sound phosphor bronze thin plates directly from molten metal.
リン青銅は他の銅合金と比較してバネ特性に優れている
ため、また耐食性やハンダ付は性が良好であるため、導
電性を必要とするバネ材やコネクター材に幅広く使用さ
れている。しかしながらリンvl銅には偏析係数の大き
いSnとPを多量に含有しているため鋳塊の凝固時に粒
界面にSn、 Pの濃縮した相が生成しやすい、この
相は低融点であるから熱間圧延時に液膜脆性に起因した
深い割れを圧延板表面に発生させやすい、したがって。Phosphor bronze has superior spring properties compared to other copper alloys, and has excellent corrosion resistance and solderability, so it is widely used in spring materials and connector materials that require electrical conductivity. However, since phosphorous copper contains a large amount of Sn and P, which have large segregation coefficients, a concentrated phase of Sn and P is likely to be formed at the grain interface during solidification of the ingot. Therefore, deep cracks due to liquid film brittleness are likely to occur on the surface of the rolled plate during inter-rolling.
リン青銅の薄板を製造するには、冷間圧延と焼鈍を多数
回繰り返す必要があった。The production of thin sheets of phosphor bronze required multiple cycles of cold rolling and annealing.
この繰り返し回数を少しでも少なくするには出来るだけ
薄い板として鋳造するのが好ましく、このために、水平
連続鋳造により肉厚の薄いスラブを鋳造する方法が採用
されてきた。しかし、水平連続鋳造法では、モールドか
らスラブを引き出す際、モールドとスラブとの間に摩擦
力が生じるので間欠的に引き抜くこと(振動つまりオシ
レージタンを付与すること)を余儀なくされており、こ
の間欠引き抜きに起因した表面欠陥がスラブ表面に発生
しやすく製品歩留りを下げている。さらに水平連続鋳造
法によっても製造可能な最小肉厚が通常の熱間圧延を含
む製造工程により得られる板厚に比較して数倍厚くなら
ざるを得す、このためにやはり焼鈍と冷延の繰り返しが
必要であり、多くのエネルギーを必要としていた。In order to minimize the number of repetitions, it is preferable to cast as thin a plate as possible, and for this reason, a method of casting thin slabs by horizontal continuous casting has been adopted. However, in the horizontal continuous casting method, when pulling the slab out of the mold, frictional force is generated between the mold and the slab, so it is necessary to pull out the slab intermittently (applying vibration or oscillation). Surface defects caused by this are likely to occur on the slab surface, reducing product yield. Furthermore, the minimum wall thickness that can be produced using the horizontal continuous casting method is several times thicker than the thickness obtained by the normal manufacturing process that includes hot rolling, and for this reason, it is also necessary to use annealing and cold rolling. It required repetition and a lot of energy.
一方、圧延およびこれに付随する工程の省工程を目的と
して、溶湯から直接薄板を製造する方法として双ロール
法が知られている。ここでいう双ロール法は、アモルス
アスや急冷薄帯といった板厚が500μ−以下の特殊な
極薄板の製造法ではなく、得られる板の厚みが少な(と
もlll11以上6−−以下の一般的な薄板を得ること
を目的としたものであり、鋳造された薄板は次工程の冷
間圧延により最終製品とするものである。近年この双ロ
ール法による薄板連鋳方法はAffi合金を初めとして
種々の金属に対して実用化されつつある。On the other hand, the twin roll method is known as a method for directly manufacturing thin plates from molten metal, with the aim of reducing rolling and associated steps. The twin-roll method referred to here is not a special manufacturing method for ultra-thin sheets with a thickness of 500μ or less, such as amolus aus or quenched ribbon, but a general method for manufacturing sheets with a small thickness (both 11 and 6- or less). The purpose is to obtain a thin plate, and the cast thin plate is made into a final product by the next step of cold rolling.In recent years, this continuous thin plate casting method using the twin roll method has been used to produce various types of sheets, including Affi alloy. It is being put into practical use for metals.
しかし、双ロール法による溶湯からの薄板の直接連鋳法
が実用化或いはそれに近い段階まで達している金属およ
び合金系は、いずれも固液共存域(液相線温度と面相線
温度との差)が殆んど無いものか或いは短かいものに限
られており、リン青銅のように固液共存域の著しく長い
合金に関しては、実用化はおろか適用化の試みも殆んど
なされたことはなかった。However, for metals and alloys for which direct continuous casting of thin sheets from molten metal using the twin roll method has reached a stage where it has been put into practical use or close to it, the solid-liquid coexistence region (the difference between the liquidus temperature and the plane phase temperature) ) is limited to those with almost no or short ones, and with respect to alloys such as phosphor bronze, which have an extremely long solid-liquid coexistence region, almost no attempts have been made to apply them, let alone put them into practical use. There wasn't.
双ロール法により溶湯から直接リン青銅のFJ jMを
製造することを困難にしている大きな問題点は他の固液
共存域が短かい合金に比べ、得られる薄板の表面に割れ
が多数発生しやすいという点である。すなわち固液共存
域の短かい合金と同様の条件で双ロール法により溶湯か
ら直接リン青銅の薄板を製造しようと試みても、ロール
より引き出された板は幾片にも裂断するか、たとえ薄板
を形成したとしてもその表面には多数の深い割れが常に
発生し、Bl金な板が得られない。The major problem that makes it difficult to manufacture phosphor bronze FJjM directly from molten metal using the twin roll method is that compared to other alloys with a short solid-liquid coexistence zone, the resulting thin plate is more likely to have many cracks on its surface. That is the point. In other words, even if an attempt is made to produce a thin plate of phosphor bronze directly from the molten metal using the twin roll method under the same conditions as for alloys with a short solid-liquid coexistence region, the plate pulled out from the rolls will break into many pieces. Even if a thin plate is formed, many deep cracks always occur on the surface, making it impossible to obtain a Bl gold plate.
本発明の目的は、前記の割れの問題を解決し。The object of the present invention is to solve the above problem of cracking.
もって双ロール法によりリン青銅の薄板を直接製造する
技術を確立することにある。The purpose of this project is to establish a technology for directly manufacturing phosphor bronze thin plates using the twin roll method.
前記の目的を達成せんとする本発明の要旨とするところ
は、 Sn 77〜9.5wt、X、 P ; 0.
03〜0.3豐(、χ、残部Cuおよび不純物から成る
リン青銅の溶湯を、一対の互いに反対方向に回転する冷
却ロールからなる双ロール式連鋳機で薄板に直接鋳造す
るさいに1両ロール間の最狭隙部通過以降の板の表面温
度が900℃を超えないように冷却量を制御すること、
好ましくはこれに加えて1両ロールによって鋳片に与え
る。板幅j! (ms+)当りの荷11Pを下式(1)
%式%(1)
の範囲に制御することを特徴とするリン青銅の薄板連続
鋳造方法にある。The gist of the present invention to achieve the above object is as follows: Sn 77-9.5wt, X, P; 0.
03~0.3 豐(, χ, 1 yen when molten phosphor bronze consisting of the balance Cu and impurities is directly cast into a thin plate using a twin roll continuous casting machine consisting of a pair of cooling rolls rotating in opposite directions. controlling the amount of cooling so that the surface temperature of the plate after passing through the narrowest gap between the rolls does not exceed 900°C;
Preferably, in addition to this, the slab is provided with one roll. Board width j! A method for continuous casting of phosphor bronze thin plates is characterized in that the load 11P per (ms+) is controlled within the range of the following formula (1) % formula % (1).
〔発明の詳細な
説明者らは、上記の問題を解決すべくリン青銅を双ロー
ル法に適用して得られる薄板に生じる割れの原因につい
て調査検討した。その結果、頻発する割れには主として
以下の2種類が存在することがわかった。その1つは両
ロール間の最近接点(最狭隙部)以降で生じる周期的な
横割れであり、これはロール間より引き出された板の表
面温度および板に生じる曲げなどの応力に主として依存
する。[Details of the Invention In order to solve the above problem, the presenters investigated and studied the causes of cracks that occur in thin plates obtained by applying the twin roll method to phosphor bronze. As a result, it was found that there are mainly two types of cracks that occur frequently: One of them is periodic transverse cracks that occur after the closest point (narrowest gap) between both rolls, and this mainly depends on the surface temperature of the plate pulled out from between the rolls and stress such as bending that occurs on the plate. do.
第2は1両ロール間の最近接点あるいはそれ以前の位置
において生じる割れで1割れに方向性がなく、かつ割れ
の発生頻度がロールの薄板に与える押し付は力(以降圧
延荷重と称する)に主として依存する。The second type is cracks that occur at or before the closest point between two rolls, and each crack has no direction, and the frequency of crack occurrence is determined by the force (hereinafter referred to as rolling load) exerted on the thin plate of the rolls. Mainly depends.
本発明は上記の知見に基づいてなされたものであり、
S n ; 7〜9.5wt、X、 P ; 0.
03〜0.3wt、!。The present invention has been made based on the above findings,
Sn; 7-9.5wt, X, P; 0.
03~0.3wt,! .
残部Cuおよび不純物から成るリン青銅の溶湯を対象と
して、これを目標板厚に設定したロール間隔を存する2
個の互いに反対方向に回転する冷却ロール面で冷却しそ
の凝固シェルを最狭隙部で圧下を加える場合に1両ロー
ルの最狭隙部直下以降の板表面温度が900℃以下とな
るように制御するならば前記第1の割れが防止できるこ
と、そして両ロールによる板幅1 (am)当りの圧延
荷重Pを前記(1)式の範囲に制限するならば前記の第
2の荊れが防止できることを見出したものである。There is a roll spacing set to the target plate thickness for a phosphor bronze molten metal consisting of the remainder Cu and impurities.
When the solidified shell is cooled by two cooling rolls rotating in opposite directions and the solidified shell is rolled down at the narrowest gap, the temperature of the plate surface immediately below the narrowest gap between the two rolls is 900℃ or less. If controlled, the first crack can be prevented, and if the rolling load P per plate width 1 (am) by both rolls is limited to the range of equation (1) above, the second crack can be prevented. This is what I found possible.
第1図は本発明法を実施するのに適したリン青銅の双ロ
ール式連鋳機の代表例を示したものである0図中の1は
タンデッシェ、2はノズル、3゜4はそれぞれ反対方向
に回転する内部冷却式の冷却ロールであり、タンデッシ
ェ1内゛のリン青銅の溶湯5はノズル2を経て、冷却ロ
ール3.4の円周面上に形成された湯溜り6に連続的に
注入され。Figure 1 shows a typical example of a twin-roll continuous caster for phosphor bronze suitable for carrying out the method of the present invention. This is an internally cooled cooling roll that rotates in the direction, and the phosphor bronze molten metal 5 in the tundishe 1 passes through a nozzle 2 and is continuously poured into a pool 6 formed on the circumferential surface of the cooling roll 3.4. Injected.
この湯溜り6中の溶湯は冷却ロール3.4の両表面で凝
固シェルフ、8を形成し、これらが冷却ロール3.4の
最狭隙部9で圧着圧延されて連続的に薄板lOが形成さ
れる。冷却ロール3,4は回転軸を利用してロール表面
下に冷却水が通、水され、その通水量の調整によって表
面温度を適正に制御するようになっている。また、冷却
ロール3.4の軸受11と12の受は部材13と14を
、ガイドアーム15と16にょつて、軸受11と12の
相互の距離が!1ljIffできるように支持し、一方
のガイドアーム16に取付けた圧下装置によって両ロー
ル間に圧下を加えるようになっている。この圧下荷重は
他方のガイドアーム15に取付けたロードセル18によ
って計測される。The molten metal in this pool 6 forms solidification shelves 8 on both surfaces of the cooling roll 3.4, and these are pressed and rolled at the narrowest gap 9 of the cooling roll 3.4 to continuously form a thin plate 10. be done. Cooling water is passed under the surface of the cooling rolls 3 and 4 using rotating shafts, and the surface temperature is appropriately controlled by adjusting the amount of water flowing through the rolls. Also, the distance between the bearings 11 and 12 of the cooling roll 3.4 is the same as that between the members 13 and 14, and the distance between the bearings 11 and 12 is the same as that between the guide arms 15 and 16! 1ljIff, and a rolling device attached to one guide arm 16 applies rolling between the two rolls. This rolling load is measured by a load cell 18 attached to the other guide arm 15.
他方、冷却ロール3.4の最狭゛隙部9を通過して出て
くる薄板10に対して、その表面温度を検出する表面温
度測定器20.21が最狭隙部9の近傍および若干離れ
た位置に設置され、連続通板される薄板の表面温度を常
時検出するようになっている。On the other hand, a surface temperature measuring device 20.21 for detecting the surface temperature of the thin plate 10 passing through the narrowest gap 9 of the cooling roll 3.4 is installed near the narrowest gap 9 and slightly. It is installed at a remote location and constantly detects the surface temperature of the thin plate that is continuously passed through it.
また、最狭隙部9を通過した直下の薄板1oに対してそ
の表面に冷却媒体を噴封する冷却ノズル22゜23が設
置されている。この冷却媒体としては、空気やArガス
などの気体、或いはミスト等を使用する。Further, cooling nozzles 22 and 23 are installed to spray and seal a cooling medium onto the surface of the thin plate 1o immediately below the narrowest gap 9. As this cooling medium, a gas such as air or Ar gas, or mist is used.
第1図の装置において本発明法を実施するにさいし2両
方の冷却ロール3.4の表面で成長してきた凝固シェル
フ、8がロール最狭隙部9あるいはそれの直上において
合体しなから一薄板10が得られるような条件が理想的
な製造条件である。この場合における凝固シェルフ、8
とは、ロール表面において形成したロール側表面部の板
状体のものから9変形抵抗を有する固相率をもつ固液共
存の領域までを指す、したがって双ロール法における理
想的な製造条件の場合、固液共存域が殆んどない合金で
は薄板10は最狭隙部9をほぼ完全固相の状態で通過す
る。また固液共存域はあるにはあるがそれが短かい場合
には、厚み中心部に若干の液相が存在するものの薄板の
表層部では完全面相の状態で薄板10は最狭隙部9を通
過する。しかし、リン青銅の場合には固液共存域が長い
ので、たとえ凝固シェルフ、8が最狭隙部9で合体した
としても薄板表面近傍の粒界に液相が残留しやすい、液
相自身は強度は全くないため微小の応力により薄板は容
易に裂け2割れにいたる、したがって固液共存域が殆ん
どないか短かい合金と同様の条件で双ロールにより溶湯
から直接リン青銅の薄板を得ようと試みてもその薄板に
は多数の割れが存在し、さらには薄板の裂断にいたる。When carrying out the method of the present invention in the apparatus shown in FIG. 1, the solidification shelves 8 that have grown on the surfaces of both cooling rolls 3. Ideal manufacturing conditions are such that a value of 10 is obtained. Solidification shelf in this case, 8
refers to the region of solid-liquid coexistence with a solid phase ratio having a deformation resistance of 9 from the plate-shaped body formed on the roll surface, and therefore under ideal manufacturing conditions in the twin-roll method. In the case of an alloy having almost no solid-liquid coexistence region, the thin plate 10 passes through the narrowest gap 9 in an almost completely solid state. In addition, if there is a solid-liquid coexistence region, but it is short, the thin plate 10 may have a slight liquid phase in the center of the thickness, but the surface layer of the thin plate is in a complete phase state, and the thin plate 10 closes the narrowest gap 9. pass. However, in the case of phosphor bronze, the solid-liquid coexistence region is long, so even if the solidified shelf 8 coalesces at the narrowest gap 9, the liquid phase tends to remain at the grain boundaries near the thin plate surface, and the liquid phase itself Since there is no strength at all, the thin plate easily splits into two pieces due to minute stress.Therefore, the thin plate of phosphor bronze can be obtained directly from the molten metal using twin rolls under the same conditions as alloys with almost no or short solid-liquid coexistence zone. Even if an attempt is made to do so, there are many cracks in the thin plate, which may even lead to the thin plate being torn.
本発明者らはロール周速v、1固シェルと冷却ロールと
の回転方向の接触長さX、圧延荷重P。The present inventors determined the roll peripheral speed v, the contact length X in the rotational direction between the solid shell and the cooling roll, and the rolling load P.
ロール材質および2次冷却の条件などの種々の条件を変
えてリン青w4yl板に周期的に生じる横割れとロール
直下での板表面温度(薄板がロール表面から離脱後、復
熱して成る最高温度)と横割れとの関係を調査した結果
、第2図を得た。同図より割れの数が少なくなる板の表
面温度はPレベルにより異なるが、900℃以下とする
と著しい割れの減少効果が認められる。このことからロ
ール直下の板の表面温度は高くとも900℃以下とする
必要があり、また温度は低いほど望ましいことが明らか
とされた。この最狭隙部直下以降の温度を900℃以下
に制御するには表面温度測定器20.21によって温度
を計測しながら冷却ノズル22.23がら冷却媒体を板
表面に噴射することによって行なうのが実際的である。By changing various conditions such as the roll material and secondary cooling conditions, the horizontal cracks that occur periodically in the phosphor blue W4YL plate and the plate surface temperature directly under the roll (the maximum temperature that is achieved by reheating after the thin plate is separated from the roll surface) ) and transverse cracking, we obtained Figure 2. As shown in the figure, the surface temperature of the plate at which the number of cracks decreases varies depending on the P level, but when it is set to 900°C or less, a remarkable effect of reducing cracks is observed. From this, it has become clear that the surface temperature of the plate directly under the roll needs to be at most 900°C or less, and that the lower the temperature, the more desirable it is. In order to control the temperature immediately below the narrowest gap to 900°C or less, the temperature is measured by the surface temperature measuring device 20.21 and a cooling medium is injected onto the plate surface through the cooling nozzle 22.23. Be practical.
他方、圧延荷重を増すことも板の表面温度を低下させる
ことに有効ではある。しかしリン青銅の場合には凝固シ
ェルが脆弱なためロールにより押し付は力に起因した割
れが生じやすい、そこでロードセル18で検知される圧
延荷重Pを板幅1 (+mm)で除した値P/lと過大
押し付は力により生じる割れとの関係について調査した
。その結果、第3図を得た。同図よりP/lが15kg
f/Immという小さい押し付は力から割れの数が増加
することがわかる。このことからP/Ilの値は15k
gf/m+s以下という小さい圧に制御してリン青銅を
鋳造することが必要である。但し、 P/j!がOで
あると未凝固の状態で流出あるいは、復熱によるブレー
クアウトが生じ健全な薄板が得られない、したがって圧
延荷重は少なくとも0を超える値にすべきである。On the other hand, increasing the rolling load is also effective in lowering the surface temperature of the plate. However, in the case of phosphor bronze, the solidified shell is fragile, so cracks are likely to occur due to force when pressed by rolls, so the value P/ The relationship between l and over-pressure and cracks caused by force was investigated. As a result, Figure 3 was obtained. From the same figure, P/l is 15kg
It can be seen from the force that the number of cracks increases when the pressing force is as small as f/Imm. From this, the value of P/Il is 15k
It is necessary to cast phosphor bronze by controlling the pressure to be as low as gf/m+s or less. However, P/j! If it is O, it will flow out in an unsolidified state or break out due to recuperation, making it impossible to obtain a sound thin plate.Therefore, the rolling load should be at least a value exceeding 0.
以上のような条件で双ロール法により溶湯から直接リン
青銅の薄板を製造するならば頻発する割れの問題を解消
できることが判明し1本発明法によると既述の目的が効
果的に達成されたものである。It has been found that the problem of frequent cracking can be solved if thin sheets of phosphor bronze are manufactured directly from molten metal by the twin roll method under the above conditions, and 1. According to the method of the present invention, the above-mentioned objectives have been effectively achieved. It is something.
Cu−8wt、XSnにPの含有量を0.05〜0.2
5wt、χの範囲で変えた溶湯100kgをロール径4
00mm、 ロール胴長200mm+ 、内部を水冷
した一対の銅製の冷却ロールを用い、溶湯より直接薄板
を製造した。Cu-8wt, P content in XSn is 0.05-0.2
5wt, 100kg of molten metal changed in the range of χ was rolled with a roll diameter of 4.
A thin plate was produced directly from the molten metal using a pair of copper cooling rolls with a roll body length of 200 mm and a water-cooled interior.
その際、ロール周速V、接触長Xの調節によりロール間
最狭陵部9以降の板の表面温度が900″C以下となる
ように制御するとともに、圧延荷重PはP/ffiの値
で5〜15kgf/s+sとなるような範囲とした。比
較のため、ロール最狭隙部9以降の温度が930°Cの
場合、またP/j!の値が25kgf/mmの場合での
製造を試みた。各製造条件で得られた板を酸洗しさらに
カラーチエツクを行ない、板の表面に生じた割れの発生
状況を単位面積当りの割れ個数で評価した。その結果を
表1にまとめて示した。At that time, the surface temperature of the plate after the narrowest part 9 between the rolls is controlled to be 900"C or less by adjusting the roll circumferential speed V and the contact length X, and the rolling load P is controlled at the value of P/ffi. The range was set to be 5 to 15 kgf/s + s.For comparison, manufacturing was performed when the temperature after the narrowest roll gap 9 was 930°C and when the value of P/j! was 25 kgf/mm. The plates obtained under each manufacturing condition were pickled and color checked, and the occurrence of cracks on the plate surface was evaluated by the number of cracks per unit area.The results are summarized in Table 1. Indicated.
表1より本発明の製造法によると割れを発生することな
くリン青銅の薄板を良好に製造できることかわかる。From Table 1, it can be seen that according to the manufacturing method of the present invention, phosphor bronze thin plates can be manufactured satisfactorily without cracking.
第1図は本発明法の実施に適する双ロール式連鋳機の例
を示す略断面図、第2図は第1図の装置によってリン青
銅の薄板を連続鋳造した場合のロールの最狭隙部直下の
柩表面温度と横割れ個数との関係図、第3図は第1図の
装置によってリン青銅の薄板を連続鋳造した場合のP/
lと割れ個数との関係図である。
1・・タンプッシュ、 2・・ノズル、3.4 ・
・内部冷却式の冷却ロール、 5・・リン青銅の溶湯
、 6・・湯溜り、7,8 ・・冷却ロール表面で
形成された凝固シェル、 9・・冷却ロールの最狭陵
部、10・・鋳造された薄板、17・・圧下装置、18
・・ロードセル、 21.22 ・・表面温度検出
器、 22.23・・冷却ノズル。Fig. 1 is a schematic cross-sectional view showing an example of a twin-roll continuous casting machine suitable for carrying out the method of the present invention, and Fig. 2 shows the narrowest gap between the rolls when a thin plate of phosphor bronze is continuously cast using the apparatus shown in Fig. 1. Figure 3 shows the relationship between the coffin surface temperature just below the coffin and the number of horizontal cracks. Figure 3 shows the P/
It is a relationship diagram between l and the number of cracks. 1.Tonpush, 2.Nozzle, 3.4.
・Internally cooled cooling roll, 5. Molten phosphor bronze, 6. Pool, 7, 8. Solidified shell formed on the surface of the cooling roll, 9. Narrowest part of the cooling roll, 10.・Casted thin plate, 17... Reduction device, 18
...Load cell, 21.22 ...Surface temperature detector, 22.23...Cooling nozzle.
Claims (2)
3wt.%、残部Cuおよび不純物から成るリン青銅の
溶湯を、一対の互いに反対方向に回転する冷却ロールか
らなる双ロール式連鋳機で薄板に直接鋳造するさいに、
両ロール間の最狭隙部通過以降の板の表面温度が900
℃を超えないように冷却量を制御することを特徴とする
リン青銅の薄板連続鋳造法。(1) Sn; 7-9.5wt. %, P; 0.03-0.
3wt. %, the balance being Cu and impurities, when directly casting a molten phosphor bronze into a thin plate using a twin-roll continuous casting machine consisting of a pair of cooling rolls rotating in opposite directions.
The surface temperature of the plate after passing through the narrowest gap between both rolls is 900℃.
A continuous thin plate casting method for phosphor bronze that is characterized by controlling the amount of cooling so as not to exceed ℃.
3wt%、残部Cuおよび不純物から成るリン青銅の溶
湯を、一対の互いに反対方向に回転する冷却ロールから
なる双ロール式連鋳機で薄板に直接鋳造するさいに、両
ロール間の最狭隙部通過以降の板の表面温度が900℃
を超えないように冷却量を制御し、そして両ロールによ
って鋳片に与える、板幅l(mm)当りの荷重Pを下式
(1) 0(kgf/mm)<(P/l)≦15(kgf/mm
)・・・(1)の範囲に制御することを特徴とするリン
青銅の薄板連続鋳造方法。(2) Sn; 7-9.5wt. %, P; 0.03-0.
When directly casting molten phosphor bronze containing 3 wt% Cu and impurities into a thin plate using a twin-roll continuous casting machine consisting of a pair of cooling rolls rotating in opposite directions, the narrowest gap between the two rolls is The surface temperature of the plate after passing is 900℃
The amount of cooling is controlled so that the amount of cooling is not exceeded, and the load P per plate width l (mm) applied to the slab by both rolls is calculated using the following formula (1) 0 (kgf/mm) < (P/l) ≦ 15 (kgf/mm
)...A method for continuous casting of phosphor bronze thin plates, characterized by controlling the casting within the range of (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26455087A JPH01107943A (en) | 1987-10-20 | 1987-10-20 | Continuous casting method for phosphor bronze strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26455087A JPH01107943A (en) | 1987-10-20 | 1987-10-20 | Continuous casting method for phosphor bronze strip |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01107943A true JPH01107943A (en) | 1989-04-25 |
Family
ID=17404825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26455087A Pending JPH01107943A (en) | 1987-10-20 | 1987-10-20 | Continuous casting method for phosphor bronze strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01107943A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100862792B1 (en) * | 2002-08-30 | 2008-10-13 | 주식회사 포스코 | An apparatus and method for preventing the high temperature oxidation of strip in twin-roll strip caster |
WO2013062091A1 (en) | 2011-10-28 | 2013-05-02 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US10032536B2 (en) | 2010-05-14 | 2018-07-24 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
US10458003B2 (en) | 2011-11-14 | 2019-10-29 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
CN114536018A (en) * | 2020-11-26 | 2022-05-27 | 中铝洛阳铜加工有限公司 | Preparation process for improving bending forming of copper-tin alloy strip |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195253A (en) * | 1987-02-10 | 1988-08-12 | Takatsugu Kusakawa | Manufacture of phosphor bronze sheet metal |
-
1987
- 1987-10-20 JP JP26455087A patent/JPH01107943A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63195253A (en) * | 1987-02-10 | 1988-08-12 | Takatsugu Kusakawa | Manufacture of phosphor bronze sheet metal |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100862792B1 (en) * | 2002-08-30 | 2008-10-13 | 주식회사 포스코 | An apparatus and method for preventing the high temperature oxidation of strip in twin-roll strip caster |
US10032536B2 (en) | 2010-05-14 | 2018-07-24 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
US10056165B2 (en) | 2010-05-14 | 2018-08-21 | Mitsubishi Materials Corporation | Copper alloy for electronic device, method for producing copper alloy for electronic device, and copper alloy rolled material for electronic device |
WO2013062091A1 (en) | 2011-10-28 | 2013-05-02 | 三菱マテリアル株式会社 | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US9587299B2 (en) | 2011-10-28 | 2017-03-07 | Mitsubishi Materials Corporation | Copper alloy for electronic equipment, method for producing copper alloy for electronic equipment, rolled copper alloy material for electronic equipment, and part for electronic equipment |
US10153063B2 (en) | 2011-11-07 | 2018-12-11 | Mitsubishi Materials Corporation | Copper alloy for electronic devices, method of manufacturing copper alloy for electronic devices, copper alloy plastic working material for electronic devices, and component for electronic devices |
US10458003B2 (en) | 2011-11-14 | 2019-10-29 | Mitsubishi Materials Corporation | Copper alloy and copper alloy forming material |
CN114536018A (en) * | 2020-11-26 | 2022-05-27 | 中铝洛阳铜加工有限公司 | Preparation process for improving bending forming of copper-tin alloy strip |
CN114536018B (en) * | 2020-11-26 | 2023-05-09 | 中铝洛阳铜加工有限公司 | Preparation technology for improving bending forming of copper-tin alloy strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20030053511A (en) | Production of thin steel strip | |
JP5509222B2 (en) | Hot rolled thin cast strip product and manufacturing method thereof | |
KR20080032647A (en) | Production of thin steel strip | |
CN101376164A (en) | Control method of roll forming of twin-roll thin strip continuous casting cooling roll | |
CN113953479B (en) | Method for improving flanging of thin strip steel coil | |
JPH01107943A (en) | Continuous casting method for phosphor bronze strip | |
US5293926A (en) | Method and apparatus for direct casting of continuous metal strip | |
CN113333697B (en) | Three-roller thin belt continuous casting machine with stripping roller | |
JPH07276004A (en) | Method for controlling crown and thickness of cast slab in twin roll type continuous casting process | |
JP2000061588A (en) | Twin-roll type continuous casting apparatus | |
JPH02247049A (en) | Manufacture of cast strip | |
JP2004237291A (en) | Method of manufacturing continuous casting slab and steel material obtained by working the cast slab | |
CN113787096A (en) | Rolling mill screw-down control method during start-up of double-roller thin strip casting and rolling process | |
Haga | 600 mm-Wide Strip Casting Using Single Roll Caster Equipped with Scraper | |
JP3145766B2 (en) | Continuous casting of duplex stainless steel sheet | |
JPH0424414B2 (en) | ||
JPS61103651A (en) | Production of quickly cooled thin strip by twin roll method | |
JP2610757B2 (en) | Method for producing ultra-thin Au-Si alloy brazing material with excellent thickness accuracy | |
JPH0346217B2 (en) | ||
JPH07251244A (en) | Method for preventing porosity of cast slab in twin roll type continuous casting method | |
JPH07100594A (en) | Twin roll type continuous casting method and apparatus thereof | |
JP2909339B2 (en) | Manufacturing method of thin slab | |
JPS6083756A (en) | Continuous casting method | |
JPH06277870A (en) | Extremely thin wall au-sn alloy brazing filler metal excellent in accuracy of thickness | |
JPS61219448A (en) | Continuous casting device for thin sheet |