JPH03114540A - Catalyst for ozone decomposition - Google Patents

Catalyst for ozone decomposition

Info

Publication number
JPH03114540A
JPH03114540A JP1250499A JP25049989A JPH03114540A JP H03114540 A JPH03114540 A JP H03114540A JP 1250499 A JP1250499 A JP 1250499A JP 25049989 A JP25049989 A JP 25049989A JP H03114540 A JPH03114540 A JP H03114540A
Authority
JP
Japan
Prior art keywords
ozone
catalyst
nickel
ozone decomposition
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1250499A
Other languages
Japanese (ja)
Inventor
Isao Terada
功 寺田
Naoto Sugita
杉田 尚登
Takeya Kobayashi
小林 岳也
Shinichiro Arai
荒井 慎一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichias Corp
Original Assignee
Nichias Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichias Corp filed Critical Nichias Corp
Priority to JP1250499A priority Critical patent/JPH03114540A/en
Publication of JPH03114540A publication Critical patent/JPH03114540A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst which decomposes ozone in air even at a low temperature close to room temperature by using Ni (III) oxide, Ni2O3, as the ozone decomposing catalyst. CONSTITUTION:A particle growth suppressing agent such as for colloidal silica, alumina, etc., is added to an aqueous solution of water-soluble nickel salt such as nickel nitrate, nickel carbonate, etc., so as to raise the specific surface area of the nickel salt to about 100-250m<2>/g. Then, the solution is dried and fired to give Ni (III) oxide, Ni2O3. A catalyst prepared in this way stably decomposes ozone even at a temperature from room temperature to relatively low temperature such as about 350 deg.C for a long duration when the catalyst is brought into contact with ozone-containing air.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、常温付近の低温で空気中のオゾンを分解可能
な、触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a catalyst capable of decomposing ozone in the air at low temperatures around room temperature.

〔従来の技術〕[Conventional technology]

オゾンは生体に対して善悪2面の作用をすることが確認
されている。すなわち、オゾンの強力な酸化能は殺菌、
消毒等に有用であって医療、食品などの分野で広く利用
されているが、一方では、オゾン自身の毒性に基づき、
空気中の濃度が0.lppmを超えると呼吸器系に刺激
を感じさせ、50ppm以上では生命に危険を及ぼす。
It has been confirmed that ozone has both good and bad effects on living organisms. In other words, ozone's strong oxidizing ability sterilizes
Ozone is useful for disinfection and is widely used in fields such as medicine and food, but on the other hand, due to the toxicity of ozone itself,
The concentration in the air is 0. If it exceeds lppm, it will irritate the respiratory system, and if it exceeds 50ppm, it will be life-threatening.

したがって、大気汚染物質の中でもオゾンは生体にとっ
て最も強力な有害物質の一つであり、特に近年、静電式
複写機などオゾンを発生する事務用器械が普及してオゾ
ン発生原因が増加するに伴い、簡易なオゾン分解法の開
発が望まれるに至った。
Therefore, among air pollutants, ozone is one of the most powerful harmful substances for living organisms.Especially in recent years, with the spread of office equipment that generates ozone such as electrostatic copying machines, the causes of ozone generation have increased. Therefore, it has become desirable to develop a simple ozone decomposition method.

従来、オゾン処理技術としては、活性炭吸着分解法、加
熱分解法、湿式法、および接触分解法がある。このうち
活性炭吸着分解法は、活性炭との化学反応を利用するも
のであるため、活性炭が消耗品であり、ランニングコス
トが高い。また、高濃度のオゾンを処理する場合は反応
熱により、低濃度のオゾンを処理する場合はオゾンの蓄
積により、交撚や爆発の危険がある。加熱分解法におい
ては300〜400°Cに1秒間程度滞留させる必要が
あり、多量の排ガスを処理するにはランニングコストが
かかりすぎるという問題点がある。
Conventional ozone treatment techniques include an activated carbon adsorption decomposition method, a thermal decomposition method, a wet method, and a catalytic decomposition method. Among these methods, the activated carbon adsorption and decomposition method utilizes a chemical reaction with activated carbon, so activated carbon is a consumable item and running costs are high. Furthermore, there is a risk of twisting or explosion due to reaction heat when processing high concentration ozone, and ozone accumulation when processing low concentration ozone. In the thermal decomposition method, it is necessary to hold the waste gas at 300 to 400°C for about 1 second, and there is a problem in that the running cost is too high to treat a large amount of exhaust gas.

湿式法は、大風量の場合には適するが、分解に用いる薬
液および装置建設費が高く、また廃液処理も必要になる
から、小規模実施には適さない。一方、触媒を用いる分
解は、交撚、爆発の危険がない上、熱分解よりも低温で
分解可能であり、小規模実施も容易であるなど、多くの
点で有利であるため、近年注目を集めている。
The wet method is suitable for large air volumes, but it is not suitable for small-scale implementation because the chemicals used for decomposition and equipment construction costs are high, and waste liquid treatment is also required. On the other hand, decomposition using a catalyst has attracted attention in recent years because it has many advantages, such as there is no danger of twisting or explosion, it can be decomposed at a lower temperature than thermal decomposition, and it can be easily implemented on a small scale. are collecting.

オゾン分解触媒としては従来種々のものが提案されてい
るが、ニッケル系のものではNi(特開昭567082
3号)、N1p−(TiまたはPの酸化物)(特開昭6
2−132546号) 、Ni0−Mn02−Coo。
Various ozone decomposition catalysts have been proposed in the past, but among the nickel-based ones, Ni (Japanese Unexamined Patent Publication No. 567082
No. 3), N1p- (Ti or P oxide) (Unexamined Japanese Patent Publication No. 6
2-132546), Ni0-Mn02-Coo.

(特開昭60−97049号)、無機質繊維状担体に担
持されたN1p(特開昭62−201648号)なとが
あった。
(Japanese Unexamined Patent Publication No. 60-97049) and N1p supported on an inorganic fibrous carrier (Japanese Unexamined Patent Publication No. 62-201648).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、常温付近の低温でも優れたオゾン分解
能を示す新規オゾン分解触媒を提供することにある。
An object of the present invention is to provide a novel ozone decomposition catalyst that exhibits excellent ozone decomposition ability even at low temperatures around room temperature.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明が提供するオゾン分解触媒は、N1(I[[)酸
化物・Ni2O3からなる。
The ozone decomposition catalyst provided by the present invention consists of N1(I[[) oxide/Ni2O3.

この触媒のためのN i203としては、比表面積が約
20 m2/g以上のものが適当であるが、比表面積は
なるべく大きいことが望ましく、比表面積100〜25
0m”/g程度のものが最も好ましい。
As Ni203 for this catalyst, one having a specific surface area of approximately 20 m2/g or more is suitable, but it is desirable that the specific surface area is as large as possible;
The most preferable one is about 0 m''/g.

比表面積の大きいNi□03は、水溶性ニッケル塩たと
えば硝酸ニッケル、炭酸ニッケル、酢酸ニッケル等の水
溶液を、望ましくは比表面積を大きくするだめの粒成長
抑制剤としてコロイド状シリカ、アルミナ、チタニア等
を添加した状態で、温度80〜120°Cで乾燥後、約
200〜400°Cで1〜10時間、望ましくは約2〜
6時間、空気中で焼成すれば得られるが、磁器、陶器、
硝子等の着色に用いる顔料、有機合成用触媒、ニッケル
化合物製造原料などの用途に市販されているものを用い
てもよい。
Ni□03, which has a large specific surface area, is treated with an aqueous solution of a water-soluble nickel salt such as nickel nitrate, nickel carbonate, or nickel acetate, and preferably with colloidal silica, alumina, titania, etc. as a grain growth inhibitor to increase the specific surface area. After drying at a temperature of 80 to 120°C, the added state is dried at a temperature of about 200 to 400°C for 1 to 10 hours, preferably about 2 to 120°C.
It can be obtained by firing in the air for 6 hours, but it can be used for porcelain, earthenware,
Commercially available pigments for use in coloring glass, catalysts for organic synthesis, raw materials for producing nickel compounds, and the like may be used.

N i、o 、は、使用法に応じて、適当な担体に担持
させてオゾン分解に使用するが、特に好ましい担体は、
たとえば特開昭59−10345号公報に記載されてい
るような、空隙率の高い無機繊維質の紙またはそれより
なるハニカム構造体である。ハニカム構造体にした担体
は、大風量の被処理空気を低い圧力損失で効率よく処理
することができ、低濃度オゾン含有空気を処理する触媒
の担体として優れている。好ましいハニカム構造体は、
有効表面積8〜40 cm2/cm3(特に好ましくは
20−40 cm2/cm’)、開口率50−90%(
特に好ましくは50〜70%)のものである。
N i,o is used for ozonolysis by being supported on a suitable carrier depending on the method of use, but particularly preferred carriers are:
For example, it is an inorganic fibrous paper with high porosity or a honeycomb structure made of it, as described in Japanese Patent Application Laid-Open No. 59-10345. A carrier having a honeycomb structure can efficiently treat a large amount of air to be treated with low pressure loss, and is excellent as a carrier for a catalyst that treats air containing low concentration ozone. A preferred honeycomb structure is
Effective surface area 8-40 cm2/cm3 (particularly preferably 20-40 cm2/cm'), aperture ratio 50-90% (
Particularly preferably 50 to 70%).

担体にN i203を担持させるには、N i203の
懸濁液に無機質結合剤たとえばシリカゾノl/、アルミ
ナゾル、チタニアゾル、またはこれらの混合物、有機結
合剤たとえばポリビニルアルコール、塩化ビニリデン、
アクリルエマルジョン等を加えたものを含浸または塗工
により担体に付着させ、乾燥すればよい。あるいは、担
体にN i203の前駆物質たとえば硝酸ニッケルを含
浸させ、乾燥後、Ni2O3生成条件下に焼成して担体
上にN i203を生成させる。
To support N i203 on a carrier, a suspension of N i203 is mixed with an inorganic binder such as silica sol, alumina sol, titania sol, or a mixture thereof, and an organic binder such as polyvinyl alcohol, vinylidene chloride,
An acrylic emulsion or the like may be applied to a carrier by impregnation or coating, and then dried. Alternatively, the carrier is impregnated with a precursor of Ni203, such as nickel nitrate, dried, and then calcined under Ni2O3 producing conditions to produce Ni203 on the carrier.

本発明の触媒は、オゾン含有空気と接触させると、高い
効率でオゾンを分解する。使用可能温度は常温ないし約
350°Cであり、常温付近の低い温度でも強い触媒作
用を示す点で特に優れている。
The catalyst of the present invention decomposes ozone with high efficiency when brought into contact with ozone-containing air. The usable temperature is room temperature to about 350°C, and it is particularly excellent in that it exhibits strong catalytic action even at low temperatures around room temperature.

〔実施例〕〔Example〕

以下、実施例を示して本発明を説明する。 Hereinafter, the present invention will be explained with reference to Examples.

実施例l 5i0250%、A1□0,50%からなるセラミック
繊維(平均繊維径3μm1繊維長10mm)を用いて厚
さ0.2mrQの紙を抄造し、これの平らなものとコル
ゲート加工したものとを交互に重ね合わせ、接点をアク
リル系バインダーで接着することにより、セル数205
/ 1112、開口率67%の、ハニカム構造の担体を
得た。
Example 1 Paper with a thickness of 0.2 mrQ was made using ceramic fibers (average fiber diameter 3 μm, fiber length 10 mm) consisting of 5i0250% and A1□0.50%, and a flat paper and a corrugated paper were made. By stacking the cells alternately and gluing the contacts with an acrylic binder, the number of cells is 205.
/ 1112, a honeycomb structure carrier with an aperture ratio of 67% was obtained.

別に、硝酸ニッケルを熱処理することにより得られた比
表面積i 90 m2/gのN i2o 3粉末をその
1/1Offiの塩化ビニリデン系バインダーとともに
水中で撹拌してスラリー状にし、そこに上記ハニカム構
造担体を5分間浸漬したのち105°Cで3時間乾燥し
、N i203を200 kg/m3担持させた。
Separately, N i2o 3 powder with a specific surface area i 90 m2/g obtained by heat treating nickel nitrate was stirred in water with a vinylidene chloride binder of 1/1 Offi to make a slurry, and the honeycomb structure carrier was added thereto. was immersed for 5 minutes and then dried at 105°C for 3 hours to carry 200 kg/m3 of Ni203.

実施例2 硝酸ニッケルを熱処理することにより得られた比表面積
190m27gのN i20 、粉末をその1/2量の
コロイド状シリカとともにスラリー状にし、そこに実施
例1で製造したものと同じハニカム構造担体を5分間浸
漬した。スラリーから引き上げた後、担体を105°C
で3時間乾燥し、N i203を200 kg/m”担
持させた。
Example 2 A N i20 powder with a specific surface area of 190 m27 g obtained by heat treating nickel nitrate was made into a slurry with 1/2 the amount of colloidal silica, and the same honeycomb structure carrier as produced in Example 1 was added thereto. was soaked for 5 minutes. After lifting from the slurry, the carrier was heated to 105°C.
It was dried for 3 hours to carry 200 kg/m'' of Ni203.

実施例3 Eガラス繊維(繊維径9μm1繊維長10mm)より厚
さ0.2mm、繊維間空隙率94%の紙を抄造し、これ
に比表面積190 m2/gのN i203粉末とその
1/lO量の塩化ビニリデン系バインダーとを含むスラ
リーを塗工し、乾燥した。得られた塗工紙は、Ni2O
3を150g/m2担持していた。この塗工紙の一部を
コルゲート加工し、コルゲート加工した紙と未加工の平
らな紙とを交互に重ね合わせ、両者の接点においてバイ
ンダーで接着することにより、セル数2057in2、
開口率67%のハニカム構造体にした。
Example 3 Paper with a thickness of 0.2 mm and an interfiber porosity of 94% was made from E-glass fibers (fiber diameter 9 μm, fiber length 10 mm), and Ni203 powder with a specific surface area of 190 m2/g and 1/lO of it were made. A slurry containing a certain amount of vinylidene chloride binder was applied and dried. The obtained coated paper is made of Ni2O
3 was carried at 150 g/m2. A portion of this coated paper is corrugated, and the corrugated paper and unprocessed flat paper are alternately layered and bonded with a binder at the contact points of the two, resulting in a cell count of 2057 in2.
A honeycomb structure with an aperture ratio of 67% was used.

比較例1 実施例1で製造したのと同じハニカム構造担体を、公知
のオゾン分解触媒NiOとその1/10量の塩化ビニリ
デン系バインダーを含むスラリーに浸漬したのち105
℃で3時間乾燥し、NiOを200 kg/m3担持さ
 せ ブこ 。
Comparative Example 1 The same honeycomb structure carrier as produced in Example 1 was immersed in a slurry containing a known ozone decomposition catalyst NiO and a vinylidene chloride binder in an amount of 1/10 of the known ozone decomposition catalyst NiO.
It was dried at ℃ for 3 hours and loaded with 200 kg/m3 of NiO.

比較例2 実施例1で製造したのと同じハニカム構造担体を、公知
のオゾン分解触媒・M no 2−A I203−Cu
o −Ce。
Comparative Example 2 The same honeycomb structure carrier produced in Example 1 was treated with a known ozone decomposition catalyst M no 2-A I203-Cu
o-Ce.

複合酸化物(重量比70:15:12:1)の粉末とそ
の1/10量の塩化ビニリデン系バインダーを含むスラ
リーに浸漬したのち105°Cで3時間乾燥し、上記酸
化物を200 kg/m3担持させた。
It was immersed in a slurry containing powder of composite oxide (weight ratio 70:15:12:1) and a vinylidene chloride binder in an amount of 1/10 of the powder, and then dried at 105°C for 3 hours. m3 was supported.

比較例3 実施例1で製造したのと同じハニカム構造担体を、比表
面積1300m”/gの活性炭とその1/10量の塩化
ビニリデン系バインダーを含むスラリーに浸漬したのち
105℃で3時間乾燥し、活性炭を200 kg/m3
担持させた。
Comparative Example 3 The same honeycomb structure carrier as produced in Example 1 was immersed in a slurry containing activated carbon with a specific surface area of 1300 m''/g and a vinylidene chloride binder in an amount of 1/10 of the activated carbon, and then dried at 105°C for 3 hours. , activated carbon at 200 kg/m3
carried it.

試験例 上記各側で得られたオゾン分解触媒について次の方法で
オゾン分解能を調べた。
Test Example The ozone decomposition ability of the ozone decomposition catalysts obtained on each side above was investigated using the following method.

試験法:無声放電型オゾン発生機で除湿空気を処理して
得られたオゾン含有空気を清浄な空気で希釈してオゾン
濃度を1.5ppmに調整し、被処理ガスを調製する。
Test method: Ozone-containing air obtained by treating dehumidified air with a silent discharge ozone generator is diluted with clean air to adjust the ozone concentration to 1.5 ppm to prepare a gas to be treated.

このガスを、内径80mm、ただし触媒装填部の断面積
0.0283m2の反応管に温度2000.風速1.5
m/s、風Ik15.3 m’/hr (空間速度27
1 、OOO/hr)で供給する。触媒装填部通過前後
のガスをサンプリングし、紫外線吸光型オゾン濃度計で
オゾン濃度を測定する。なお、触媒は、ハニカム構造担
体のセル開口面が通気方向に対して直角になるように、
通気方向厚さ20mmのものを装填する。オゾン濃度測
定結果から、次式によりオゾン分解率を算出する。
This gas was transferred to a reaction tube with an inner diameter of 80 mm and a cross-sectional area of 0.0283 m2 at a catalyst loading part at a temperature of 2000 m2. Wind speed 1.5
m/s, wind Ik15.3 m'/hr (space velocity 27
1, OOO/hr). Sample the gas before and after passing through the catalyst loading section, and measure the ozone concentration using an ultraviolet absorption ozone concentration meter. In addition, the catalyst was prepared so that the cell opening surface of the honeycomb structure carrier was perpendicular to the ventilation direction.
Load one with a thickness of 20 mm in the ventilation direction. From the ozone concentration measurement results, the ozone decomposition rate is calculated using the following formula.

試験結果を第1図〜第3図に示す。図示した結果から、
本発明の触媒が優れた常温オゾン分解能を有し、耐久性
にも優れていることがわかる。
The test results are shown in FIGS. 1 to 3. From the results shown,
It can be seen that the catalyst of the present invention has excellent room temperature ozone decomposition ability and is also excellent in durability.

〔発明の効果〕〔Effect of the invention〕

本発明の触媒は常温でオゾンを分解する能力に優れ、し
かも長期間安定した分解能を示すので、工業用オゾン分
解装置に使用可能なことはもちろん、オゾン分解が必要
な小型事務器械などに装着して使用するのにも好適な、
きわめて利用範囲の広い有用なものである。
The catalyst of the present invention has excellent ability to decompose ozone at room temperature and exhibits stable decomposition performance over a long period of time, so it can be used not only in industrial ozone decomposition equipment, but also in small office equipment that requires ozone decomposition. Also suitable for use with
It is extremely useful and has a wide range of uses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜M3図は実施例および比較例の性能試験の結果
を示すグラフである。
FIGS. 1 to M3 are graphs showing the results of performance tests of Examples and Comparative Examples.

Claims (3)

【特許請求の範囲】[Claims] (1)Ni(III)酸化物・Ni_2O_3からなるオ
ゾン分解用触媒。
(1) Ozone decomposition catalyst consisting of Ni(III) oxide/Ni_2O_3.
(2)Ni_2O_3の比表面積が100〜250m^
2/gである請求項1記載のオゾン分解用触媒。
(2) Specific surface area of Ni_2O_3 is 100-250m^
2/g of the ozone decomposition catalyst according to claim 1.
(3)無機繊維質の紙またはそれよりなるハニカム構造
体にNi_2O_3が担持されている請求項1または2
記載のオゾン分解用触媒。
(3) Claim 1 or 2, wherein Ni_2O_3 is supported on inorganic fiber paper or a honeycomb structure made of it.
The ozone decomposition catalyst described above.
JP1250499A 1989-09-28 1989-09-28 Catalyst for ozone decomposition Pending JPH03114540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1250499A JPH03114540A (en) 1989-09-28 1989-09-28 Catalyst for ozone decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1250499A JPH03114540A (en) 1989-09-28 1989-09-28 Catalyst for ozone decomposition

Publications (1)

Publication Number Publication Date
JPH03114540A true JPH03114540A (en) 1991-05-15

Family

ID=17208787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1250499A Pending JPH03114540A (en) 1989-09-28 1989-09-28 Catalyst for ozone decomposition

Country Status (1)

Country Link
JP (1) JPH03114540A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150290A (en) * 2004-11-30 2006-06-15 Fukuoka Institute Of Technology Ozone decomposing filter and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150290A (en) * 2004-11-30 2006-06-15 Fukuoka Institute Of Technology Ozone decomposing filter and its production method

Similar Documents

Publication Publication Date Title
US4343776A (en) Ozone abatement catalyst having improved durability and low temperature performance
US4405507A (en) Ozone abatement catalyst having improved durability and low temperature performance
US5194414A (en) Method of manufacturing a gas absorbing element or a catalyst carrier having a honeycomb structure
US5262129A (en) Ozone filter and method of production thereof
US8709341B2 (en) System for purifying air through germicidal irradiation and method of manufacture
US4871709A (en) Ozone cracking catalyst
WO2007023558A1 (en) Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function
US5698165A (en) Ozone filter and process for producing the same
JPH05317717A (en) Catalyzer and preparation of catalyzer
CN115279487A (en) Method for manufacturing a photocatalytic device, photocatalytic composition and gas decontamination apparatus
JPH1147558A (en) Air cleaning process
JPH0443703B2 (en)
US11224860B2 (en) Nanofiber surfaces
JPH03114540A (en) Catalyst for ozone decomposition
JP2000225349A (en) Filter
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JPH0510973B2 (en)
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
JP4173561B2 (en) Ozone decomposition catalyst and method for producing the same
JP3799653B2 (en) Photocatalyst
JP2995608B2 (en) Ozone filter and its manufacturing method
EP4331721A1 (en) Catalytic system with photocatalyst and gas depollution apparatus containing the same
JPH057776A (en) Catalyst and its manufacture
JP3126012B2 (en) How to Prevent Odor Generation from Ozone Filter