JPH03114536A - Regeneration of titanosilicate catalyst - Google Patents

Regeneration of titanosilicate catalyst

Info

Publication number
JPH03114536A
JPH03114536A JP1249178A JP24917889A JPH03114536A JP H03114536 A JPH03114536 A JP H03114536A JP 1249178 A JP1249178 A JP 1249178A JP 24917889 A JP24917889 A JP 24917889A JP H03114536 A JPH03114536 A JP H03114536A
Authority
JP
Japan
Prior art keywords
catalyst
group
solvent
methyl
titanosilicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1249178A
Other languages
Japanese (ja)
Inventor
Motomasu Kawai
河井 基益
Tadamitsu Kiyoura
清浦 忠光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1249178A priority Critical patent/JPH03114536A/en
Publication of JPH03114536A publication Critical patent/JPH03114536A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To regenerate a catalyst extremely effectively by a method wherein a deteriorated catalyst is baked at a predetermined temp. in the presence of an oxygen-containing gas or washed with a solvent at a temp. higher than that at the time of epoxidation. CONSTITUTION:An epoxide is produced from olefin and hydrogen peroxide using a crystalline titanosilicate catalyst. The catalyst which has been deteriorated during this time is baked at a temp. of 400-500 deg.C in the presence of a gas contg. 5-99vol.% of oxygen and an inert gas for the balance. It may alternatively be regenerated at a temp. higher by 5-150 deg.C than at the time of epoxidation by washing with a solvent such as water, ketone and alcohol. The catalyst is thus regenerated efficiently and economically and made usable for an extended period of time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、オレフィンと、過酸化水素とおよび、結晶性
チタノシリケート触媒とから工業的にエポキシドを製造
する方法に関する。更に詳しくは、触媒を効率的に再生
することにより、長期に渡ってエポキシ化反応に使用す
る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for industrially producing epoxides from olefins, hydrogen peroxide, and crystalline titanosilicate catalysts. More specifically, the present invention relates to a method for efficiently regenerating a catalyst so that it can be used for an epoxidation reaction over a long period of time.

〔従来の技術〕[Conventional technology]

触媒の存在下、オレフィンと過酸化水素とからエポキシ
ドを製造する方法は様々なものが知られている。その中
でも特開昭59−51273に記載のTS−1と称する
一種の結晶性チタノシリケートを触媒とする方法は、不
均一反応系であるため、触媒と生成物であるエポキシド
との分離が容易であり、工業的に優れた方法である。
Various methods are known for producing epoxides from olefins and hydrogen peroxide in the presence of catalysts. Among them, the method using a type of crystalline titanosilicate called TS-1 as a catalyst described in JP-A No. 59-51273 uses a heterogeneous reaction system, so it is easy to separate the catalyst and the product epoxide. This is an industrially excellent method.

ところが上記の方法について、本発明者らが試験したと
ころ、触媒の活性劣化が激しいため長期の運転ができず
、従って経済的なプロセスとは成り得ないことが判明し
た。経済的に存利なプロセスにするためには、活性劣化
したチタノシリケート触媒を再生して何回もエポキシ化
反応に使い、単位触媒あたりのエポキシド生産量を上げ
ることが必須であると考えられる。
However, when the above method was tested by the present inventors, it was found that it could not be operated for a long period of time due to severe deterioration of catalyst activity, and therefore could not be an economical process. In order to make the process economically viable, it is considered essential to regenerate the titanosilicate catalyst whose activity has deteriorated and use it in the epoxidation reaction many times to increase the epoxide production per unit catalyst. .

活性劣化したチタノシリケート触媒を再生する方法とし
ては空気中550℃で焼成する方法(G、Perego
、 et al、+ Proc、 7th Inter
n、 ZeoliteConfer、+ 1986. 
Tokyo、 p、827)が知られている。
As a method for regenerating the titanosilicate catalyst whose activity has deteriorated, it is calcined in air at 550°C (G, Perego
, et al, + Proc, 7th Inter
n, ZeoliteConfer, +1986.
Tokyo, p. 827) is known.

一方、チタノシリケートを500℃よりも高い温度にさ
らすと、結晶格子位置にあるチタンが除かれる(B、 
Kraushaar−Czarnetki、 et a
l、、 Catal。
On the other hand, when titanosilicate is exposed to temperatures higher than 500°C, titanium in crystal lattice positions is removed (B,
Kraushaar-Czarnetki, et a.
l,, Catal.

Lett、、  2  、43 (19B9))ことが
知られている。
Lett, 2, 43 (19B9)).

従って、上記した方法の実施は、チタノシリケートの破
壊をもたらすために好ましくない。
Therefore, implementation of the above-described method is not preferred as it results in destruction of the titanosilicate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、オレフィンと、過酸化水素とおよび、
結晶性チタノシリケート触媒とからエポキシドを生成せ
しめる反応において、使用中に劣化した触媒を再生する
方法を提供することにある。
The object of the present invention is to combine an olefin, hydrogen peroxide, and
An object of the present invention is to provide a method for regenerating a catalyst that has deteriorated during use in a reaction for producing an epoxide from a crystalline titanosilicate catalyst.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、チタノシリケート触媒の再生方法を鋭意
検討した結果、極めて有効な方法を二つ見いだし、本発
明を完成させるに至った。
The inventors of the present invention have intensively studied methods for regenerating titanosilicate catalysts, and as a result, have found two extremely effective methods and have completed the present invention.

一つめは、触媒を酸素含有気体の雰囲気下、焼成する方
法である。焼成温度は400〜500℃である。酸素含
有気体は、酸素が5〜99vo1%で、残りが不活性気
体であるものであり、好ましくは空気である。焼成温度
が500℃を越えるとチタノシリケート触媒が破壊され
、400℃より低いと触媒が充分に再生されない。
The first method is to sinter the catalyst in an atmosphere of oxygen-containing gas. The firing temperature is 400-500°C. The oxygen-containing gas contains 5 to 99 vol% oxygen and the remainder is an inert gas, preferably air. If the calcination temperature exceeds 500°C, the titanosilicate catalyst will be destroyed, and if the calcination temperature is lower than 400°C, the catalyst will not be regenerated sufficiently.

二つめは、触媒を適当な溶媒で洗浄処理する方法である
。その際、特に処理温度が再生の効果に重要な影響を及
ぼす。使用溶媒が分解しない程度に、エポキシ化反応実
施時よりもやや(5〜150℃1好ましくは5〜120
℃)高い温度で行うのが特に効果的であり、通常0〜2
00℃1好ましくは40〜180℃1圧力1〜100気
圧で行われる。
The second method is to wash the catalyst with an appropriate solvent. In this case, the treatment temperature in particular has an important influence on the regeneration effect. To the extent that the solvent used does not decompose, the temperature should be slightly lower than that during the epoxidation reaction (5 to 150℃, preferably 5 to 120℃).
℃) It is particularly effective to carry out at high temperature, usually 0 to 2
It is carried out at 00°C, preferably 40 to 180°C, and a pressure of 1 to 100 atm.

本発明に用いられる洗浄用溶媒は、通常の有機物を溶解
する、炭素数のあまり大きくない(好ましくは9以下)
水、アルコール、ケトン、炭化水素、ハロゲン化炭化水
素、エステル、ニトリル、および酸からなる群から選ば
れたものである。
The cleaning solvent used in the present invention dissolves ordinary organic substances and has a carbon number not very large (preferably 9 or less).
selected from the group consisting of water, alcohols, ketones, hydrocarbons, halogenated hydrocarbons, esters, nitriles, and acids.

アルコールとしては、メタノール、エタノール、l−プ
ロパノール、2−プロパノール、2−メチル−2−プロ
パノール、1−ブタノール、2−ブタノニル、アリルア
ルコール、エチレングリコールが好適である。
Suitable alcohols include methanol, ethanol, 1-propanol, 2-propanol, 2-methyl-2-propanol, 1-butanol, 2-butanonyl, allyl alcohol, and ethylene glycol.

ケトンとしては、アセトン、2−ブタノン、2−メチル
ブタノン、2−ペンタノン、3−ペンタノン、2−メチ
ル−4−ペンタノン、シクロヘキサノンが好適である。
Suitable ketones include acetone, 2-butanone, 2-methylbutanone, 2-pentanone, 3-pentanone, 2-methyl-4-pentanone, and cyclohexanone.

炭化水素としては、プロパン、1−ブテン、2−ブテン
、イソプレン、ベンゼン、トルエン、キシレン、トリメ
チルベンゼンが好適である。
Suitable hydrocarbons include propane, 1-butene, 2-butene, isoprene, benzene, toluene, xylene, and trimethylbenzene.

ハロゲン化炭化水素としては、ジクロロメタンクロロホ
ルム、四塩化炭素、1.1−ジクロロエタン、1.2−
ジクロロエタン、1,1.1− )ジクロロエタン、1
,1.2− )ジクロロエタン、1.1.1.2−テト
ラクロロエタン、Ll、2.2−テトラクロロエタン、
塩化アリル、ジプロモメタン、クロロベンゼンが好適で
ある。
Examples of halogenated hydrocarbons include dichloromethane chloroform, carbon tetrachloride, 1.1-dichloroethane, 1.2-
dichloroethane, 1,1.1-) dichloroethane, 1
, 1.2-) dichloroethane, 1.1.1.2-tetrachloroethane, Ll, 2.2-tetrachloroethane,
Allyl chloride, dibromomethane and chlorobenzene are preferred.

エステルとしては、ぎ酸メチル、酢酸メチル、酢酸エチ
ル、酢酸ブチル、プロピオン酸エチルが好適であり、ニ
トリルとしては、アセトニトリルが好適である。
As the ester, methyl formate, methyl acetate, ethyl acetate, butyl acetate, and ethyl propionate are preferred, and as the nitrile, acetonitrile is preferred.

酸としては、ぎ酸、酢酸、プロピオン酸が好適である。As the acid, formic acid, acetic acid, and propionic acid are suitable.

エポキシ化反応を固定床または連続攪拌槽で行う場合、
触媒の溶媒による洗浄は、エポキシ化反応原料の代わり
に洗浄用溶媒を反応器へ供給することにより行われる。
When the epoxidation reaction is carried out in a fixed bed or continuous stirred tank,
The catalyst is washed with a solvent by supplying a washing solvent to the reactor instead of the epoxidation reaction raw material.

エポキシ化反応をバッチ式で行う場合、触媒の溶媒によ
る洗浄は、反応後に溶液を上澄みとして抜き取った後、
洗浄用溶媒を反応器に加え攪拌し、再び上澄み液を抜き
取ることにより行われる。
When the epoxidation reaction is carried out batchwise, the catalyst is washed with a solvent after the reaction, after the solution is extracted as a supernatant.
This is carried out by adding a washing solvent to the reactor, stirring it, and drawing out the supernatant liquid again.

焼成と溶媒洗浄のいずれを採用するかは、経済性を考慮
した上で反応装置の形式によって決められる。両者を併
用することも可能である。
Whether to employ calcination or solvent washing is determined by the type of reactor after considering economic efficiency. It is also possible to use both together.

本発明が適用されるのは、組成式がxTioz (1−
x)SiO,(ただし0.0001<x < 0.5好
ましくは0.001 <x < 0.05 )で示され
る結晶性チタノシリケートを有効成分とする、オレフィ
ンのエポキシ化用触媒である。
The present invention is applied when the compositional formula is xTioz (1-
x) An olefin epoxidation catalyst containing a crystalline titanosilicate represented by SiO (0.0001<x<0.5, preferably 0.001<x<0.05) as an active ingredient.

チタノシリケートの合成にあたっては、まず、シリカ源
、チタン源、含窒素化合物、および水から構成される反
応混合物を調製する。シリカ源はテトラアルコキシケイ
素またはコロイド状シリカである。チタン源はテトラア
ルコキシチタンまたは四塩化チタンである。含窒素化合
物はテトラアルキルアンモニウムイオン、好ましくは水
酸化テトラプロピルアンモニウムまたは水酸化テトラブ
チルアンモニウムである。また、含窒素化合物としてト
リエタノールアミン、ジェタノールアミン、ピペリジン
またはNH2(CHz)−NHK(但し、nは1〜9で
ある。)が使用される。
In synthesizing titanosilicate, first, a reaction mixture consisting of a silica source, a titanium source, a nitrogen-containing compound, and water is prepared. The silica source is tetraalkoxy silicon or colloidal silica. The titanium source is tetraalkoxytitanium or titanium tetrachloride. The nitrogen-containing compound is a tetraalkylammonium ion, preferably tetrapropylammonium hydroxide or tetrabutylammonium hydroxide. Further, as the nitrogen-containing compound, triethanolamine, jetanolamine, piperidine, or NH2(CHz)-NHK (where n is 1 to 9) is used.

反応体のモル比は、 S i Ox/T i Oz= 10〜50H,O/S
 t O,−10〜100 含窒素化合物/ S i Oz−0、05〜1である。
The molar ratio of the reactants is S i Ox/T i Oz = 10-50H, O/S
tO, -10 to 100 nitrogen-containing compound/S i Oz-0, 05 to 1.

上記した反応混合物をオートクレーブ中で100〜22
0 ℃において2〜1000時間保持する。次に固形物
を取り出し、乾燥後、空気中400〜500℃にて1〜
100時間焼成する。
The above reaction mixture was heated in an autoclave for 100 to 22 hours.
Hold at 0°C for 2-1000 hours. Next, take out the solid matter, dry it, and then store it in the air at 400-500°C for 1 to 30 minutes.
Bake for 100 hours.

上記した方法により、種々の結晶形を有するチタノシリ
ケートが合成できる。それらのうち2例についてそれぞ
れ第1.3および2.4表に、X線回折スペクトル(C
u−にα)と赤外線吸収スペクトルの主なパターンを示
す。
By the method described above, titanosilicate having various crystal forms can be synthesized. Tables 1.3 and 2.4 respectively show the X-ray diffraction spectra (C
u- and α) show the main patterns of the infrared absorption spectrum.

01±0゜ 2 440〜 460 第1〜4表において、 vs=非常に強い S二強い m=中くらい W−弱い を表す。01±0゜ 2 440~ 460 In Tables 1 to 4, vs = very strong S two strong m = medium W-weak represents.

本発明のエポキシ化反応は、オレフィンと、過酸化水素
とおよび、チタノシリケート触媒とを用いて、溶剤の存
在下または非存在下に、0〜150℃,1〜100気圧
にて行われる。
The epoxidation reaction of the present invention is carried out using an olefin, hydrogen peroxide, and a titanosilicate catalyst in the presence or absence of a solvent at 0 to 150°C and 1 to 100 atmospheres.

オレフィンとしては、エチレン、プロピレン、1−ブテ
ン、2−ブテン、1−ヘキセン、1−オクテン、イソブ
チン、1,3−ブタジェン、イソプレン、シクロヘキセ
ン、塩化アリルまたはアリルアルコールが用いられる。
As the olefin, ethylene, propylene, 1-butene, 2-butene, 1-hexene, 1-octene, isobutyne, 1,3-butadiene, isoprene, cyclohexene, allyl chloride or allyl alcohol are used.

過酸化水素は1〜95wt%、好ましくは5〜60wt
%水溶液である。溶媒としては、水、メタノール、2−
プロパノール、2−メチル−2−プロパノール、アセト
ン、アセトニトリル、酢酸、プロピオン酸またはこれら
のうちいくつかの混合物が用いられる。
Hydrogen peroxide is 1 to 95 wt%, preferably 5 to 60 wt%
% aqueous solution. As a solvent, water, methanol, 2-
Propanol, 2-methyl-2-propanol, acetone, acetonitrile, acetic acid, propionic acid or mixtures of some of these are used.

〔実施例〕〔Example〕

チタノシリケート触媒の調製 200m1のフラスコに、窒素雰囲気下、34.2gの
テトラエトキシ硅素(164mmol)および1.9成
のテトライソプロポキシチタン(6,4mmol)を加
えた。攪拌しながら、38.9gの20〜25%水酸化
テトラプロピルアンモニウム水溶液を徐々に滴下した。
Preparation of titanosilicate catalyst 34.2 g of tetraethoxy silicon (164 mmol) and 1.9 tetraisopropoxy titanium (6.4 mmol) were added to a 200 ml flask under a nitrogen atmosphere. While stirring, 38.9 g of 20-25% aqueous tetrapropylammonium hydroxide solution was gradually added dropwise.

90℃にて3時間攪拌することにより、エタノールを3
0rnfl留去した。内容物をチタン型オートクレーブ
に移し更に81戚の水を加えた。自己発生圧力下、17
5℃にて7時間加熱した。冷却後、内容物を取り出し、
遠心分離により上澄み液を抜き取り、水を加えて攪拌後
、再び遠心分離を行い、沈澱物を取り出し、110℃に
て4時間乾燥後、500℃にて5時間焼成した。生成物
のX線回折スペクトルは第1表のようなものであり、特
開昭56−96720記載のチタノシリケートと一致し
ていた。走査型電子顕微鏡写真により、平均粒子径は0
.3μmであった。
By stirring at 90°C for 3 hours, ethanol
0rnfl was distilled off. The contents were transferred to a titanium autoclave, and 81% water was added. Under self-generated pressure, 17
Heated at 5°C for 7 hours. After cooling, remove the contents and
The supernatant liquid was removed by centrifugation, water was added, and after stirring, centrifugation was performed again, and the precipitate was taken out, dried at 110°C for 4 hours, and then calcined at 500°C for 5 hours. The X-ray diffraction spectrum of the product was as shown in Table 1, and was consistent with the titanosilicate described in JP-A-56-96720. Scanning electron micrograph shows that the average particle size is 0.
.. It was 3 μm.

た。Ta.

以下に本発明の実施例および比較例を示すが、これらは
必ずしも触媒再生の最適条件を示すものではない、また
本発明はこれらによって限定されるものではない。なお
、比較例1、実施例1.2は同一の触媒を用いて行い、
比較例3、実施例4−7は触媒を反応管から取り出すこ
となく、連続して行った。
Examples and comparative examples of the present invention are shown below, but these do not necessarily indicate the optimum conditions for catalyst regeneration, and the present invention is not limited thereto. In addition, Comparative Example 1 and Example 1.2 were carried out using the same catalyst,
Comparative Example 3 and Examples 4-7 were conducted continuously without taking out the catalyst from the reaction tube.

比較例1 冷却管を具備する30rnlのフラスコに粉末状の0.
4gのチタノシリケート、 12gのメタノール、4g
の塩化アリル(52,3mmoり、3.2gの30wt
%過酸化水素水溶液(28,2mmol )の順に加え
た。この懸濁液を40℃にて3時間攪拌した。冷却後、
フラスコごと遠心分離機にかけ、上澄み液を回収した。
Comparative Example 1 A 30 rnl flask equipped with a condenser tube was charged with powdered 0.0 rnl.
4g titanosilicate, 12g methanol, 4g
of allyl chloride (52.3 mmol, 3.2 g of 30wt
% aqueous hydrogen peroxide solution (28.2 mmol) was added in this order. This suspension was stirred at 40°C for 3 hours. After cooling,
The flask was centrifuged and the supernatant liquid was collected.

沈澱物に再び上記と同じ量のメタノール、塩化アリル、
過酸化水素を加え、上記と同様の操作を繰り返した。生
成物をガスクロマトグラフィーにより分析した。第5表
に結果を示す。
Add the same amount of methanol, allyl chloride, and
Hydrogen peroxide was added and the same operation as above was repeated. The product was analyzed by gas chromatography. Table 5 shows the results.

実施例1 比較例1のごとくエポキシ化反応を何回か繰り返し、エ
ビクロロヒドリン収率が40.5%になったところで、
劣化した触媒の入っているフラスコにメタノール12g
を加え、75℃にて1時間攪拌することにより洗浄を行
った。冷却後フラスコごと遠心分離機にかけ、上澄み液
を抜き取った。洗浄を繰り返した後、再び同様にしてエ
ポキシ化反応を行った。第5表に示す様に、触媒活性は
若干回復していることがわかる。
Example 1 The epoxidation reaction was repeated several times as in Comparative Example 1, and when the shrimp chlorohydrin yield reached 40.5%,
Add 12g of methanol to the flask containing the deteriorated catalyst.
was added and stirred at 75°C for 1 hour to perform washing. After cooling, the flask was centrifuged and the supernatant liquid was removed. After repeated washing, the epoxidation reaction was performed again in the same manner. As shown in Table 5, it can be seen that the catalyst activity was slightly recovered.

実施例2 実施例1で使用した触媒をフラスコより取り出し、空気
中480℃で3時間焼成した。触媒を取り出し、再び同
様にしてエポキシ化反応を行った。
Example 2 The catalyst used in Example 1 was taken out of the flask and calcined in air at 480°C for 3 hours. The catalyst was taken out and the epoxidation reaction was performed again in the same manner.

第5表に示す様に、触媒活性は回復していることが分か
る。
As shown in Table 5, it can be seen that the catalyst activity has been recovered.

比較例2 この比較例は、触媒の再生における処理温度が低いと、
逆効果になることもある場合を示す例である。比較例1
と同様な操作を繰り返し、エピクロルヒドリン収率が5
3.9%になった時点で、メタノールの代わりにアセト
ンを洗浄用溶媒として用い、40℃にて実施例1のごと
き処理を行った。エピクロルヒドリン収率は46.0%
であった。
Comparative Example 2 In this comparative example, when the treatment temperature during catalyst regeneration is low,
This is an example of a case where it may have the opposite effect. Comparative example 1
Repeat the same operation until the epichlorohydrin yield is 5.
When the concentration reached 3.9%, the same treatment as in Example 1 was carried out at 40° C. using acetone as a cleaning solvent instead of methanol. Epichlorohydrin yield is 46.0%
Met.

実施例3 比較例1において、塩化アリルの代わりに1〜ヘキセン
を用い、反応温度を63℃にした他は同様の操作を行っ
た。1,2−エポキシヘキセンの収率は30.2%であ
った。この操作を何回か繰り返し、1.2−エポキシヘ
キセン収率が19.1%になったところで、触媒をフラ
スコより取り出し、空気中500℃で3時間焼成した。
Example 3 The same operation as in Comparative Example 1 was performed except that 1-hexene was used instead of allyl chloride and the reaction temperature was changed to 63°C. The yield of 1,2-epoxyhexene was 30.2%. This operation was repeated several times, and when the yield of 1,2-epoxyhexene reached 19.1%, the catalyst was taken out from the flask and calcined in air at 500°C for 3 hours.

再び同様にしてエポキシ化反応を行ったところ、1.2
−エポキシヘキセンの収率は30.4%であった。
When the epoxidation reaction was carried out again in the same manner, 1.2
-The yield of epoxyhexene was 30.4%.

比較例3 2.1gのコロイド状シリカ(日産化学製スノーテック
スU P 、 5iOzを20〜21wt%含有)と2
.27gのチタノシリケートを混合、乾燥し、空気中5
00℃で焼成後粉砕し、120メツシュ以上の微粉末を
得た。これを0.78 gとり、希釈剤のセライト(1
,4g)と混合し、内径8叩のガラス製反応管に詰めた
。なお触媒層の内容積は3 、8 mlであった。
Comparative Example 3 2.1 g of colloidal silica (Snowtex UP manufactured by Nissan Chemical, containing 20 to 21 wt% of 5iOz) and 2.
.. 27g of titanosilicate was mixed, dried, and
After firing at 00°C, the mixture was pulverized to obtain a fine powder of 120 mesh or more. Take 0.78 g of this and add diluent Celite (1
, 4 g) and packed into a glass reaction tube with an inner diameter of 8 mm. Note that the internal volume of the catalyst layer was 3.8 ml.

塩化アリル、過酸化水素(30wt%水溶fi)、メタ
ノール、アンモニア(0,5wt%水溶液)の混合物(
重量比=40:32:  120: 1 :モル比=5
2.3 :28.2:  374.5:  0.1)を
0.29mA!/n+inの割合で連続的に反応管に供
給した。反応管を55℃の水浴に浸した0反応管の出口
で圧力が4〜14kg/cfflGになるように抵抗を
つけた。生成物を氷水で冷却し、ガスクロマトグラフィ
ーにより分析した。定常状態に達したときのエピクロル
ヒドリン収率は第6表に示すように、82.8%であっ
た。
A mixture of allyl chloride, hydrogen peroxide (30 wt% aqueous solution), methanol, and ammonia (0.5 wt% aqueous solution) (
Weight ratio = 40:32: 120: 1: Molar ratio = 5
2.3:28.2:374.5:0.1) to 0.29mA! /n+in was continuously supplied to the reaction tube. The reaction tube was immersed in a water bath at 55°C, and a resistance was attached so that the pressure at the outlet of the reaction tube was 4 to 14 kg/cfflG. The product was cooled with ice water and analyzed by gas chromatography. The epichlorohydrin yield when steady state was reached was 82.8%, as shown in Table 6.

実施例4 比較例3を継続するうちに、エピクロルヒドリン収率が
58.0%に下がった時点で、原料液の代わりにメタノ
ールを同じ流量で反応管に供給した。
Example 4 While continuing Comparative Example 3, when the epichlorohydrin yield decreased to 58.0%, methanol was supplied to the reaction tube instead of the raw material liquid at the same flow rate.

反応管を70℃の水浴に3時間浸した。冷却後、比較例
3と同様の操作でエポキシ化反応を行なったところ、エ
ピクロルヒドリン収率が73.0%であり、触媒活性は
若干回復していることがわかる。
The reaction tube was immersed in a 70°C water bath for 3 hours. After cooling, an epoxidation reaction was carried out in the same manner as in Comparative Example 3, and the epichlorohydrin yield was 73.0%, indicating that the catalytic activity had been slightly recovered.

実施例5 この実施例は、劣化した触媒の溶媒洗浄における処理温
度が高いと、より効果的であることを示すものである。
Example 5 This example shows that higher treatment temperatures in solvent cleaning of degraded catalysts are more effective.

実施例4を継続するうち、エピクロルヒドリン収率が6
6.7%下がった時点で、原料液の代わりにメタノール
を同じ流量で反応管に供給した0反応管を85゛Cの水
浴に3時間浸した。冷却後、比較例3と同様の操作でエ
ポキシ化反応を行なったところ、エピクロルヒドリン収
率が83.1%であった。
While continuing Example 4, the epichlorohydrin yield was 6.
When the temperature decreased by 6.7%, the reaction tube, in which methanol was supplied at the same flow rate instead of the raw material solution, was immersed in a water bath at 85°C for 3 hours. After cooling, an epoxidation reaction was carried out in the same manner as in Comparative Example 3, and the epichlorohydrin yield was 83.1%.

実施例6 実施例5を継続するうち、エピクロルヒドリン収率が6
4.3%に下がった時点で、原料液の代わりにアセトン
と2−メチル−4−ペンタノンのl:1(重量比)溶液
を同じ流量で反応管に供給した。
Example 6 While continuing Example 5, the epichlorohydrin yield was 6.
When the concentration decreased to 4.3%, a 1:1 (weight ratio) solution of acetone and 2-methyl-4-pentanone was supplied to the reaction tube at the same flow rate instead of the raw material liquid.

反応管を85℃の水浴に3時間浸した。冷却後、比較例
3と同様の操作でエポキシ化反応を行なったところ、エ
ピクロルヒドリン収率が81.6%であった。
The reaction tube was immersed in an 85°C water bath for 3 hours. After cooling, an epoxidation reaction was carried out in the same manner as in Comparative Example 3, and the epichlorohydrin yield was 81.6%.

実施例7 実施例6を継続するうち、エピクロルヒドリン収率が5
8.4%に下がった時点で、原料液の代わりにベンゼン
を同肇流量で反応管に流した。反応管を85℃の水浴に
3時間浸した。冷却後、比較例3と同様の操作でエポキ
シ化反応を行なったところ、エピクロルヒドリン収率が
85.8%であった。
Example 7 While continuing Example 6, the epichlorohydrin yield was 5.
When the concentration decreased to 8.4%, benzene was flowed into the reaction tube at the same flow rate instead of the raw material liquid. The reaction tube was immersed in an 85°C water bath for 3 hours. After cooling, an epoxidation reaction was carried out in the same manner as in Comparative Example 3, and the epichlorohydrin yield was 85.8%.

第 5 表 エピクロルヒドリン収率 (%) 第 表 エピクロルヒドリン収率 (%) 〔発明の効果〕 実施例において示すように本発明の方法によって何度も
再生処理すれば、チタノシリケート触媒は、エポキシ化
反応に長時間使用しうる。
Table 5 Epichlorohydrin Yield (%) Table Epichlorohydrin Yield (%) [Effects of the Invention] As shown in the Examples, if the titanosilicate catalyst is regenerated many times by the method of the present invention, it will be Can be used for a long time.

Claims (9)

【特許請求の範囲】[Claims] (1)オレフィンと、過酸化水素とおよび、結晶性チタ
ノシリケート触媒とからエポキシドを生成せしめる反応
において、劣化した触媒を、酸素含有気体の存在下40
0〜500℃にて焼成するか、又はエポキシ化反応時よ
りも5〜150℃高い温度にて溶媒で洗浄することによ
り再生することを特徴とするチタノシリケート触媒の再
生方法。
(1) In a reaction for producing an epoxide from an olefin, hydrogen peroxide, and a crystalline titanosilicate catalyst, the degraded catalyst is heated for 40 minutes in the presence of an oxygen-containing gas.
A method for regenerating a titanosilicate catalyst, characterized in that the titanosilicate catalyst is regenerated by firing at 0 to 500°C or by washing with a solvent at a temperature 5 to 150°C higher than that during the epoxidation reaction.
(2)溶媒が水、アルコール、ケトン、炭化水素、ハロ
ゲン化炭化水素、エステル、ニトリル、および酸からな
る群から選ばれたものである請求項1に記載の方法。
2. The method of claim 1, wherein the solvent is selected from the group consisting of water, alcohols, ketones, hydrocarbons, halogenated hydrocarbons, esters, nitriles, and acids.
(3)アルコールが、メタノール、エタノール、1−プ
ロパノール、2−プロパノール、2−メチル−2−プロ
パノール、1−ブタノール、2−ブタノール、アリルア
ルコール、およびエチレングリコールからなる群から選
ばれたものである請求項2に記載の方法。
(3) The alcohol is selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, 2-methyl-2-propanol, 1-butanol, 2-butanol, allyl alcohol, and ethylene glycol. The method according to claim 2.
(4)ケトンが、アセトン、2−ブタノン、2−メチル
ブタノン、2−ペンタノン、3−ペンタノン、2−メチ
ル−4−ペンタノン、およびシクロヘキサノンからなる
群から選ばれたものである請求項2に記載の方法。
(4) The ketone is selected from the group consisting of acetone, 2-butanone, 2-methylbutanone, 2-pentanone, 3-pentanone, 2-methyl-4-pentanone, and cyclohexanone. the method of.
(5)炭化水素が、プロパン、1−ブテン、2−ブテン
、イソプレン、ベンゼン、トルエン、キシレン、および
トリメチルベンゼンからなる群から選ばれたものである
請求項2に記載の方法。
5. The method of claim 2, wherein the hydrocarbon is selected from the group consisting of propane, 1-butene, 2-butene, isoprene, benzene, toluene, xylene, and trimethylbenzene.
(6)ハロゲン化炭化水素が、ジクロロメタン、クロロ
ホルム、四塩化炭素、1,1−ジクロロエタン、1,2
−ジクロロエタン、1,1,1−トリクロロエタン、1
,1,2−トリクロロエタン、1,1,1,2−テトラ
クロロエタン、1,1,2,2−テトラクロロエタン、
ジプロモメタン、塩化アリル、およびクロロベンゼンか
らなる群から選ばれたものである請求項2に記載の方法
(6) The halogenated hydrocarbon is dichloromethane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2
-dichloroethane, 1,1,1-trichloroethane, 1
, 1,2-trichloroethane, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane,
3. The method of claim 2, wherein the compound is selected from the group consisting of dibromomethane, allyl chloride, and chlorobenzene.
(7)エステルが、ぎ酸メチル、酢酸メチル、酢酸エチ
ル、酢酸ブチル、およびプロピオン酸エチルからなる群
から選ばれたものである請求項2に記載の方法。
7. The method of claim 2, wherein the ester is selected from the group consisting of methyl formate, methyl acetate, ethyl acetate, butyl acetate, and ethyl propionate.
(8)ニトリルが、アセトニトリルである請求項2に記
載の方法。
(8) The method according to claim 2, wherein the nitrile is acetonitrile.
(9)酸が、ギ酸、酢酸、およびプロピオン酸からなる
群から選ばれたものである請求項2に記載の方法。
9. The method of claim 2, wherein the acid is selected from the group consisting of formic acid, acetic acid, and propionic acid.
JP1249178A 1989-09-27 1989-09-27 Regeneration of titanosilicate catalyst Pending JPH03114536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1249178A JPH03114536A (en) 1989-09-27 1989-09-27 Regeneration of titanosilicate catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249178A JPH03114536A (en) 1989-09-27 1989-09-27 Regeneration of titanosilicate catalyst

Publications (1)

Publication Number Publication Date
JPH03114536A true JPH03114536A (en) 1991-05-15

Family

ID=17189065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249178A Pending JPH03114536A (en) 1989-09-27 1989-09-27 Regeneration of titanosilicate catalyst

Country Status (1)

Country Link
JP (1) JPH03114536A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790075A1 (en) 1996-02-13 1997-08-20 ARCO Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve
US5753576A (en) * 1995-05-18 1998-05-19 Arco Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve
WO1998055228A1 (en) * 1997-06-06 1998-12-10 Basf Aktiengesellschaft Method for regenerating a zeolitic catalyst
EP0936219A1 (en) * 1998-02-11 1999-08-18 Linde Aktiengesellschaft Process and Reactor for the preparation of an Epoxide
US6063941A (en) * 1996-10-25 2000-05-16 Solvay (Societe Anonyme) Process for the regeneration of catalysts
US6169050B1 (en) 1996-10-25 2001-01-02 Solvay (Societe Anonyme) Process for regeneration of catalysts of titanium silicalite type
EP1190770A1 (en) 1997-07-01 2002-03-27 ARCO Chemical Technology, L.P. Process for regenerating epoxidation catalysts
EP1371414A1 (en) * 2001-03-14 2003-12-17 Sumitomo Chemical Company, Limited Method for regenerating solid catalyst
EP1489074A1 (en) * 2003-06-18 2004-12-22 Degussa AG Process for the epoxidation of propene
US6878836B2 (en) 2003-06-18 2005-04-12 Degussa Ag Process for the epoxidation of propene
JP2007182428A (en) * 2005-12-07 2007-07-19 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP2009233656A (en) * 2008-03-05 2009-10-15 Sumitomo Chemical Co Ltd Method for regenerating titanosilicate catalyst
WO2011115234A1 (en) * 2010-03-18 2011-09-22 Sumitomo Chemical Company, Limited Method for regenerating titanosilicate catalysts
CN102260226A (en) * 2010-05-27 2011-11-30 中国石油化工股份有限公司 Olefin epoxidation method
CN114340791A (en) * 2019-09-30 2022-04-12 陶氏环球技术有限责任公司 Regeneration of metallosilicate catalysts

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753576A (en) * 1995-05-18 1998-05-19 Arco Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve
US5741749A (en) * 1996-02-13 1998-04-21 Arco Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve
EP0790075A1 (en) 1996-02-13 1997-08-20 ARCO Chemical Technology, L.P. Regeneration of a titanium-containing molecular sieve
US6063941A (en) * 1996-10-25 2000-05-16 Solvay (Societe Anonyme) Process for the regeneration of catalysts
US6169050B1 (en) 1996-10-25 2001-01-02 Solvay (Societe Anonyme) Process for regeneration of catalysts of titanium silicalite type
WO1998055228A1 (en) * 1997-06-06 1998-12-10 Basf Aktiengesellschaft Method for regenerating a zeolitic catalyst
US6710002B2 (en) 1997-06-06 2004-03-23 Basf Aktiengesellschaft Method for regenerating a zeolitic catalyst
EP1190770A1 (en) 1997-07-01 2002-03-27 ARCO Chemical Technology, L.P. Process for regenerating epoxidation catalysts
EP0936219A1 (en) * 1998-02-11 1999-08-18 Linde Aktiengesellschaft Process and Reactor for the preparation of an Epoxide
EP1371414A4 (en) * 2001-03-14 2009-10-28 Sumitomo Chemical Co Method for regenerating solid catalyst
EP1371414A1 (en) * 2001-03-14 2003-12-17 Sumitomo Chemical Company, Limited Method for regenerating solid catalyst
EP1489074A1 (en) * 2003-06-18 2004-12-22 Degussa AG Process for the epoxidation of propene
US6878836B2 (en) 2003-06-18 2005-04-12 Degussa Ag Process for the epoxidation of propene
CN100398528C (en) * 2003-06-18 2008-07-02 德古萨股份公司 Process for the epoxidation of propene
WO2005000827A1 (en) * 2003-06-18 2005-01-06 Degussa Ag Process for the epoxidation of propene
JP2007182428A (en) * 2005-12-07 2007-07-19 Sumitomo Chemical Co Ltd Method for producing cyclohexanone oxime
JP4548409B2 (en) * 2005-12-07 2010-09-22 住友化学株式会社 Method for producing cyclohexanone oxime
JP2009233656A (en) * 2008-03-05 2009-10-15 Sumitomo Chemical Co Ltd Method for regenerating titanosilicate catalyst
US20110009651A1 (en) * 2008-03-05 2011-01-13 Sumitomo Chemical Company, Limited Regeneration method of titanosilicate catalyst
WO2011115234A1 (en) * 2010-03-18 2011-09-22 Sumitomo Chemical Company, Limited Method for regenerating titanosilicate catalysts
CN102260226A (en) * 2010-05-27 2011-11-30 中国石油化工股份有限公司 Olefin epoxidation method
CN114340791A (en) * 2019-09-30 2022-04-12 陶氏环球技术有限责任公司 Regeneration of metallosilicate catalysts
CN114340791B (en) * 2019-09-30 2024-04-05 陶氏环球技术有限责任公司 Metal silicate catalyst regeneration

Similar Documents

Publication Publication Date Title
JP2615432B2 (en) Method for partial oxidation of hydrocarbons with gold-titanium oxide containing catalyst
US6034028A (en) Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
US6114551A (en) Olefin epoxidation catalysts
CA2416554C (en) Process for the continuous production of an olefinic oxide using hydrogen peroxide
JP4301580B2 (en) Propylene epoxidation process
US5684170A (en) Epoxidation process
JPH03114536A (en) Regeneration of titanosilicate catalyst
CA2275264C (en) Titanium/silica heterogeneous catalyst regeneration
KR100714666B1 (en) Process for producing propylene oxide
US7838455B2 (en) Method of regeneration of titanium-containing molecular sieve catalyst
US20020120158A1 (en) Method for oxidizing an organic compound containing at least on c-c double bond
US5412122A (en) Epoxidation process
KR20010012932A (en) Process for epoxydation of olefinic compounds with hydrogen peroxide
JP4155602B2 (en) Regeneration method of titanium silicalite type catalyst
RU2181121C2 (en) Epoxidation process involving improved-quality heterogeneous catalytic composition
JP2002527428A (en) Oxidation method of organic compound having at least one CC double bond
Wang et al. Propylene epoxidation over silver supported on titanium silicalite zeolite
JPH105590A (en) Partial oxidation of hydrocarbon and catalyst for partial oxidation
RU2251451C2 (en) Method of a catalyst carrier material production of and a method of production of the catalyst
JP4135818B2 (en) Catalyst for partial oxidation of hydrocarbon and method for partial oxidation of hydrocarbon
JPH10291986A (en) Epoxidation of olefinic hydrocarbon and its halide
JP2005089342A (en) Method for producing cyclooctene oxide
JP2004525073A5 (en)
JP2004525073A (en) Continuous production method of olefin oxide
JP2004275988A (en) Catalyst for producing propylene oxide and method of producing propylene oxide using the same