JPH03113501A - Controller - Google Patents

Controller

Info

Publication number
JPH03113501A
JPH03113501A JP25046089A JP25046089A JPH03113501A JP H03113501 A JPH03113501 A JP H03113501A JP 25046089 A JP25046089 A JP 25046089A JP 25046089 A JP25046089 A JP 25046089A JP H03113501 A JPH03113501 A JP H03113501A
Authority
JP
Japan
Prior art keywords
target value
differential
output
deviation
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25046089A
Other languages
Japanese (ja)
Other versions
JPH0792687B2 (en
Inventor
Kazuo Hiroi
広井 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25046089A priority Critical patent/JPH0792687B2/en
Publication of JPH03113501A publication Critical patent/JPH03113501A/en
Publication of JPH0792687B2 publication Critical patent/JPH0792687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To realize PID control performing various processes for a deviation including differentiating by obtaining the differential control arithmetic output from the con trolled variable of a control subject via a differential control arithmetic means and then adding the obtained arithmetic output to a target value setting signal to obtain the target value of a PI (proportion/integration) control arithmetic means. CONSTITUTION:A differential control arithmetic means 11 performs a differential control arithmetic operation to take advantage of a measurement value differentiation advance type for the controlled variable PV received from a control subject 12. A subtraction means 13 subtracts the output of the means 11 from a target value setting signal SV' and obtains the target value SV. A deviation arithmetic means 14 subtracts the controlled variable PV from the value SV obtained by the means 13 and obtains the deviation. Furthermore a PI control arithmetic means 15 is added together with an addition means 16 which adds the disturbance D to an operation signal MV serving as the output of the means 15 and applies them to the subject 12. Then a deviation E, etc., are effectively treated for execution of the PID control (D: differentiation) by means of the advantage of the measurement value differentiation advance type. Thus it is possible to apply various processes to the deviation including differentiating.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、PID調節演算を行う調節装置に係わり、特
に測定値微分先行形PIDの特性を有効に生かすために
制御量の微分演算出力を偏差に与えるようにした調節装
置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to an adjustment device that performs PID adjustment calculations, and in particular, the present invention relates to a control device that performs PID adjustment calculations, and in particular, to control variable The present invention relates to an adjusting device that applies a differential calculation output to a deviation.

(従来の技術) 従来からPID制御装置はあらゆる産業分野で広く利用
されている。そして、現在ではアナログ演算制御方式に
代わってディジタル演算制御方式が多用されており、プ
ラントの制御には必要不可欠なものとなっている。
(Prior Art) PID control devices have been widely used in all industrial fields. Nowadays, digital arithmetic control systems are often used in place of analog arithmetic control systems, and have become indispensable for plant control.

このようなPID制御の基本演算式は、MY(s) −KpH+(llTI−8)+(TD−8)l(l+η
・TD−8))・E(S)・・・(1) で表される。但し、MV(s)は操作信号、E (s)
は偏差、Kpは比例ゲイン、T、は積分時間、TDは微
分時間、Sはラプラス演算子、ηは係数、(1/η)は
微分ゲインである。この演算式は偏差EについてPID
演算を行なうものであって、通常、偏差PID制御と呼
ばれている。
The basic calculation formula for such PID control is MY(s) -KpH+(llTI-8)+(TD-8)l(l+η
・TD-8))・E(S)...(1) It is expressed as follows. However, MV (s) is the operation signal, E (s)
is the deviation, Kp is the proportional gain, T is the integral time, TD is the differential time, S is the Laplace operator, η is the coefficient, and (1/η) is the differential gain. This calculation formula is PID for deviation E.
It performs calculations and is usually called deviation PID control.

しかしながら、このPID制御の場合には目標値SVが
ステップ的に変化する場合が多く、この目標値Svの変
化に対して過度にD(微分)動作が働いて操作信号MV
が急変し、それに伴って制御対象に衝撃を与え、或いは
目標値追従特性が大きくオーバシュートして振動現象を
起こす問題がある。
However, in the case of this PID control, the target value SV often changes stepwise, and the D (differential) operation works excessively with respect to the change in the target value SV, causing the operation signal MV to change.
There is a problem that sudden changes in the target value may cause a shock to the controlled object, or the target value follow-up characteristic may greatly overshoot, causing a vibration phenomenon.

そこで、近年、偏差に代わって制御量PvについてD動
作を実行する「測定値微分先行形PID制御」が利用さ
れるようになってきた。
Therefore, in recent years, "measured value differential advance type PID control" in which the D operation is executed with respect to the control amount Pv instead of the deviation has been used.

この測定値微分先行形PID制御の演算式は、MV(s
) −Kp[ll+1/ (T+ ・s)l ・E(s
)−1(TD−8)l(1+η・TD−8))・PV(
S)]・・・(2) で表される。PV (S)は制御対象からの制御量であ
る。
The calculation formula for this measured value differential preceding type PID control is MV(s
) −Kp[ll+1/ (T+ ・s)l ・E(s
)-1(TD-8)l(1+η・TD-8))・PV(
S)]...(2) It is expressed as follows. PV (S) is the controlled amount from the controlled object.

第5図はかかる測定値微分先行形PID制御方式を適用
した従来の調節装置のブロック構成図である。この装置
は、偏差演算手段1にて目標値SVと制御対象2からの
制御量Pvとの偏差Eを求めた後、この偏差EをPI調
節演算手段3に導入し?ここで前記(2)式の前段側に
示す演算式にしたがってPI調節演算を行い、得られた
PI調節演算出力を減算手段4に導入する。
FIG. 5 is a block diagram of a conventional adjustment device to which such a measured value differential advance type PID control system is applied. This device calculates the deviation E between the target value SV and the controlled amount Pv from the controlled object 2 using the deviation calculation means 1, and then introduces this deviation E into the PI adjustment calculation means 3. Here, the PI adjustment calculation is performed according to the calculation formula shown on the former side of the equation (2), and the obtained PI adjustment calculation output is introduced into the subtraction means 4.

また、制御対象2からの制御l1pvは微分調節演算手
段5にも導入され、ここで前記(2)式の後段側に示す
演算式にしたがって不完全微分演算を行い、得られた不
完全微分演算出力MvDを減算手段4に導入する。そし
て、この減算手段4にて前記pr調節演算出力から不完
全微分演算出力を減算し、得られた信号を操作信号MV
として加算手段6に導き、ここで外乱信号りと加算合成
してfill a対象2に印加することにより、目標値
S V o =制ra量PVとなるように制御する。
In addition, the control l1pv from the controlled object 2 is also introduced into the differential adjustment calculation means 5, where an incomplete differential calculation is performed according to the calculation formula shown in the latter part of equation (2), and the obtained incomplete differential calculation is The output MvD is introduced into subtraction means 4. Then, the subtracting means 4 subtracts the incomplete differential calculation output from the pr adjustment calculation output, and uses the obtained signal as the operation signal MV.
The signal is guided to the adding means 6, where it is added and combined with the disturbance signal and applied to the fill a target 2, thereby controlling so that the target value S V o =the control amount PV.

(発明が解決しようとする課MB) しかし、この測定値微分先行形PID制御方式を適用し
た調節装置は、種々の特長を有しているにも拘らず、一
方では次に述べるような欠陥をもっている。
(Issue to be solved by the invention MB) However, although the adjustment device to which this measured value differential prior type PID control method is applied has various features, it also has the following defects. There is.

■、先ず、測定値微分先行形PID制御方式を適用した
調節装置は、制御対象2の特性によって第5図の構成で
は十分に対応できず、各種の加工処理を行なって操作信
号を得る必要がある。第6図はその1つの加工例を示す
図であって、これは偏差演算手段1の出力側に非線形手
段7を設け、この偏差演算手段1で求めた偏差Eを非線
形手段7で例えば不感帯処理、偏差自乗処理、ギャップ
処理等の非線形処理を行なった後、PI調節演算手段3
に導入する構成となっている。
■First of all, the adjustment device to which the measured value derivative-first type PID control method is applied cannot be adequately supported by the configuration shown in Fig. 5 due to the characteristics of the controlled object 2, and it is necessary to perform various processing processes to obtain the operation signal. be. FIG. 6 is a diagram showing one example of such processing, in which a nonlinear means 7 is provided on the output side of the deviation calculation means 1, and the deviation E obtained by the deviation calculation means 1 is processed by the nonlinear means 7, for example, by dead zone processing. , after performing nonlinear processing such as deviation square processing and gap processing, the PI adjustment calculation means 3
It is configured to be introduced in

以上のように実際のプラント制御では、制御対象2の種
々の特性に対応するために偏差Eに対して非線形処理を
多用しているが、微分調節演算出力MvDがPI調節演
算手段3の出力側にバイパスされているので、微分特性
が非線形処理の対象外となり、そのために正確な非線形
処理が行えず、また微分調節演算出力MvDがバイパス
して制御系に悪影響を及ぼし、制御性を低下させる原因
となっている。
As described above, in actual plant control, nonlinear processing is often used for the deviation E in order to correspond to various characteristics of the controlled object 2, but the differential adjustment calculation output MvD is Since the differential characteristics are bypassed, the differential characteristics are not subject to nonlinear processing, so accurate nonlinear processing cannot be performed, and the differential adjustment calculation output MvD is bypassed, which adversely affects the control system and reduces controllability. It becomes.

■、また、この測定値微分先行形PID調節装置はPI
Dパラメータを1組しか設定できない1自由度PID調
節装置である。その結果、比例ゲインや微分時間が1自
由度であるために、外乱抑制特性と目標値追従特性との
両方を満足させる最適な制御を行えない問題がある。
■ Also, this measured value differential prior type PID adjustment device is
This is a one-degree-of-freedom PID adjustment device in which only one set of D parameters can be set. As a result, since the proportional gain and differential time have one degree of freedom, there is a problem that optimal control that satisfies both disturbance suppression characteristics and target value tracking characteristics cannot be performed.

従って、以上のような欠陥がある限り、種々の制御対象
に対してPID制御の機能を十分に発揮できない。特に
、今後、プラント運転制御は、益々高精度化、連発化、
最適化および安全化等が求められてくるが、これらの要
求に十分に対処するためにはプラントに多用されている
PID制御の以上のような欠陥を早急に除去する必要が
ある。
Therefore, as long as the above-mentioned defects exist, the PID control function cannot be fully exerted on various control objects. In particular, in the future, plant operation control will become increasingly precise, continuous, and
Optimization, safety, etc. are required, but in order to fully meet these demands, it is necessary to promptly eliminate the above-mentioned deficiencies in PID control, which is often used in plants.

本発明は以上のような要望の下になされたもので、微分
動作を含めて不感帯、偏差自乗、ギャップ等の各種の非
線形処理を正確に行うことができ、かつ、比例ゲインお
よび微分時間の2自由度化を容易に実現しうる調節装置
を提供することを目的とする。
The present invention has been made in response to the above-mentioned demands, and is capable of accurately performing various nonlinear processing such as dead zones, squared deviations, gaps, etc., including differential operation, and is capable of performing two types of proportional gain and differential time. It is an object of the present invention to provide an adjustment device that can easily realize degrees of freedom.

[発明の構成] (課題を解決するための手段) 先ず、請求項1に対応する発明は上記課題を解決するた
めに、目標値と制御対象の制御量との偏差に基づいてP
I調節演算を行って前記制御対象に印加する操作信号を
得る調節装置において、前記制御量に基づいて微分調節
演算を行う微分調節演算手段と、目標値設定信号または
前記偏差から前記微分調節演算手段の出力を減算し、ま
たは前記制御量に前記微分調節演算手段の出力を加算す
る手段を設けたものである。
[Structure of the invention] (Means for solving the problem) First, in order to solve the above problem, the invention corresponding to claim 1 calculates P based on the deviation between the target value and the controlled amount of the controlled object.
The adjusting device performs an I adjustment calculation to obtain an operation signal to be applied to the controlled object, the differential adjustment calculation means performing a differential adjustment calculation based on the control amount, and the differential adjustment calculation means from the target value setting signal or the deviation. means for subtracting the output of or adding the output of the differential adjustment calculation means to the control amount.

さらに、請求項2に対応する発明は、請求項1に対応す
る発明に、さらに目標値設定信号に進みまたは遅れをも
たせる進み/遅れ演算手段を付加し、この進み/遅れ演
算手段の出力から前記微分調節演算手段の出力を減算し
て前記目標値を得ることにより、P動作のみ2自由度化
制御を行う構成である。
Furthermore, the invention corresponding to claim 2 is the invention corresponding to claim 1, further adding lead/delay calculation means for giving an advance or delay to the target value setting signal, and using the output of the lead/delay calculation means to calculate the target value setting signal. By subtracting the output of the differential adjustment calculation means to obtain the target value, only the P operation is controlled to have two degrees of freedom.

さらに、請求項3に対応する発明は、請求項2に対応す
る発明に、さらに目標値設定信号に係数を乗算する係数
乗算手段を設け、この係数乗算手段の出力と前記制御量
との偏差を微分調節演算手段により微分調節演算を行い
、進み/遅れ演算手段の出力からこの微分調節演算手段
の出力を減算して前記目標値を得ることにより、P+D
の2自由度化制御を行う構成である。
Furthermore, the invention corresponding to claim 3 is the invention corresponding to claim 2, further comprising a coefficient multiplier for multiplying the target value setting signal by a coefficient, and calculating the deviation between the output of the coefficient multiplier and the control amount. By performing differential adjustment calculation by the differential adjustment calculation means and subtracting the output of this differential adjustment calculation means from the output of the lead/lag calculation means to obtain the target value, P+D
This configuration performs two-degree-of-freedom control.

(作用) 従って、請求項1の発明は以上のような手段を講じたこ
とにより、微分調節演算手段にて制御対象の制御量から
微分調節演算出力を得た後、目標値設定信号に当該微分
調節演算出力を加算してPI調節演算手段の目標値とす
ることにより、微分動作を含んで偏差について種々の加
工処理を行ってPID制御を実行することができる。
(Function) Therefore, the invention of claim 1 takes the above measures, and after obtaining the differential adjustment calculation output from the controlled variable of the controlled object by the differential adjustment calculation means, the differential adjustment is applied to the target value setting signal. By adding the adjustment calculation outputs and using them as the target value of the PI adjustment calculation means, it is possible to perform various processing processes on the deviation including differential operation and execute PID control.

さらに、請求項2,3の発明は、目標値設定信号に進み
/遅れ演算機能を持つ目標値フィルタを設け、前記請求
項1と同様な作用を有する他、比例ゲインや積分時間の
2自由度化を実現することができる。
Furthermore, the inventions of claims 2 and 3 provide a target value filter having a lead/delay calculation function for the target value setting signal, and in addition to having the same effect as the above claim 1, the two degrees of freedom of proportional gain and integral time are provided. can be realized.

(実施例) 以下、本発明の第1の実施例について第1図を参照して
説明する。同図において11は制御対象12からの制御
量Pvについて測定値微分先行形の利点を生かすために
微分調節演算を行う微分調節演算手段、13は目標値設
定信号Sv′から微分調節演算手段11の出力を減算し
て目標値SVを得る減算手段、14は目標値設定手段1
3で得られた目標値Svから前記制御量P■を減算して
偏差を求める偏差演算手段、15はPI調節演算手段、
16はPI調節演算手段15の出力である操作信号MV
に外乱りを加えて制御対象12に印加する加算手段であ
る。
(Example) Hereinafter, a first example of the present invention will be described with reference to FIG. 1. In the figure, reference numeral 11 denotes differential adjustment calculation means for performing differential adjustment calculation on the controlled variable Pv from the controlled object 12 in order to make use of the advantage of the measured value differential preceding type; Subtraction means for subtracting the output to obtain the target value SV; 14 is the target value setting means 1
15 is a deviation calculation means for subtracting the control amount P■ from the target value Sv obtained in step 3 to obtain a deviation; 15 is a PI adjustment calculation means;
16 is the operation signal MV which is the output of the PI adjustment calculation means 15.
This is an addition means that adds a disturbance to the control target 12 and applies it to the controlled object 12.

次に、以上のような装置の動作について説明する。本装
置は測定値微分先行形の利点を生かしつつ偏差E等を有
効に加工してPID制御を実行することにある。
Next, the operation of the device as described above will be explained. The purpose of this device is to utilize the advantages of the measured value differential type and effectively process the deviation E etc. to execute PID control.

そこで、先ず、従来装置(第5図)における微分調節演
算手段5の制御系への関与状態について考察し、その後
、本発明装置の微分成分の関与状0 態と比較してみる。
Therefore, first, we will consider the state of involvement of the differential adjustment calculation means 5 in the control system in the conventional device (FIG. 5), and then compare it with the state of involvement of the differential component in the device of the present invention, which is 0.

すなわち、従来装置における制御対象2の制御量Pvが
微分調節演算手段5を通って得られる操作信号MVの微
分成分MvDは、 MvD(S)−1(TD−8)l(l+η・TD−8)
1・Pv(s)・・・(3) で表される。ここで、制御1PV(s)がaの大きさで
ステップ変化したとき、つまりPV (s)m a /
 sのとき、微分成分MVD(S)の時間領域での初期
値をmVD (0)  最終値をmy D(oo)とす
ると、最終値の定理から、111m  g+vn(t)
=avD(0)=1iIIl s−MVo(s)・PV
(s)ss rtllls、 KpToos   a×
□ 一一一  1+η・TD・ss −Dim  Kp”・°8 I−−1+η ・TDIIs となり、 また初期値の定理から、 1 Dim  ll1vo(t) −mvl)(” )−p
IIIl s−MvD(s)・Pv(s)= Rlra
S−Kp”””   a ×□ 1−0 1÷η・TDIIs  5 =IlIIIITD°8 g−o  1+η4Dos =0 ・・・ (5) が得られる。
That is, the differential component MvD of the operation signal MV obtained by the control amount Pv of the controlled object 2 in the conventional device through the differential adjustment calculation means 5 is MvD(S)-1(TD-8)l(l+η・TD-8 )
1・Pv(s)...(3) It is expressed as follows. Here, when the control 1PV (s) changes step by step with the magnitude of a, that is, PV (s) m a /
When s, if the initial value in the time domain of the differential component MVD(S) is mVD (0) and the final value is my D(oo), then from the final value theorem, 111m g+vn(t)
=avD(0)=1iIIIl s-MVo(s)・PV
(s) ss rtlls, KpToos ax
□ 111 1+η・TD・ss −Dim Kp”・°8 I−−1+η ・TDIIs And from the initial value theorem, 1 Dim ll1vo(t) −mvl)(” )−p
IIIl s-MvD(s)・Pv(s)= Rlra
S-Kp""" a ×□ 1-0 1÷η·TDIIs 5 =IlIIITD°8 go-o 1+η4Dos =0 (5) is obtained.

次に、本発明装置の第1の実施例について考察してみる
。今、従来装置と同様に制御RPV(s)がaの大きさ
でステップ変化したとき、っまりPV(s)=a/sの
とき、操作信号MVにおける微分成分MV′D (s)
の時間領域での初期値をmv′D (0)、最終値をm
v′D (op)とすると、最終値の定理から、 = my;(0) =1im  5−K(s>・C(s>ΦPV(s>To
   t+’rD・S = l1II Kpx ax−x 1−−        T+   1+η * i’ 
D* S−Kl)X − η (6) となり、 また初期値の定理から、 N1@ mvo(t) = gvo(” )To   
t+’rl・S 掌IQil  KpX Bx−× 5−〜      T+   1+η・TD−8D 鳳に9XBX− 1 (7) が得られる。
Next, let us consider a first embodiment of the device of the present invention. Now, as in the conventional device, when the control RPV(s) changes step by step with the magnitude of a, exactly when PV(s) = a/s, the differential component MV'D (s) in the operation signal MV
The initial value in the time domain is mv'D (0), and the final value is m
v'D (op), then from the final value theorem, = my; (0) = 1im 5-K(s>・C(s>ΦPV(s>To
t+'rD・S = l1II Kpx ax-x 1-- T+ 1+η * i'
D* S−Kl)X − η (6) From the initial value theorem, N1@mvo(t) = gvo(”)To
t+'rl・S Palm IQil KpX Bx−× 5−~ T+ 1+η・TD−8D 9XBX− 1 (7) is obtained in the tungsten.

ここで、 従来装置と本発明装置における微分成 分の初期値どうしおよび最終値どうしの間には(4)式
と(6)式、(5)式と(7)式からそれぞれ、 mvo(0)= mvo(0) −Kl)・(a/η)           ・・・ 
(8)+11VD(00)=0≠l1lv′D(oo)
= Kp−a(To/T+)          −(
9)の関係となる。すなわち、この(8)式および(9
)式から明らかなように、従来装置と本発明装置の間で
は、微分成分の時間領域での初期値は等しいが、時間領
域での最終値は等しくならない。
Here, between the initial values and final values of the differential components in the conventional device and the device of the present invention, mvo(0) is obtained from equations (4) and (6), and equations (5) and (7), respectively. = mvo(0) -Kl)・(a/η)...
(8)+11VD(00)=0≠l1lv'D(oo)
= Kp−a(To/T+) −(
9). That is, this equation (8) and (9
) As is clear from the equation, the initial values of the differential components in the time domain are the same between the conventional device and the device of the present invention, but the final values in the time domain are not the same.

そこで、本発明装置の(7)式の時間領域での最終値m
yD (oo)が微分動作に基づくものであることを証
明する必要がある。しかして、本発明装置の構成が微分
動作であることを証明するために、従来の実際の制御に
最適なものとして用いられている第7図の干渉形PID
制御における微分動作について解析してみる。この第7
図は偏差演算手段1とPI調節演算手段3との間に進み
/遅 4 れ演算手段8を挿入した構成であって、このときの操作
信号MY“の微分成分は、 ・・・ (10) となる。すなわち、この第7図の装置において制御tE
tPV(s)がaの大きさでステップ変化したとき、つ
まりPV(s)−a/sのとき、操作信号MV’の微分
成分MV;(s)の時間領域での初期値をmvC(O)
、最終値rnvo  (oO) トTると、 最終値の定理から、 1)iIIlmvo(t) =mv’、(0) (l−η) −KpX      xB η ・・・ (11) が得られ、 また初期値の定理がら、 NII1mv′D(t) ”” 11 %/ ; (00) が得られる。
Therefore, the final value m in the time domain of equation (7) of the device of the present invention
It is necessary to prove that yD (oo) is based on differential behavior. Therefore, in order to prove that the configuration of the device of the present invention is a differential operation, the interference type PID shown in FIG.
Let's analyze differential operation in control. This seventh
The figure shows a configuration in which a lead/lag calculating means 8 is inserted between the deviation calculating means 1 and the PI adjustment calculating means 3, and the differential component of the operation signal MY" at this time is... (10) In other words, in the device shown in FIG. 7, the control tE
When tPV(s) changes step by step with the magnitude of a, that is, when PV(s) - a/s, the initial value in the time domain of the differential component MV;(s) of the operation signal MV' is expressed as mvC(O )
, final value rnvo (oO) tT, then from the final value theorem, 1) iIIlmvo(t) = mv', (0) (l-η) -KpX xB η... (11) is obtained, Also, according to the initial value theorem, NII1mv'D(t) ``''11%/; (00) is obtained.

ここで、 η −0゜ 1と設定できるの で、 (7) 式と (12)式から、 a+v’o(” )= Kp−a・(TD/TI) −
sv;(oo)−Kp”a’(To/T+)0.9 となり、最も実用的な制御である第7図の微分成分と等
価となることが分る。つまり、第1図に示す構成の装置
は微分動作に関し第5図に示す従来のPID制御と等価
となることが証明できる。
Here, since it can be set as η -0゜1, from equations (7) and (12), a+v'o('')=Kp-a・(TD/TI)-
sv;(oo)-Kp"a'(To/T+)0.9, which is equivalent to the differential component in FIG. 7, which is the most practical control. In other words, the configuration shown in FIG. It can be proven that the device shown in FIG. 5 is equivalent to the conventional PID control shown in FIG. 5 in terms of differential operation.

従って、本発明装置は微分によるバイパス成分がなくな
り、偏差Eを加工して種々の変形例えば非線形処理を行
っても、微分動作を含んで変形処理が正確に行うことが
でき、ひいては所望とする変形のPID制御を実行でき
る。
Therefore, in the device of the present invention, there is no bypass component due to differentiation, and even if the deviation E is processed to perform various deformations, such as nonlinear processing, the deformation process including the differential operation can be performed accurately, and the desired deformation can be achieved. PID control can be executed.

なお、上記実施例では制御fipvを微分調節演算して
目標値設定信号Sv′から減算するようにしたが、例え
ば偏差Eから微分調節演算出力を減算する構成でもよく
、或いは第2図に示す如く微分調節演算手段11の出力
を加算手段17にて制御量Pvに加算し、目標値Svか
ら加算手段17の出力を減算して偏差Eを求めてもよい
In the above embodiment, the control fipv is subjected to a differential adjustment calculation and subtracted from the target value setting signal Sv', but a configuration may be adopted in which, for example, the output of the differential adjustment calculation is subtracted from the deviation E, or as shown in FIG. The output of the differential adjustment calculating means 11 may be added to the control amount Pv by the adding means 17, and the deviation E may be obtained by subtracting the output of the adding means 17 from the target value Sv.

次に、第3図は本発明の第2の実施例を示す構成図であ
る。この装置は、目標値設定信号SV′に目標値フィル
タ、つまり進み/遅れ演算手段21を設け、かつ、この
進み/遅れ演算手段217 の出力側に減算手段13を設け、ここで進み/遅れ演算
手段21の出力から微分調節演算手段11の出力を減算
して目標値SVを得る構成を付加したものである。
Next, FIG. 3 is a block diagram showing a second embodiment of the present invention. In this device, a target value filter, that is, a lead/lag calculating means 21 is provided for the target value setting signal SV', and a subtracting means 13 is provided on the output side of the lead/lag calculating means 217, which calculates the lead/lag. A configuration is added for subtracting the output of the differential adjustment calculation means 11 from the output of the means 21 to obtain the target value SV.

この第3図の装置における制御量Pvの応答式で表され
る。ここで、目標値追従最適アルゴリズ* ムをC(s)とすると、次のような演算式で表すことが
できる。
This is expressed by a response equation of the control amount Pv in the apparatus shown in FIG. Here, if the target value tracking optimal algorithm* is C(s), it can be expressed by the following arithmetic expression.

* C(s)−P(s)C(s) −Kp(α+(1/T+・5)1 (14) ここで、 C(s)= Kpl、t+(1/T+ ・s)1である
から、 この(14) 式に基づいて進み/遅  8 れ演算手段21である目標値フィルタF (s)を求め
ると、 となり、この(15)式から微分動作をもった進み/遅
れ演算機能を持つことになる。従って、この装置は、第
1図と同様な機能を有する他、外乱抑制最適制御の比例
ゲインがKpとなり、一方、目標値追従最適制御の比例
ゲインはα・K pとなり、このαを可変することによ
りP動作のみ2自由度化を実現できる。
*C(s)-P(s)C(s)-Kp(α+(1/T+・5)1 (14) Here, C(s)=Kpl, t+(1/T+・s)1 From this, if the target value filter F (s), which is the lead/lag calculation means 21, is found based on this equation (14), the following is obtained. From this equation (15), the lead/lag calculation function with differential operation can be calculated. Therefore, in addition to having the same function as shown in Fig. 1, this device has the proportional gain of the disturbance suppression optimum control as Kp, and the proportional gain of the target value tracking optimum control as α·Kp. By varying this α, it is possible to realize two degrees of freedom only for the P motion.

さらに、第4図は本発明の第3の実施例を示す構成図で
ある。この装置は、目標設定信号Svに係数γを乗算す
る係数乗算手段31と、制御量Pvから係数5乗算手段
31の出力を減算する減算9 手段32と、この減算手段32の出力を微分調節演算す
る微分調節演算手段11とを有し、進み/遅れ演算手段
21の出力から微分調節演算手段11の出力を減算して
目標値SVを得る構成である。
Furthermore, FIG. 4 is a configuration diagram showing a third embodiment of the present invention. This device includes a coefficient multiplication means 31 for multiplying a target setting signal Sv by a coefficient γ, a subtraction means 32 for subtracting the output of the coefficient 5 multiplication means 31 from the control amount Pv, and a differential adjustment operation for the output of the subtraction means 32. The target value SV is obtained by subtracting the output of the differential adjustment calculation means 11 from the output of the lead/lag calculation means 21.

この第4図に示す装置における制御量Pvの応答式は、 で表される。ここで、目標値追従最適アルゴリズ** ムをC(s)とすると、このC(s)は次の演算式で表
せる。
The response equation of the control amount Pv in the device shown in FIG. 4 is expressed as follows. Here, if the target value tracking optimal algorithm is C(s), this C(s) can be expressed by the following arithmetic expression.

C(s)=(F(s)+R(s)・K(s)Ic(s)
・・・ (1 1,) そして、 この(17) 式を変形すれば、  0 P(s) ・C(s)+R(s) ・K(s) ・C(
s)(18) を得ることができる。ここで、(14)式の関係を用い
ると、 ・・・ (19) となり、 ここで、 K(s)= (To−s)バl+7 ・TD*s)、C
(s)= Kp(1+(1/T+ ・s))であるから
、(19)式から、 R(s)−γ が得られる。つまり、係数乗算手段31の係数R(s)
はγとなる。
C(s)=(F(s)+R(s)・K(s)Ic(s)
... (1 1,) And if we transform this equation (17), we get 0 P(s) ・C(s)+R(s) ・K(s) ・C(
s) (18) can be obtained. Here, using the relationship of equation (14), ... (19) where, K(s)=(To-s)bar+7・TD*s),C
Since (s)=Kp(1+(1/T+·s)), R(s)−γ is obtained from equation (19). In other words, the coefficient R(s) of the coefficient multiplication means 31
becomes γ.

従って、この実施例の構成によれば、外乱抑制最適制御
の比例ゲインはKp、微分動作は、1 となり、一方、目標値追従最適制御の比例ゲインはα・
Kpとなり、その時の微分動作は、となり、目標値フィ
ルタの係数αと係数乗算手段31の係数γを可変するこ
とにより、P+D動作の2自由度化最適制御を実現でき
る。
Therefore, according to the configuration of this embodiment, the proportional gain of the disturbance suppression optimal control is Kp and the differential operation is 1, while the proportional gain of the target value tracking optimal control is α・
Kp, and the differential operation at that time is as follows. By varying the coefficient α of the target value filter and the coefficient γ of the coefficient multiplier 31, it is possible to realize two-degree-of-freedom optimal control of the P+D operation.

[発明の効果] 従って、以上説明したように本発明によれば次のような
種々の効果を奏する。
[Effects of the Invention] Therefore, as explained above, the present invention provides the following various effects.

先ず、請求項1においては、微分動作を含んで偏差を種
々の変形処理でき、ひいては所望とする変形を行ったP
ID制御を実行できる調節装置を提供できる。
First, in claim 1, the deviation can be subjected to various transformation processing including differential operation, and furthermore, the P can undergo the desired transformation.
A regulating device capable of performing ID control can be provided.

次に、請求項2では、微分動作を含んで偏差を種々の変
形処理することができ、またP動作のみの2自由度化を
容易に制御できる。
Next, in claim 2, the deviation can be subjected to various transformation processes including differential operation, and it is possible to easily control the conversion of only the P operation into two degrees of freedom.

さらに、請求項3においては、微分動作を含ん 2 で偏差を種々の変形処理することができ、またP十り動
作の2自由度化を容品に制御できる。
Furthermore, in claim 3, the deviation can be processed in various ways including the differential operation, and the two-degree-of-freedom operation of the P-plus operation can be elegantly controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の第1の実施例を示すブロック構成
図、第2図は第1図の変形例を示す構成図、第3図およ
び第4図はそれぞれ本発明装置の他の実施例を示すブロ
ック構成図、第5図ないし第7図はそれぞれ従来装置の
構成を示すブロック図である。 11・・・微分調節演算手段、12・・・制御対象、1
3・・・減算手段、14・・・偏差演算手段、15・・
・PI調節演算手段、16・・・加算手段、17・・・
加算手段、21・・・進み/遅れ演算手段(1了1標値
フイルタ)、31・・・係数乗算手段。
FIG. 1 is a block configuration diagram showing a first embodiment of the device of the present invention, FIG. 2 is a configuration diagram showing a modification of FIG. 1, and FIGS. 3 and 4 are respectively other embodiments of the device of the present invention. FIGS. 5 to 7 are block diagrams illustrating the configurations of conventional devices, respectively. 11... Differential adjustment calculation means, 12... Controlled object, 1
3... Subtraction means, 14... Deviation calculation means, 15...
- PI adjustment calculation means, 16... addition means, 17...
Adding means, 21...Advance/lag calculation means (1-1 target price filter), 31... Coefficient multiplication means.

Claims (3)

【特許請求の範囲】[Claims] (1)目標値と制御対象の制御量との偏差に基づいてP
(比例)I(積分)調節演算を行って前記制御対象に印
加する操作信号を得る調節装置において、 前記制御量に基づいて微分調節演算を行う微分調節演算
手段と、目標値設定信号または前記偏差から前記微分調
節演算手段の出力を減算し、または前記制御量に前記微
分調節演算手段の出力を加算する手段とを備え、D(微
分)を含んだPID制御を実行することを特徴とする調
節装置。
(1) P based on the deviation between the target value and the controlled variable of the controlled object
A regulating device that performs a (proportional) I (integral) adjustment calculation to obtain an operation signal to be applied to the controlled object, comprising a differential adjustment calculation means that performs a differential adjustment calculation based on the control amount, and a target value setting signal or the deviation. and means for subtracting the output of the differential adjustment calculation means from or adding the output of the differential adjustment calculation means to the control amount, and performing PID control including D (differential). Device.
(2)目標値と制御対象の制御量との偏差に基づいてP
I調節演算を行って前記制御対象に印加する操作信号を
得る調節装置において、 前記制御量に基づいて微分調節演算を行う微分調節演算
手段と、目標値設定信号に進みまたは遅れをもたせる進
み/遅れ演算手段と、この進み/遅れ演算手段の出力か
ら前記微分調節演算手段の出力を減算して前記目標値を
得る目標値設定手段とを備え、P動作の2自由度化を行
うことを特徴とする調節装置。
(2) P based on the deviation between the target value and the controlled variable of the controlled object
A regulating device that performs an I adjustment calculation to obtain an operation signal to be applied to the controlled object, comprising: a differential adjustment calculation means that performs a differential adjustment calculation based on the control amount; and a lead/lag that causes the target value setting signal to advance or lag. It is characterized by comprising a calculation means and a target value setting means for obtaining the target value by subtracting the output of the differential adjustment calculation means from the output of the lead/lag calculation means, and providing two degrees of freedom for the P motion. Adjustment device.
(3)目標値と制御対象の制御量との偏差に基づいてP
I調節演算を行って前記制御対象に印加する操作信号を
得る調節装置において、 目標値設定信号に進みまたは遅れをもたせる進み/遅れ
演算手段と、前記目標値設定信号に所定の係数を乗算す
る係数乗算手段と、前記制御量から前記係数乗算手段の
出力を減算する減算手段と、この減算手段の出力に基づ
いて微分調節演算を行う微分調節演算手段と、前記進み
/遅れ演算手段の出力から前記微分調節演算手段の出力
を減算して前記目標値を得る目標値設定手段とを備え、
P動作およびD動作の2自由度化を行うことを特徴とす
る調節装置。
(3) P based on the deviation between the target value and the controlled variable of the controlled object
A control device that performs an I adjustment calculation to obtain an operation signal to be applied to the controlled object, comprising: lead/lag calculating means for giving a lead or delay to the target value setting signal; and a coefficient for multiplying the target value setting signal by a predetermined coefficient. a multiplication means; a subtraction means for subtracting the output of the coefficient multiplication means from the control amount; a differential adjustment calculation means for performing a differential adjustment calculation based on the output of the subtraction means; target value setting means for obtaining the target value by subtracting the output of the differential adjustment calculation means;
An adjusting device characterized by performing two degrees of freedom of P motion and D motion.
JP25046089A 1989-09-28 1989-09-28 Adjuster Expired - Lifetime JPH0792687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25046089A JPH0792687B2 (en) 1989-09-28 1989-09-28 Adjuster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25046089A JPH0792687B2 (en) 1989-09-28 1989-09-28 Adjuster

Publications (2)

Publication Number Publication Date
JPH03113501A true JPH03113501A (en) 1991-05-14
JPH0792687B2 JPH0792687B2 (en) 1995-10-09

Family

ID=17208207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25046089A Expired - Lifetime JPH0792687B2 (en) 1989-09-28 1989-09-28 Adjuster

Country Status (1)

Country Link
JP (1) JPH0792687B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017112A1 (en) * 1993-12-21 1995-06-29 Birmingham Manufacturing Jewellers Limited Finger rings
GB2290453A (en) * 1993-12-21 1996-01-03 Birmingham Mfg Jewellers Ltd Finger Rings

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995017112A1 (en) * 1993-12-21 1995-06-29 Birmingham Manufacturing Jewellers Limited Finger rings
GB2290453A (en) * 1993-12-21 1996-01-03 Birmingham Mfg Jewellers Ltd Finger Rings
GB2290453B (en) * 1993-12-21 1997-07-02 Birmingham Mfg Jewellers Ltd Finger Rings

Also Published As

Publication number Publication date
JPH0792687B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH0298701A (en) Controller
JP2772106B2 (en) 2-DOF adjustment device
JPH03113501A (en) Controller
JP6979330B2 (en) Feedback control method and motor control device
JP4648448B2 (en) Closed loop process control device including PID regulator
Bobtsov et al. Adaptive control of linear MIMO systems
JP2839626B2 (en) 2-DOF adjustment device
JPS63262703A (en) Versatility time difference comparing and compensating method for control system
US5245529A (en) Two degrees of freedom type control system
JP2643506B2 (en) Predictive controllers for industrial processes
JP3034404B2 (en) 2-DOF PID adjustment device
JPH0454243B2 (en)
JP2809849B2 (en) 2-DOF adjustment device
JP2772059B2 (en) 2-DOF PID controller
JP2845534B2 (en) 2-DOF adjustment device
JP2885544B2 (en) Dead time compensation controller
RU2079868C1 (en) Device for control of objects with inertial delay
JPS629405A (en) Process controller
JP2752230B2 (en) 2-DOF control device
JPH04312101A (en) Two-frredom degree type adjustment device
JP3015523B2 (en) Process control equipment
JPH01303084A (en) Digital servo-controlling method
JP3137449B2 (en) Adjustment device
JPH0415715A (en) Robust velocity/position controller
JPH08314504A (en) Pid-imc interface device and imc controller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

EXPY Cancellation because of completion of term