JPH03113355A - Fault detecting device for exhaust gas sensor - Google Patents

Fault detecting device for exhaust gas sensor

Info

Publication number
JPH03113355A
JPH03113355A JP1253847A JP25384789A JPH03113355A JP H03113355 A JPH03113355 A JP H03113355A JP 1253847 A JP1253847 A JP 1253847A JP 25384789 A JP25384789 A JP 25384789A JP H03113355 A JPH03113355 A JP H03113355A
Authority
JP
Japan
Prior art keywords
sensor
heater
oxygen sensor
output
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1253847A
Other languages
Japanese (ja)
Other versions
JP2913694B2 (en
Inventor
Kazuya Komatsu
一也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP1253847A priority Critical patent/JP2913694B2/en
Publication of JPH03113355A publication Critical patent/JPH03113355A/en
Application granted granted Critical
Publication of JP2913694B2 publication Critical patent/JP2913694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To accurately detect the fault of a heater which is attached to an oxygen sensor by checking the sensor output rise time from power-on operation to the time when the output of the oxygen sensor exceeds a set value. CONSTITUTION:A comparing means 17 compares the output voltage of the oxygen sensor 12 with the threshold voltage (set value) first. When it is decided that the output voltage of the oxygen sensor 12 exceeds the threshold voltage, the time from the start to the current point is compared with a specific time for fault decision making corresponding to the sensor output rise time in the normal state. A fault decision means 18 sets the ratio R of a delay time to the value in the normal state according to the comparison result of the means 17 when the sensor output rise time is shorter than the specific time, but decides that the heater 13 is faulty when the sensor output rise time exceeds the specific time and sets the ratio R to a specific value larger than the value in the normal state. Consequently, the fault of the heater attached to the oxygen sensor 12 is accurately detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空燃比のフィードバック制御に用いられるヒ
ータ付排ガスセンサのヒータの故障を検出する排ガスセ
ンサの故障検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a failure detection device for an exhaust gas sensor that detects failure of a heater of an exhaust gas sensor with a heater used for feedback control of an air-fuel ratio.

(従来の技術) 従来、例えば特公昭62−12382号公報に示される
ように、エンジンの排気通路に、排ガス中の酸素濃度を
検出する酸素センサ(排ガスセンサ)を設け、この酸素
センサの出力に応じて空燃比をフィードバック制御し、
つまり、酸素センサの出力によって検出される空燃比が
リッチ側であれば燃料供給量を減少方向に補正し、リー
ン側であれば燃料供給量を増加方向に補正するという制
−を繰返すようにした空燃比制陣装置は一般に知られて
いる。
(Prior Art) Conventionally, as shown in Japanese Patent Publication No. 62-12382, for example, an oxygen sensor (exhaust gas sensor) for detecting the oxygen concentration in exhaust gas is provided in the exhaust passage of an engine, and the output of this oxygen sensor is Feedback controls the air-fuel ratio accordingly,
In other words, if the air-fuel ratio detected by the output of the oxygen sensor is on the rich side, the fuel supply amount is corrected to decrease, and if it is on the lean side, the fuel supply amount is corrected to increase. Air-fuel ratio control devices are generally known.

また、このような装置において、上記酸素センサにセン
サ活性化用のヒータを付設したヒータ付排ガスセンサを
用いることも従来から行なわれている。
Furthermore, in such devices, it has been conventionally possible to use an exhaust gas sensor with a heater, which is the oxygen sensor provided with a heater for activating the sensor.

(発明が解決しようとする課題) ヒータ付排ガスセンサにより酸素濃度を検出して空燃比
のフィードバック制御を行なう場合、醒素センサそのも
のは正常であってもヒータが故障するとセンサ出力特性
が変化し、このため、フィードバック制御される空燃比
が適正値からずれてしまうという問題がある。
(Problems to be Solved by the Invention) When performing feedback control of the air-fuel ratio by detecting oxygen concentration using an exhaust gas sensor equipped with a heater, even if the exhaust gas sensor itself is normal, if the heater fails, the sensor output characteristics change. Therefore, there is a problem in that the air-fuel ratio subjected to feedback control deviates from an appropriate value.

つまり、ヒータが故障していない正常時には、センサ出
力特性が第4図に実線で示すようになり、このときの理
論空燃比(λ−1)に対応する所定のしきい電圧VSを
境に、センサの出力電圧がしきい値より高いか低いかに
より空燃比のリッチ、リーンが検出され、それに応じた
フィードバック制御が行なわれる。ところが、ヒータが
故障するとセンサの出力特性が第4図に破線で示すよう
に変化し、上記しきい電圧■Sと理論空燃比(λ−1)
とにずれが生じる。このため、ヒータ故障時には、要求
からずれた空燃比にフィードバック制御されてしまう。
In other words, under normal conditions when the heater is not malfunctioning, the sensor output characteristics become as shown by the solid line in Figure 4, and after reaching the predetermined threshold voltage VS corresponding to the stoichiometric air-fuel ratio (λ-1) at this time, Rich or lean air-fuel ratio is detected depending on whether the output voltage of the sensor is higher or lower than a threshold value, and feedback control is performed accordingly. However, if the heater fails, the output characteristics of the sensor change as shown by the broken line in Figure 4, and the above threshold voltage ■S and stoichiometric air-fuel ratio (λ-1) change.
There will be a discrepancy between the two. Therefore, when the heater fails, feedback control is performed to an air-fuel ratio that deviates from the required one.

そしてこのようにヒータの故障に起因して空燃比がずれ
るとエミッションが悪化し、例えば第5図に示すように
正常時(符号aで示す)と比べてヒータ故障時(符号す
で示す)にNOXが増加する等の問題が生じる。
If the air-fuel ratio deviates due to a heater failure, emissions will worsen, and for example, as shown in Figure 5, emissions will be worse when the heater fails (indicated by the symbol a) compared to when it is normal (indicated by the symbol a). Problems such as an increase in NOx occur.

このような問題に対処するためには、ヒータの故障を的
確に検出することが要求される。
In order to deal with such problems, it is required to accurately detect failure of the heater.

本発明はこのような事情に鑑み、酸素センサそのものは
正常であってもヒータが故障したときに、これを的確に
検出することができ、ヒータ故障時の対処を可能にする
排ガスセンサの故障検出装置を提供するものである。
In view of these circumstances, the present invention provides an exhaust gas sensor failure detection system that can accurately detect when a heater malfunctions even if the oxygen sensor itself is normal, and that enables countermeasures to be taken in the event of a heater malfunction. It provides equipment.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記のような目的を達成するため、排ガス中の
酸素濃度を検出して、空燃比をフィードバック制御する
制御手段に検出信号を出力する酸素センサと、この酸素
センサに付設されたセンサ活性化用のヒータとを有する
排ガスセンサにおける上記ヒータの故障を検出する排ガ
スセンサの故障検出装置であって、上記酸素センサの出
力を設定値と比較する比較手段と、この比較手段による
比較に基づいて、通電してから上記酸素センサの出力が
設定値以上となるまでのセンサ出力立ち上がり時間を調
べることによりヒータの故障を判定する故障判定手段と
を備えたものである。
In order to achieve the above objects, the present invention includes an oxygen sensor that detects the oxygen concentration in exhaust gas and outputs a detection signal to a control means that feedback controls the air-fuel ratio, and a sensor activation sensor attached to the oxygen sensor. A failure detection device for an exhaust gas sensor that detects a failure of the heater in an exhaust gas sensor having a heater for oxidation, comprising: a comparison means for comparing the output of the oxygen sensor with a set value; and a failure determination means for determining a failure of the heater by checking the rise time of the sensor output from the time when the oxygen sensor is energized until the output of the oxygen sensor exceeds a set value.

〔作用〕[Effect]

上記構成によると、ヒータが故障したときに、センサ出
力立ち上がり時間が正常時より長くなることを利用して
故障が検出される。
According to the above configuration, when the heater fails, the failure is detected using the fact that the sensor output rise time is longer than in normal times.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

第1図は本発明の故障検出装置を含む空燃比制twt装
置の一実施例を示す。この図において、エンジン本体1
には、燃焼室2に開口して吸気弁3および排気弁4でそ
れぞれ開閉される吸気ボート5および排気ボート6が形
成され、吸気ボート5には吸気通路7が連通し、排気ボ
ート6には排気通路8が連通している。
FIG. 1 shows an embodiment of an air-fuel ratio control twt device including a failure detection device of the present invention. In this figure, engine body 1
An intake boat 5 and an exhaust boat 6 are formed which open into the combustion chamber 2 and are opened and closed by an intake valve 3 and an exhaust valve 4, respectively.An intake passage 7 communicates with the intake boat 5, and an intake passage 7 communicates with the exhaust boat 6. An exhaust passage 8 is in communication.

上記吸気通路7には、エア70−メータ9、スロットル
弁10および燃料噴射弁11が配設されている。
In the intake passage 7, an air 70-meter 9, a throttle valve 10, and a fuel injection valve 11 are arranged.

一方、上記排気通路8には、酸素センサ12とこれに付
設したセンサ活性化用のヒータ13とを有する排ガスセ
ンサが設けられている。上記酸素センサ12は排ガス中
の酸素濃度を検出することにより混合気の空燃比を検出
するものである。当実流側において酸素センサ12は、
空燃比に対する出力特性として第4図に示すようなλ特
性をもったλセンサで形成されている。この酸素センサ
12の特性は、ヒータ13がONの時は第4図中の実線
のようになるのに対し、ヒータ13が0FF(故障)の
時は第4図中の破線のようになる。
On the other hand, the exhaust passage 8 is provided with an exhaust gas sensor having an oxygen sensor 12 and a heater 13 attached thereto for activating the sensor. The oxygen sensor 12 detects the air-fuel ratio of the air-fuel mixture by detecting the oxygen concentration in the exhaust gas. On the actual flow side, the oxygen sensor 12 is
It is formed of a λ sensor having a λ characteristic as shown in FIG. 4 as an output characteristic with respect to the air-fuel ratio. The characteristics of the oxygen sensor 12 are as shown by the solid line in FIG. 4 when the heater 13 is ON, and as shown by the broken line in FIG. 4 when the heater 13 is OFF (failure).

上記酸素センサ12の出力は、第1図中に示したコント
ロールユニット(ECU)15に入力される。このコン
トロールユニット15は、酸素センサ12の出力に基づ
いて空燃比をフィードバック制御する空燃比制御手段1
6を含むとともに、故障検出装置を構成する比較手段1
7および故障判定手段18を含んでおり、さらに、故障
判定手段18によって故障が判定されたときに空燃比の
フィードバック制御を修正する修正手段19を含んでい
る。
The output of the oxygen sensor 12 is input to a control unit (ECU) 15 shown in FIG. This control unit 15 includes air-fuel ratio control means 1 that performs feedback control of the air-fuel ratio based on the output of the oxygen sensor 12.
Comparison means 1 which includes 6 and constitutes a failure detection device.
7 and a failure determination means 18, and further includes a modification means 19 for modifying the feedback control of the air-fuel ratio when the failure determination means 18 determines that a failure has occurred.

上記空燃比制御手段16は、エアフローメータ9からの
吸気量検出信号および回転数センサ20からのエンジン
回転数検出信号に基づいて基本噴射面を求めるとともに
、酸素センサ12の出力に応じてフィードバック補正量
を増減し、この基本噴射量およびフィードバック補正量
がらRr4噴射量を求め、それに応じた噴射パルスを燃
料噴射弁11に出力することにより、燃料噴射量を制御
するようになっている。酸素センサ12の出力に応じた
フィードバック補正量の増減は例えば第3図のように行
なわれる。すなわち、酸素センサ12の出力電圧Voが
しきい電圧Va (0,45V)より高くなったときは
、所定のデイレ−時間Tdr後に比例、微分制御でフィ
ードバック補正量を燃料減少方向に変化させ、また上記
出力電圧Voがしきい電圧Vaより低くなったときは、
所定のデイレ−時間Tl後に比例、微分制御でフィード
バック補正量を燃料増加方向に変化させるようにしてい
る。上記デイレ−時間Tdr、 Tdlをもたせている
のは、ノイズによるWA!IJ mの防止等のためであ
る。
The air-fuel ratio control means 16 determines the basic injection surface based on the intake air amount detection signal from the air flow meter 9 and the engine rotation speed detection signal from the rotation speed sensor 20, and also calculates a feedback correction amount according to the output of the oxygen sensor 12. The fuel injection amount is controlled by increasing or decreasing the Rr4 injection amount, determining the Rr4 injection amount from this basic injection amount and the feedback correction amount, and outputting an injection pulse corresponding to the Rr4 injection amount to the fuel injection valve 11. The feedback correction amount is increased or decreased depending on the output of the oxygen sensor 12, for example, as shown in FIG. That is, when the output voltage Vo of the oxygen sensor 12 becomes higher than the threshold voltage Va (0.45V), after a predetermined delay time Tdr, the feedback correction amount is changed in the direction of fuel reduction by proportional and differential control, and When the output voltage Vo becomes lower than the threshold voltage Va,
After a predetermined delay time Tl, the feedback correction amount is changed in the direction of increasing fuel by proportional and differential control. The above delay times Tdr and Tdl are caused by noise WA! This is to prevent IJ m.

また、上記比較手段17は、ヒータ13への通電後に酸
素センサ12の出力を設定値と比較して設定値以上とな
ったとき(センサ出力が立ち上がったとき)にこれを検
出し、故障判定手段18は、比較手段17による比較に
基づいて、通電してから上記酸素センサ12の出力が設
定値以上となるまでのセンサ出力立ち上がり時間を調べ
、このセンサ出力立ち上がり時間が所定時間以上となっ
たときにヒータ13の故障と判定するものである。
Further, the comparison means 17 compares the output of the oxygen sensor 12 with a set value after the heater 13 is energized, and detects this when the output exceeds the set value (when the sensor output rises), and the failure determination means 18, based on the comparison by the comparison means 17, examines the sensor output rise time from when the electricity is turned on until the output of the oxygen sensor 12 becomes equal to or greater than a set value, and when this sensor output rise time becomes equal to or greater than a predetermined time; In this case, it is determined that the heater 13 is malfunctioning.

そしてこの故障が検出されたときは、上記修正手段19
により、上記両デイレー時間Tdr、 7 dlの比(
Tdr/T+jl)が正常時に対して変更されるように
し、具体的には、第3図中に破線で示したように、セン
サ出力がしきい電圧■Sを越えてからフィードバック補
正量の変化が燃料減少方向に切換ねるまでのデイレ−時
間Tdrを長くするようにしている。
When this failure is detected, the correcting means 19
Accordingly, the ratio of the above two delay times Tdr, 7 dl (
Tdr/T+jl) is changed from the normal state, and specifically, as shown by the broken line in Figure 3, the feedback correction amount changes after the sensor output exceeds the threshold voltage ■S. The delay time Tdr until switching to the fuel decreasing direction is made longer.

上記比較手段17および故障判定手段18によるヒータ
13の故障の検出とそれに応じた修正手段19による修
正の処理の具体例を、第2図のフローチャートに示す。
A specific example of the detection of a failure in the heater 13 by the comparison means 17 and the failure determination means 18 and the corresponding correction processing by the correction means 19 is shown in the flowchart of FIG.

このフローチャートに示すルーチンはイグニッションオ
ンでスタートし、先ずステップS1で酸素センサ12の
出力電圧Vaをしきい電圧(設定値)Vsと比較して、
しきい電圧Vsを越えたか否かにより上記出力電圧Vo
が立ち上がったか否かを調べ、出力電圧Voが立ち上が
るまでは、燃料噴射量をオーブンループ制御するオーブ
ンループメインルーチン(ステップ82 )を経てステ
ップS1に戻る。
The routine shown in this flowchart starts when the ignition is turned on, and first, in step S1, the output voltage Va of the oxygen sensor 12 is compared with the threshold voltage (set value) Vs.
The above output voltage Vo depends on whether or not the threshold voltage Vs is exceeded.
The process returns to step S1 via an oven loop main routine (step 82) for controlling the fuel injection amount in an oven loop until the output voltage Vo rises.

ステップS1でM素センサ12の出力電圧V。In step S1, the output voltage V of the M element sensor 12 is determined.

がしきい電圧VSを越えたことを判定したときは、ステ
ップS3で、スタートからこの時点までの時間(センサ
出力立ち上がり時間)Toを、正常時のセンサ出力立ち
上がり時間に相当する故障判定用の所定時間Ttと比較
する。そして、センサ出力立ち上がり時間Toが所定時
間以内であれば、ステップS4で、上記デイレ−時間T
dr、 Tdlの比(Tdr/Tdl)を通常時の値A
/A’  (例えば90as/40m5>とするが、セ
ンサ出力立ち上がり時間Toが所定時間を越えればヒー
タ13の故障と判定して、ステップS5で、上記比(T
 dr/Tdl)を通常時の値A/A’ より大きい所
定の値B/B’  (例えば1351g/4013)と
する。
When it is determined that the threshold voltage VS has been exceeded, in step S3, the time (sensor output rise time) To from the start to this point is set to a predetermined value for fault determination that corresponds to the sensor output rise time during normal operation. Compare with time Tt. Then, if the sensor output rise time To is within a predetermined time, in step S4, the delay time T
The ratio of dr and Tdl (Tdr/Tdl) to the normal value A
/A' (for example, 90as/40m5>), but if the sensor output rise time To exceeds a predetermined time, it is determined that the heater 13 has failed, and in step S5, the above ratio (T
dr/Tdl) is set to a predetermined value B/B' (for example, 1351g/4013) which is larger than the normal value A/A'.

ステップS4またはステップS5に続いてステップS6
では、前述のように酸素センサ12の出力に応じて空燃
比をフィードバック制御するフィードバック制御ルーチ
ンを実行する。そして、ステップS7でイグニッション
オフ等の制御M1$1了条件となったことが判定される
までステップS6を繰返し、制御終了条件となれば終了
する。
Following step S4 or step S5, step S6
Now, as described above, a feedback control routine for feedback controlling the air-fuel ratio according to the output of the oxygen sensor 12 is executed. Then, step S6 is repeated until it is determined in step S7 that the control M1$1 termination condition such as turning off the ignition has been met, and if the control termination condition has been met, the process ends.

このような真実流側の装置によると、ステップ81.8
2で、スタートしてから酸素センサ12の出力が立ち上
がるまでの時間Toが調べられることにより、ヒータ1
3の故障が的確に判定され、つまりヒータ13が故障に
よってオフとなっているとセンサ出力立ち上がり時間T
oが長くなることから、この故障が上記判定によって検
出される。
According to such a true flow side device, step 81.8
2, by checking the time To from the start until the output of the oxygen sensor 12 rises, the heater 1
If the failure of No. 3 is accurately determined, that is, the heater 13 is turned off due to the failure, the sensor output rise time T
Since o becomes longer, this failure is detected by the above determination.

さらに、故障検出時には、空燃比のフィードバック制御
におけるデイレ−時間T dr、 T dlの比(Td
r/Tdl)が正常時より大きくされる(ステップ85
 )ことにより、ヒータ故障時の空燃比のずれが是正さ
れる。つまり、ヒータ故障時には、酸素センサ12の特
性が第4図に破線で示すように変化することにより、し
きい電圧VSに対応する空燃比がリーン側にずれ、正常
時と同様にフィードバック制御すると、制御された空燃
比がり一ン側に偏る。これに対し、ヒータ故障時に上記
比(Tdr/Tdl)を大きくすれば、第3図から明ら
かなように、フィードバック補正量が燃料増加方向とさ
れる時間が増大されることから、空燃比がリッチ方向に
修正される。これによってエミッションが改善される。
Furthermore, when a failure is detected, the ratio (Td
r/Tdl) is made larger than normal (step 85
), the deviation in air-fuel ratio at the time of heater failure is corrected. In other words, when the heater fails, the characteristics of the oxygen sensor 12 change as shown by the broken line in FIG. 4, causing the air-fuel ratio corresponding to the threshold voltage VS to shift to the lean side, and when feedback control is performed as in normal times, The controlled air-fuel ratio is biased towards one side. On the other hand, if the ratio (Tdr/Tdl) is increased when the heater fails, as is clear from FIG. corrected in the direction. This improves emissions.

第5図′は横軸を排気ガス中のNOXの量、縦軸を排気
ガス中のGoの量として、排ガス成分を正常時(符号a
を付した点)と、ヒータ故障時に正常時と同じフィード
バック制御を行なった場合(符号すを付した点)と、ヒ
ータ故障時に上記修正を行なった場合(符号Cを付した
点)とについて示し、この図から明らかなように、ヒー
タ故障時に正常時と同じフィードバック制御を行なうと
空燃比のリーン化によってNOXが増大するのに対し、
上記修正を行なうとNOxおよびCOが許容範囲(斜線
部分)内となる状態に戻される。
Figure 5' shows the exhaust gas components under normal conditions (symbol a
(points marked with a ), when the same feedback control as during normal operation is performed when the heater fails (points marked with a symbol), and when the above corrections are made when the heater fails (points marked with a symbol C). As is clear from this figure, when the heater fails, if the same feedback control as during normal operation is performed, NOx increases due to leaner air-fuel ratio.
When the above correction is performed, NOx and CO are returned to a state within the permissible range (shaded area).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、i1!素センサにヒータが付設
された排ガスセンサにおける上記ヒータの故障を検出す
るものであって、通電してから上記酸素センサの出力が
設定値以上となるまでのセンサ出り立ち上がり時間を調
べることによりヒータの故障を判定するようにしている
ため、酸素センサは正常であっても上記ヒータの故障に
よって酸素センサの特性が変化する状態となったときに
、その故障を的確に検出することができる。従って、ヒ
ータ付排ガスセンサを用いた空燃比フィードバック制御
においてヒータ故障時の対処を可能にするものである。
As described above, the present invention provides i1! This is to detect a failure of the heater in an exhaust gas sensor in which a heater is attached to the element sensor, and detects the failure of the heater by checking the rise time of the sensor output from the time when the power is turned on until the output of the oxygen sensor exceeds the set value. Therefore, even if the oxygen sensor is normal, when the characteristics of the oxygen sensor change due to a failure of the heater, the failure can be accurately detected. Therefore, in air-fuel ratio feedback control using an exhaust gas sensor with a heater, it is possible to deal with a heater failure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の故障検出装置を含む空燃比制御装置の
一実施例を示す概略図、第2図は故障検出等の処理の一
例を示すフローチャート、第3図は酸素センサの出力変
化とフィードバック補正量の変化との関係を示す説明図
、第4図は空燃比に対する酸素センサ出力の特性を示す
図、第5図は空燃比tII制御が行なわれている状態で
の正常時とヒータ故障時とヒータ故障時に空燃比制御に
修正を加えた場合とにおける排ガス成分を示す図である
。 11・・・燃料噴射弁、12・・・酸素センサ、13・
・・ヒータ、15・・・コントロールユニット、16・
・・空燃比制御手段、17・・・比較手段、18・・・
故障判定手段。
FIG. 1 is a schematic diagram showing an embodiment of an air-fuel ratio control device including a failure detection device of the present invention, FIG. 2 is a flowchart showing an example of processing such as failure detection, and FIG. An explanatory diagram showing the relationship with changes in the feedback correction amount, Figure 4 is a diagram showing the characteristics of the oxygen sensor output with respect to the air-fuel ratio, and Figure 5 is a diagram showing the normal state and heater failure when air-fuel ratio tII control is being performed. FIG. 4 is a diagram showing the exhaust gas components in the case where the air-fuel ratio control is corrected when the heater fails. 11...Fuel injection valve, 12...Oxygen sensor, 13.
... Heater, 15 ... Control unit, 16.
... Air-fuel ratio control means, 17... Comparison means, 18...
Failure determination means.

Claims (1)

【特許請求の範囲】[Claims] 1、排ガス中の酸素濃度を検出して、空燃比をフィード
バック制御する制御手段に検出信号を出力する酸素セン
サと、この酸素センサに付設されたセンサ活性化用のヒ
ータとを有する排ガスセンサにおける上記ヒータの故障
を検出する排ガスセンサの故障検出装置であつて、上記
酸素センサの出力を設定値と比較する比較手段と、この
比較手段による比較に基づいて、通電してから上記酸素
センサの出力が設定値以上となるまでのセンサ出力立ち
上がり時間を調べることによりヒータの故障を判定する
故障判定手段とを備えたことを特徴とする排ガスセンサ
の故障検出装置。
1. The above-mentioned exhaust gas sensor having an oxygen sensor that detects the oxygen concentration in exhaust gas and outputs a detection signal to a control means that feedback controls the air-fuel ratio, and a heater attached to the oxygen sensor for activating the sensor. A failure detection device for an exhaust gas sensor that detects a failure of a heater, comprising a comparison means for comparing the output of the oxygen sensor with a set value, and a comparison means for comparing the output of the oxygen sensor with a set value. 1. A failure detection device for an exhaust gas sensor, comprising: failure determination means for determining a failure of a heater by checking the rise time of the sensor output until it exceeds a set value.
JP1253847A 1989-09-28 1989-09-28 Exhaust gas sensor failure detection device Expired - Fee Related JP2913694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1253847A JP2913694B2 (en) 1989-09-28 1989-09-28 Exhaust gas sensor failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1253847A JP2913694B2 (en) 1989-09-28 1989-09-28 Exhaust gas sensor failure detection device

Publications (2)

Publication Number Publication Date
JPH03113355A true JPH03113355A (en) 1991-05-14
JP2913694B2 JP2913694B2 (en) 1999-06-28

Family

ID=17256959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1253847A Expired - Fee Related JP2913694B2 (en) 1989-09-28 1989-09-28 Exhaust gas sensor failure detection device

Country Status (1)

Country Link
JP (1) JP2913694B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811661A (en) * 1995-09-29 1998-09-22 Siemens Aktiengesellschaft Method for monitoring the functional capability of an exhaust gas sensor-heater
JP2006003240A (en) * 2004-06-18 2006-01-05 Nissan Motor Co Ltd Heater control device of oxygen sensor
JP2006240753A (en) * 2005-02-28 2006-09-14 Ricoh Co Ltd Sheet post-processing apparatus, and image forming device
JP2008046007A (en) * 2006-08-17 2008-02-28 Fuji Electric Fa Components & Systems Co Ltd Method of detecting abnormality in thin-film gas sensor
JP2010210311A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Device and method for diagnosing deterioration of gas sensor
CN102052132A (en) * 2009-10-29 2011-05-11 通用汽车环球科技运作公司 Method and system for detecting a fault during catalyst light-off

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5811661A (en) * 1995-09-29 1998-09-22 Siemens Aktiengesellschaft Method for monitoring the functional capability of an exhaust gas sensor-heater
JP2006003240A (en) * 2004-06-18 2006-01-05 Nissan Motor Co Ltd Heater control device of oxygen sensor
JP4534616B2 (en) * 2004-06-18 2010-09-01 日産自動車株式会社 Oxygen sensor heater control device
JP2006240753A (en) * 2005-02-28 2006-09-14 Ricoh Co Ltd Sheet post-processing apparatus, and image forming device
JP2008046007A (en) * 2006-08-17 2008-02-28 Fuji Electric Fa Components & Systems Co Ltd Method of detecting abnormality in thin-film gas sensor
JP2010210311A (en) * 2009-03-09 2010-09-24 Nissan Motor Co Ltd Device and method for diagnosing deterioration of gas sensor
CN102052132A (en) * 2009-10-29 2011-05-11 通用汽车环球科技运作公司 Method and system for detecting a fault during catalyst light-off
US8504278B2 (en) 2009-10-29 2013-08-06 GM Global Technology Operations LLC Method and system for detecting a fault during catalyst light-off
DE102010049288B4 (en) * 2009-10-29 2014-05-15 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) System for detecting an error during a Katalysatoranspringvorganges

Also Published As

Publication number Publication date
JP2913694B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP3927395B2 (en) Control device for compression ignition engine
US6830043B2 (en) Secondary air supply abnormality detection system
JP2893308B2 (en) Air-fuel ratio control device for internal combustion engine
US6644017B2 (en) Device for and method of controlling air-fuel ratio of internal combustion engine
KR940001933B1 (en) Air-fuel ratio control device for engine
JP3060745B2 (en) Engine air-fuel ratio control device
JP4042690B2 (en) Catalyst deterioration diagnosis device for internal combustion engine
KR960016085B1 (en) Air-fuel ratio controller of internal combustion engine
JP2836270B2 (en) Abnormal diagnostic device for fuel injection system
JPH03113355A (en) Fault detecting device for exhaust gas sensor
JPH08261045A (en) Air-fuel ratio control device for internal combustion engine
US5069035A (en) Misfire detecting system in double air-fuel ratio sensor system
JPH05187240A (en) Air intake control device for internal combustion engine
JP4115685B2 (en) Engine air-fuel ratio control device
JP4294530B2 (en) Engine air-fuel ratio control device
JPH0960544A (en) Air-fuel ratio control device for engine
JPH07269407A (en) Engine misfire detecting device
JP2721035B2 (en) Failure diagnosis method for exhaust gas recirculation control device
JP2536753B2 (en) Engine air-fuel ratio control device
JPH0321740B2 (en)
JPH0874627A (en) Air-fuel ratio control device
JP2712593B2 (en) Failure detection method for internal combustion engine control device
JP2001090598A (en) Failure diagnosis device for linear air/fuel ratio sensor
JPH0437251Y2 (en)
KR19990009499A (en) How to Determine Fuel Control System Failure

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees