JPH0311291B2 - - Google Patents

Info

Publication number
JPH0311291B2
JPH0311291B2 JP58006065A JP606583A JPH0311291B2 JP H0311291 B2 JPH0311291 B2 JP H0311291B2 JP 58006065 A JP58006065 A JP 58006065A JP 606583 A JP606583 A JP 606583A JP H0311291 B2 JPH0311291 B2 JP H0311291B2
Authority
JP
Japan
Prior art keywords
weight
parts
peroxide
crosslinking
tpe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58006065A
Other languages
Japanese (ja)
Other versions
JPS59131613A (en
Inventor
Masao Shiraishi
Yoshinori Nishitani
Tatsumi Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP606583A priority Critical patent/JPS59131613A/en
Publication of JPS59131613A publication Critical patent/JPS59131613A/en
Publication of JPH0311291B2 publication Critical patent/JPH0311291B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、充軟性に富み、高温圧縮永久歪、機
械的強度、耐油性および成形加工性に優れ、かつ
成型品表面のベタツキの少ない新規な熱可塑性の
エラストマー状成形体の製造方法に関するもので
ある。 近年、ゴム的な軟質材料であつて加硫工程を必
要とせず、熱加塑性樹脂と同様な成形加工性を有
する熱加塑性エラストマー(以下TPEと略記す
る)が、自動車部品、家電部品、電線被覆、医療
用部品、履物、雑貨等の分野で注目されている。 このようなTPEには、現在、ポリオレフイン
系、ポリウレタン系、ポリエステル系、ポリスチ
レン系等の種々の形式のポリマーが開発され、市
販されている。 しかしながら、これ等のTPEは、ゴムとして
の広い用途分野の1つである加硫ゴムの用途にお
いて、品質面で、加硫ゴムの水準には達しておら
ず、従つて加硫ゴム分野への利用は極めて限定さ
れている。 例えば、ポリオレフイン系TPEは、ハードセ
グメントとしてのポリオレフイン樹脂とソフトセ
グメントとしてのポリオレフイン系ゴムとを溶融
混練によつて複合化したもの、またはこの溶融混
練時にゴム部分を架橋せしめたものであつて、比
較的安価で、耐熱性、耐候性にすぐれている反
面、軟質のものが得られず、最も柔軟なものでも
JIS−A硬度(JIS−K−6301)で70程度であり、
一般の加硫ゴムのJIS−A硬度50〜70に比べて末
だ硬すぎる。また、ポリオレフイン系TPEのJIS
−A硬度70附近の低硬度領域における引張強度は
25〜45Kg/cm2で、加硫ゴムの約100Kg/cm2に比し
てかなり低い。更に、最近多くの加硫ゴム用途で
要求されている高温時の圧縮永久歪については、
ポリオレフイン系TPEのそれは、100℃×22時間
で約55%程度であり、加硫ゴムの40%前後に比べ
大幅に劣つている。 ポリエステル系TPEやポリウレタン系TPEも
また、その市販品中最も柔軟なものでもJIS−A
硬度が80〜90で、加硫ゴムに比べて非常に硬く、
加硫ゴムの用途分野に適さない。更にポリエステ
ル系TPEは加水分解しやすくて耐熱水性が悪く、
他方ポリエステル系TPEは成形加工性、耐熱性
に問題がある。 一方、スチレン−ブタジエンブロツク共重合体
(SBC)やスチレン−イソプレンブロツク共重合
体(SIS)等をベースにしたポリスチレン系TPE
は、前記の他のTPEに比べ、柔軟性に富み、常
温で良好なゴム弾性を有し、かつ、これ等より得
られるTPE組成物は、成形加工性にすぐれてい
る。しかしながら、このポリマーは、その分子内
に共役ジエンブロツクとして二重結合を有してい
る為、耐熱老化性(熱安定性)および耐候性に問
題がある。 スチレンと共役ジエンブロツク共重合体の分子
内二重結合を水素添加することによつて熱安定性
の向上したエラストマーを得ることができる。ま
た、これ等の水素添加物を用いたTPE組成物に
ついてはいくつか提案されており、例えば特開昭
50−14742号、同52−6551号等の各公報の明細書
には水素添加されたスチレン−共役ジエンブロツ
ク共重合体に炭化水素およびα−オレフイン重合
体樹脂等を配合したTPE組成物が開示されてい
る。 しかしながら、これらの水素添加物を用いた
TPE組成物は、高温時のゴム弾性(圧縮永久歪)
が悪い。 この点を改良するものとして、本発明者等はす
でに特願昭57−13948号明細書にて、この様な水
素添加物を含む組成物をシラン変性した架橋性組
成物およびその架橋体を提案し、さらに特願昭57
−115543号明細書にて、この水素添加されたスチ
レン−共役ジエンブロツク共重合体、炭化水素
油、α−オレフイン共重合体樹脂および無機充填
剤の外にパーオキサイド架橋型オレフイン系共重
合体ゴムから成り、かつ、このパーオキサイド架
橋型オレフイン系ゴムが架橋されている組成物の
製造方法を提案した。 しかしながら、特願昭57−13948号の提案では、
シラン変性、後架橋という工程の複雑さやTPE
の持つ特徴の1つであるリサイクル性を失うとい
う欠点がある。また、特願昭57−115543号の提案
物は高温での圧縮永久歪(100℃22時間)が硬度
(JIS−A)60のもので50〜55%とまた高く、さら
に耐油性、柔軟性、強度などのバランスも十分で
ない場合があると言つた問題がある。 一方、本発明者等は、スチレン−共役ジエンブ
ロツク共重合体の水素添加誘導体をベースとした
TPE組成物の高温圧縮永久歪を改良すべく、先
願の2件とは別に、有機パーオキサイドによる架
橋の可能性を検討して来た。パーオキサイド架橋
型ポリマー(例えばEPDM)、パーオキサイド架
橋分解型ポリマー(例えばPP)からなる組成物
の有機パーオキサイドによる部分架橋について
は、すでにポリオレフイン系TPEの分野で数多
くの公知技術が存在する。その代表的なものを挙
げると、例えば特開昭47−18943号公報(まず
EPDMを有機パーオキサイド架橋し、次いでPP
等と溶融混練する。)、特公昭53−34210号公報
(EPDMとPP等と有機パーオキサイドを一括して
混練機に投入し、溶融混練すると同時に架橋す
る。)、特公昭54−2662号公報(EPDMとPP等を
十分に溶融混練した後、有機パーオキサイドを加
え、さらに溶融混練しながら架橋する。)、特開昭
53−149241号公報(前述の特開昭52−37953号の
方法と同様の操作に於いて、有機パーオキサイド
を添加する際、同時にジビニルベンゼンを一定量
加えて溶融混練しながら架橋する。)、特開昭56−
98248号公報(予め十分に溶融混練したEPDMと
PP等からなる粒状組成物に、水性媒体中で有機
パーオキサイドの分解が起こらない温度下で含浸
させ、その後、有機パーオキサイドの分解する温
度まで昇温し、静的に架橋させる。)などがある。 本発明者等は、スチレン−共役ジエンブロツク
共重合体の水素添加誘導体をベースにしたTPE
組成物の有機パーオキサイド架橋について種々検
討した結果、スチレン−共役ジエンブロツク共重
合体の水素添加誘導体、軟化剤、パーオキサイド
分解型オレフイン系樹脂および場合により無機充
填剤からなる配合物を予め混練した後、有機パー
オキサイド等を加えて部分的に架橋する方法に到
達したものである。 本発明では、特に、先に混練工程を設けること
と、有機パーオキサイドを加える際、同時に架橋
助剤、場合により酸化防止剤を併せ加えることを
特徴としている。このような場合にのみ、柔軟性
に富み、高温圧縮永久歪、機械的強度、耐油性お
よび成形加工性に優れたエラストマー状組成物が
得られる。さらに、本発明者等の予想外の特長と
して得られた成型品はベタツキが少ないことが判
つた。 オレフイン系TPEに関する前述の5報の提案
は、あくまでも若干の品質改良を目ざした技術で
あるのに対し、本発明では、本発明をなしている
4つの技術要件すなわち、(1)最適の配合組成、(2)
架橋する前に予め成分(a)〜(d)を十分溶融混練する
こと、(3)有機パーオキサイド架橋時に架橋助剤を
加えることおよび(4)場合により有機パーオキサイ
ド架橋時に酸化防止剤を加えることのすべてが満
たされた時はじめて、柔軟性に富み、高温圧縮永
久歪に優れ他の品質バランスも良好な部分架橋さ
れたTPEを得ることができるものである。 即ち、本発明は、下記(a)〜(d)から成る配合物を
予め混練した後、有機パーオキサイド、架橋助剤
および場合により酸化防止剤を加えて部分架橋
し、その熱可塑性部分架橋物を常法により溶融成
形することを特徴とするエラストマー状成形体の
製造方法に関するものである。 (a) 一般式 A(―B−A)n (ここで、Aはモノビニル置換芳香族炭化水素
の重合体ブロツク、Bは共役ジエンのエラストマ
ー性重合体ブロツクであり、nは1〜5の整数で
ある。)で表わされるブロツク共重合体の水素添
加誘導体 100重量部、 (b) 非芳香族ゴム用軟化剤 80〜300重量部 (c) パーオキサイド分解型オレフイン系樹脂 30〜400重量部 (d) 無機充填剤 0〜900重量部 成分(a) 本発明で用いられる成分(a)は、一般式が A(―B−A)nで表わされるブロツク共重合体
を水素添加処理して得られる水素添加誘導体であ
り、上記一般式において、Aはモノビニル置換芳
香族炭化水素の重合体ブロツク、Bは共役ジエン
のエラストマー性重合体ブロツクであり、nは1
〜5の整数である。 重合体ブロツクAを構成する単量体のモノビニ
ル置換芳香族炭化水素は、好ましくはスチレンで
あり、α―メチルスチレン等も用いられる。重合
体ブロツクBにおける共役ジエン単量体はブタジ
エンもしくはイソプレンが好ましく、また、両者
の混合物でもよい。重合体ブロツクBを形成する
ためにブタジエンが単一の共役ジエン単量体とし
て用いられる場合には、ブロツク共重合体が水素
添加されて二重結合が飽和された後にエラストマ
ー性を保持しているためには、ポリブタジエンブ
ロツクにおけるミクロ構造中1,2−ミクロ構造
が20〜50%となる重合条件を採用することが好ま
しく、より好ましくは1,2−ミクロ構造が35〜
45%のものである。 ブロツク共重合体中の重合体ブロツクAの数平
均分子量は5000〜125000、ブロツクBは15000〜
250000の範囲にあることが好ましい。 これらのブロツク共重合体の製造方法としては
数多くの方法が提案されているが、代表的な方法
としては、例えば特公昭40−23798号公報明細書
に記載された方法により、リチウム触媒またはチ
ーグラー型触媒を用い、不活性溶媒中でブロツク
重合させて得ることができる。 これらのブロツク共重合体の水素添加処理は、
例えば特公昭42−8704号、特公昭43−6636号ある
いは特公昭46−20814号等の各公報明細書に記載
された方法により、不活性溶媒中で水素添加触媒
の存在下に水素添加される。この水素添加では、
重合体ブロツクB中のオレフイン型二重結合の少
なくとも50%、好ましくは80%以上が水素添加さ
れ、重合体ブロツクA中の芳香族性不飽和結合の
25%以下が水素添加される。このような水素添加
されたブロツク共重合体の1つとして、シエル・
ケミカル社より「KRATON−G」という商品名
で市販されているものがある。 成分(b) 本発明で成分(b)として用いられるゴム用軟化剤
は、非芳香族系の鉱物油または液状もしくは低分
子量の合成軟化剤が適している。一般にゴムの軟
化、増容、加工性向上に用いられるプロセスオイ
ルまたはエクステンダーオイルと呼ばれる鉱物油
系ゴム用軟化剤は、芳香族環、ナフテン環および
パラフイン鎖の三者が組合わさつた混合物であつ
て、パラフイン鎖の炭素数が全炭素中50%以上を
占めるものがパラフイン系と呼ばれ、ナフテン環
炭素数が30〜45%のものがナフテン系、また、芳
香族炭素数が30%より多いものが芳香族系とされ
る。本発明の成分(b)として用いられる鉱物油系ゴ
ム軟化剤は、上記の区分でナフテン系およびパラ
フイン系のものが好ましく、芳香族炭素数が30%
以上の芳香族系のものは、前記成分(a)との組成に
おいて分散性の点で好ましくない。これら非芳香
族系ゴム用軟化剤の性状は、37.8℃における動粘
度が20〜500cst、流動点が−10〜−15℃および引
火点が170〜300℃を示す。 合成軟化剤としては、ポリブテン、低分子量ポ
リブタジエン等が使用可能であるが、上記鉱物油
系ゴム用軟化剤の方が良好な結果を与える。 成分(b)の軟化剤の配合量は、成分(a)の100重量
部に対して80〜300重量部であり、好ましくは150
〜250重量部である。300重量部を超えた配合のも
のは、軟化剤のブリードアウトを生じ易く、最終
製品に粘着性を生ずるおそれがあり、機械的性質
も低下せしめる。また、80重量部未満の配合で
は、実用的には差支えないが、経済性の点から不
充分であるとともに柔軟性も失なわれる。 成分(c) 本発明で成分(c)として用いられるパーオキサイ
ド分解型オレフイン系樹脂とは、パーオキサイド
の存在下で加熱処理することにより熱分解して分
子量を減じ、樹脂の流動性が増加するオレフイン
系の樹脂をいい、例えばアイソタクチツクポリプ
ロピレンやプロピレンと他の少量のα−オレフイ
ンの共重合体、例えばプロピレン−エチレン共重
合体、プロピレン−1−ブテン共重合体、プロピ
レン−1−ヘキセン共重合体、プロピレン−4−
メチル−1−ペンテン共重合体等を挙げることが
できる。 用いられるパーオキサイド分解型オレフイン系
樹脂のMFR(ASTM−D−1238−L条件、230
℃)は0.1〜50g/10分、とくに0.5〜30g/10分
の範囲のものが好ましい。 成分(c)の配合量は、成分(a)100重量部に対し30
〜400重量部であり、400重量部を超えた配合で
は、得られるエラストマー状組成物の硬度が高く
なりすぎて柔軟性が失なわれ、ゴム的感触の製品
が得られない。好ましい配合は50〜300重量部で
ある。 付加的成分(d) 本発明の組成物には必要に応じて無機充填剤等
の付加的成分を配合することができる。無機充填
剤は増量剤として製品コストの低下をはかること
ができる利益があるばかりでなく、品質改良(圧
縮永久歪等)に積極的効果を付与する。 無機充填剤としては、例えば炭酸カルシウム、
カーボンブラツク、タルク、水酸化マグネシウ
ム、マイカ、クレー、硫酸バリウム、天然けい
酸、合成けい酸(ホワイトカーボン)、酸化チタ
ン等があり、カーボンブラツクとしてはチヤンネ
ルブラツク、フアーネスブラツク等が使用でき
る。これらの無機充填剤のうち、タルク、炭酸カ
ルシウムおよびフアーネスブラツクは経済的にも
有利で好ましいものである。 無機充填剤の配合量は、成分(a)の水素添加誘導
体100重量部に対し0〜900重量部であり、好まし
くは500重量部までである。900重量部を超える配
合では、組成物の機械的強度の低下が著しく、か
つ、硬度が高くなつて柔軟性が失われ、ゴム的な
感触の製品が得られなくなる。 製造方法 本発明の製造方法は、3つの工程からなる。ま
ず、第1工程は、成分(a)〜(d)からなる配合物を混
練する工程である。 混練法としては、ゴム、プラスチツク等で通常
用いられる方法でよく、例えば、一軸押出機、二
軸押出機、ロール、バンバリーミキサーあるいは
各種のニーダー等が用いられる。 第2工程は、第1工程で得られた組成物に対
し、有機パーオキサイドおよび架橋助剤、かつ場
合により酸化防止剤を加えて部分架橋する工程で
あり、この部分架橋は一般にバンバリーミキサ
ー、押出機等を用いて混練する方法がある。特に
バンバリーミキサーを使用する場合、第1工程と
第2工程を連続的に行うことができる利点があ
る。 もう1つの部分架橋法は、第1工程で得られた
各成分からなるペレツト状組成物に温水中でパー
オキサイド等を含浸導入した後、そのまま昇温し
て静的に部分架橋する方法(例えば特開昭56−
98248号公報明細書)がある。 第2工程で用いられる有機パーオキサイドは芳
香族系もしくは脂肪族系のいずれも使用でき、単
一のパーオキサイドでも2種のパーオキサイドの
混合物でもよい。具体的には、2,5−ジメチル
2,5−ジ(ベンゾイルパーオキシ)−ヘキサン、
t−ブチルパーオキシベンゾエート、ジクミルパ
ーオキサイド、2,5−ジメチル−2,5−ジ
(t−ブチルパーオキシ)−ヘキサン、t−ブチル
クミルパーオキサイド、ジイソプロピルベンゾハ
イドロパーオキサイド、1,3−ビス−(t−ブ
チルパーオキシイソプロピル)−ベンゼン、ベン
ゾイルパーオキサイド等が用いられる。 また、上記パーオキサイドと併用される架橋助
剤としては、アクリル系多官能性モノマー、例え
ばエチレングリコールジメタクリレート、ポリエ
チレングリコールジメタクリレート、トリメチロ
ールプロパントリアクリレート等の外、ジビニル
ベンゼン、液状ポリブタジエン等がある。 また、場合により用いられる酸化防止剤として
は、例えば(1)モノフエノール系化合物、(2)ビス、
トリスあるいはポリフエノール系化合物、(3)チオ
ビスフエノール系化合物、および(4)多価フエノー
ルまたはその誘導体からなるフエノール系化合
物、(5)ナフチルアミン系化合物、(6)ジフエニルア
ミン系化合物または(7)P−フエニレンジアミン系
化合物からなるアミン系化合物等がある。 (1) モノフエノール系化合物に属する化合物に
は、2,6−ジ−tert−ブチル−p−クレゾー
ル、2,6−ジ−tert−ブチルフエノール、
2,4−ジメチル−6−tert−ブチルフエノー
ル、2,4,6−トリ−tert−ブチルフエノー
ルなどがある。 (2) ビス、トリスあるいはポリフエノール系化合
物には、4,4−ジヒドロキシジフエニル、
2,2′−メチレンビス(4−エチル−6−tert
−クロチルフエノール)、トリス(2−メチル
−4−ヒドロキシ−5−tert−ブチルフエニ
ル)ブタン、テトラキス〔メチレン−3−(3′,
5′−ジ−tert−ブチル−4′−ヒドロキシフエニ
ル)プロピオネート〕メタンなどがある。 (3) チオビスフエノール系化合物には、4,4′−
チオビス(6−tert−ブチル−3−メチルフエ
ノール)、2,2′−チオビス(6−tert−ブチル
−4−メチルフエノール)などがある。 (4) 多価フエノール又はその誘導体には、ジ−
tert−ブチルヒドロキノンなどがある。 (5) ナフチルアミン系化合物には、フエニル−α
−ナフチルアミンなどがある。 (6) ジフエニルアミン系化合物には、p−イソプ
ロポキシジフエニルアミンなどがある。 (7) p−フエニレンジアミン系化合物には、N,
N′−ジフエニル−p−フエニレンジアミン、
N,N′−ジ−2−ナフチル−p−フエニレン
ジアミンなどがある。 なかでも(1),(2),(3)のフエノール系酸化防止剤
は好ましいものである。 第2工程で使用される有機パーオキサイド、架
橋助剤、酸化防止剤の量は、成分(a)〜(d)から成る
組成物の100重量部に対して、 有機パーオキサイド0.1〜3重量部 (好ましくは0.1〜1重量部) 架橋助剤 0.1〜5重量部 (好ましくは0.1〜3重量部) 酸化防止剤 3重量部以下 (好ましくは1重量部以下) であるが、実際には成分(a)〜(d)の配合割合、と
くに得られるエラストマー状組成物の品質に影響
する架橋度を考慮して決定される。なお、架橋助
剤の量は一般に有機パーオキサイドに対してモル
比で約1〜3倍に設定するのが好ましい。 このようにして得られた部分的に架橋したエラ
ストマー状組成物の架橋度〔重量%〕は、試料1
gをメツシユ金網に包み、ソツクスレー抽出器を
用い、沸騰キシレンで10時間抽出した後、残留固
形分の重量の試料1gに対する割合で表す。 本発明において、好ましい架橋度は、上記の測
定値において5〜70重量%の範囲であり、5重量
%未満では、得られたエラストマー状組成物の高
温圧縮永久歪、耐油性、成型品のベタツキが悪
い。また70重量%超過のものでは、成形加工性が
悪化すると同時に、引張り伸びが低下する。 特に好ましい架橋度は10〜60重量%の範囲であ
る。 第3工程は、上記第1工程および第2工程を経
て得られた熱可塑性の部分架橋物を常法により溶
融成形する工程である。 成形に際しては、通常の樹脂組成物について行
なわれるように、必要に応じて顔料、熱安定剤、
抗酸化剤、紫外線吸収等の添加剤を加えることも
できる。 溶融成形は、常法、例えば射出成形、押出成
形、ブロー成形、カレンダー成形等の熱可塑性樹
脂の成形法が適用可能である。 なお本発明のエラストマー状成形体の使用分野
としては、各種電線被覆(絶縁、シース)、家電
部品および自動車部品等の工業部品に用いられ
る。具体的な用途としては、各種ガスケツト類、
屈曲性チユーブ、ホース被覆、ウエザーストリツ
プ、屈曲性バンパー、サイドバンパー、モール、
フイラーパネル、ランプハウジング、ワイヤーケ
ーブル被覆、エアーインテークホース等がある。 実施例 これらの実施例および比較例において、各種の
評価に用いられた試験法は以下のとおりである。 (1) 硬度〔−〕 JIS−K−6301、Aタイプ。 (2) 引張強度〔Kg/cm2〕および引張伸度〔%〕 JIS−K−6301、試料は2mm厚のインジエクシ
ヨンシートを用い、試験片は3号形。 (3) 圧縮永久歪〔%〕 JIS−K−6301、100℃、22時間、25%変形。 (4) 耐油性〔%〕 JIS−K−6301、JIS 1号油、100℃、70時間の
体積変化率。 (5) 射出成形性 射出成形機:5オンスのインラインスクリユー
タイプ。 金型:100mm×100mm×2mm厚シート 射出圧力:500Kg/cm2 射出温度:230℃ 金型温度:40℃ 以上の条件で射出成形を行なつたとき、100×
100×2各mm厚のシート成形が可能であり、デラ
ミネーシヨンや変形がなく、著しく外観を悪化さ
せるようなフローマークがない場合、射出成形性
が良好であると判断した。 (6) 成形品ベタツキ性 上記射出成形によつて得た100×100×2各mm厚
のシート2枚を重ね、その上に荷重1Kgをかけて
常温にて24時間放置後、2枚のシートを取り出
し、2枚のシートを剥すときにブロツキングが見
られない場合、ベタツキ性が良好であると判断し
た。 (1) 成分(a) シエルケミカル社製KRATON−G1651
(Brookfield 粘度:20重量%トルエン溶液、
2000cps、77〓) (2) 成分(b) 出光興産社製ダイアナプロセスオイルPW−
380〔パラフイン系、動粘度:381.6cst(40℃)・
30.1ocst(100℃)、平均分子量:746、環分析:CN
=27.0%・CP=73.0%〕 (3) 成分(c) PP−1:三菱油化社製ポリプロピレン樹脂
MA−4〈MFR(230℃)5.0g/10分、密度0.905
g/cm3〉 PP−2:三菱油化社製プロピレン−エチレン
共重合体樹脂 BC−5C〈MFR(230℃)2.8g/10
分、密度0.905g/cm3〉 PP−3:三菱油化社製プロピレン−エチレン
共重合体樹脂 SP−X 9800〈MFR(230℃)1.5
g/10分、密度0.892g/cm3〉 (4) 成分(d) 高級脂肪酸エステルで表面処理された、平均粒
径2.5ミクロンの炭酸カルシウム (5) 有機パーオキサイド PO−1:日本油脂社製ナイパーB〈ベンゾイル
パーオキサイド〉 PO−2:日本油脂社製パーヘキサ2,5B〈2,
5−ジメチル−2,5−ジ(t−ブチルパーオキ
シ)ヘキサン−3〉 (6) 架橋助剤 CA−1:ジビニルベンゼン CA−2:トリメチロールプロパントリアクリ
レート (7) 酸化防止剤 AO−1:チバガイギー社製イルガノツクス
1010〈テトラキス〔メチレン−3−(3′,5′−ジ−
tert−ブチル−4′−ヒドロキシフエニル)プロピ
オネート〕メタン〉 AO−2:大内新興化学工業社製ノクラツクホ
ワイト〈N,N′−ジ−2−ナフチル−p−フエ
ニレンジアミン〉 実施例 実施例1では成分(a)として、100重量部の
KRATON−G1651と、成分(b)として、190重量
部のPW−380とを予めヘンシエルミキサーにて
約5分混合し、次に成分(c)として、ポリプロピレ
ンMA−4とBC5Cとをそれぞれ21.4重量部ずつ
および成分(d)として、143重量部の炭酸カルシウ
ムを加え、さらに約1分間混合し、40mm径の単軸
押出機にて200℃の条件でブレンドし、その後、
得られた混合物100重量部に対して有機パーオキ
サイド(ナイパーB)0.3重量部、架橋助剤(ジ
ビニルベンゼン)0.45重量部及び酸化防止剤(イ
ルガノツクス1010)0.2重量部を加えて混合し、
次に30mm径の二軸押出機にて200℃の条件で反応
させて部分的に架橋した熱可塑性エラストマーの
ペレツトを得た。これを射出成形して評価した。 得られた成型品は、硬度55で強度伸度の低下も
少なく、耐油性(22%)、圧縮永久歪(45%)、ベ
タツキ性等良好な物性バラツキを有するものであ
つた。 さらに、実施例2〜8は、実施例1と同様の方
法により製造されたものであり、配合組成は第1
表に示した通りである。 品質は、以下の比較例1〜6に比べて圧縮永久
歪、耐油性、射出成形性、ベタツキ性等すべて良
好なバランスを有するものであつた。 比較例1,2および3は、それぞれ実施例1,
2および7に対応する硬度のものであり、第1表
の配合に従つて30mm径二軸押出機にてブレンドし
たもので、架橋処理をほどこしていないものであ
る。 比較例4は、実施例1と同様の配合であるが、
架橋反応の前の成分(a)〜(d)の押出機によるブレン
ドを実施せず、直接30mm径二軸押出機にてブレン
ドと架橋処理を同時に実施したものである。 このものは、比較例1に比べて圧縮永久歪、耐
油性、ベタツキ性は改良されていたが、強度、伸
度が低く、さらに射出成型品表面にブツ等の発生
が見られるなどの外観の悪いものであつた。 比較例5および6は実施例1と同様の配合およ
び製造法で架橋助剤のないものである。 これ等は、ゲル分率からも判るように、架橋さ
れていないものと殆んで同様レベルであり品質も
比較例1に比べて起良されている点は見あたらな
かつた。以上より、本発明における予め混練機で
成分(a)〜(d)をブレンドしてから架橋処理を実施す
ること及び架橋助剤の併用効果は非常に大きいも
のであることがわかる。
The present invention relates to a method for producing a novel thermoplastic elastomeric molded product that has excellent filling properties, high temperature compression set, mechanical strength, oil resistance, and moldability, and has less stickiness on the surface of the molded product. be. In recent years, thermoplastic elastomers (hereinafter abbreviated as TPE), which are rubber-like soft materials that do not require a vulcanization process and have moldability similar to thermoplastic resins, have been used for automobile parts, home appliance parts, and electric wires. It is attracting attention in fields such as coatings, medical parts, footwear, and miscellaneous goods. Various types of polymers such as polyolefin-based, polyurethane-based, polyester-based, and polystyrene-based polymers have been developed and commercially available for such TPE. However, these TPEs do not reach the level of vulcanized rubber in terms of quality in the use of vulcanized rubber, which is one of the wide application fields of rubber, and therefore, they are not suitable for use in the vulcanized rubber field. Usage is extremely limited. For example, polyolefin TPE is a composite of polyolefin resin as a hard segment and polyolefin rubber as a soft segment by melt-kneading, or the rubber part is cross-linked during this melt-kneading process. Although it is inexpensive and has excellent heat resistance and weather resistance, it is not possible to obtain a soft material, and even the most flexible material cannot be obtained.
JIS-A hardness (JIS-K-6301) is about 70,
It is far too hard compared to the JIS-A hardness of 50 to 70 for general vulcanized rubber. In addition, JIS for polyolefin TPE
-The tensile strength in the low hardness region around A hardness 70 is
It is 25-45Kg/cm 2 , which is considerably lower than the approximately 100Kg/cm 2 for vulcanized rubber. Furthermore, regarding compression set at high temperatures, which is required in many vulcanized rubber applications these days,
The resistance of polyolefin TPE is approximately 55% at 100°C for 22 hours, which is significantly inferior to that of vulcanized rubber, which is approximately 40%. Polyester TPE and polyurethane TPE are also the most flexible commercially available products that meet JIS-A standards.
It has a hardness of 80 to 90, which is much harder than vulcanized rubber.
Not suitable for vulcanized rubber applications. Furthermore, polyester TPE is easily hydrolyzed and has poor hot water resistance.
On the other hand, polyester TPE has problems with moldability and heat resistance. On the other hand, polystyrene TPE based on styrene-butadiene block copolymer (SBC) or styrene-isoprene block copolymer (SIS)
are more flexible and have good rubber elasticity at room temperature than the other TPEs mentioned above, and TPE compositions obtained from them have excellent moldability. However, since this polymer has a double bond as a conjugated diene block in its molecule, it has problems in heat aging resistance (thermal stability) and weather resistance. By hydrogenating the intramolecular double bonds of a styrene and conjugated diene block copolymer, an elastomer with improved thermal stability can be obtained. In addition, several proposals have been made regarding TPE compositions using these hydrogenated substances.
The specifications of publications such as No. 50-14742 and No. 52-6551 disclose a TPE composition in which a hydrogenated styrene-conjugated diene block copolymer is blended with a hydrocarbon, an α-olefin polymer resin, etc. has been done. However, using these hydrogen additives
TPE composition has rubber elasticity (compression set) at high temperatures
It's bad. In order to improve this point, the present inventors have already proposed in Japanese Patent Application No. 57-13948 a crosslinkable composition obtained by silane-modifying a composition containing such a hydrogenated substance and a crosslinked product thereof. In addition, a special request was made in 1982.
-115543, in addition to this hydrogenated styrene-conjugated diene block copolymer, hydrocarbon oil, α-olefin copolymer resin, and inorganic filler, peroxide crosslinked olefin copolymer rubber We have proposed a method for producing a composition consisting of peroxide-crosslinked olefin rubber that is crosslinked. However, in the proposal of patent application No. 57-13948,
The complexity of the process of silane modification and post-crosslinking and TPE
It has the disadvantage of losing its recyclability, which is one of its characteristics. In addition, the product proposed in Japanese Patent Application No. 57-115543 has a compression set at high temperatures (100°C for 22 hours) with a hardness (JIS-A) of 60, which is as high as 50-55%, and also has excellent oil resistance and flexibility. However, there are problems in that the balance of strength and other properties may not be sufficient. On the other hand, the present inventors have developed a method based on hydrogenated derivatives of styrene-conjugated diene block copolymers.
In order to improve the high-temperature compression set of TPE compositions, we have been investigating the possibility of crosslinking with organic peroxides, in addition to the two previous applications. Regarding the partial crosslinking of compositions consisting of peroxide crosslinked polymers (for example EPDM) and peroxide crosslinked decomposable polymers (for example PP) with organic peroxides, there are already many known techniques in the field of polyolefin TPEs. To name a representative example, for example, Japanese Patent Application Laid-open No. 18943/1983 (first of all,
EPDM is cross-linked with organic peroxide and then PP
Melt and knead with etc. ), Japanese Patent Publication No. 53-34210 (Putting EPDM, PP, etc. and organic peroxide all at once into a kneader, and cross-linking them while melting and kneading.) After thorough melt-kneading, organic peroxide is added and cross-linked while further melt-kneading.), JP-A-Sho
Publication No. 53-149241 (in a similar operation to the method of JP-A-52-37953 mentioned above, when adding an organic peroxide, a certain amount of divinylbenzene is simultaneously added and crosslinked while melt-kneading), Unexamined Japanese Patent Publication 1987-
Publication No. 98248 (EPDM sufficiently melted and kneaded in advance)
A granular composition made of PP or the like is impregnated in an aqueous medium at a temperature at which the organic peroxide does not decompose, and then the temperature is raised to a temperature at which the organic peroxide decomposes to statically crosslink. )and so on. The present inventors have developed a TPE based on a hydrogenated derivative of styrene-conjugated diene block copolymer.
As a result of various studies on the organic peroxide crosslinking of the composition, we decided to pre-knead a mixture consisting of a hydrogenated derivative of styrene-conjugated diene block copolymer, a softener, a peroxide-decomposable olefin resin, and optionally an inorganic filler. Later, a method was developed in which organic peroxide or the like was added to partially crosslink the material. The present invention is particularly characterized in that a kneading step is provided first, and that a crosslinking aid and, in some cases, an antioxidant are simultaneously added at the same time as the organic peroxide is added. Only in this case can an elastomeric composition be obtained which is highly flexible and has excellent high temperature compression set, mechanical strength, oil resistance and moldability. Furthermore, it was found that the obtained molded product had less stickiness, which was an unexpected feature of the present inventors. While the proposals in the aforementioned five reports regarding olefin-based TPE are technologies aimed at slightly improving quality, the present invention focuses on the four technical requirements that make up the present invention, namely: (1) optimal blending composition; ,(2)
Before crosslinking, components (a) to (d) are sufficiently melt-kneaded, (3) a crosslinking aid is added during organic peroxide crosslinking, and (4) an antioxidant is optionally added during organic peroxide crosslinking. Only when all of these conditions are met can a partially crosslinked TPE that is highly flexible, has excellent high-temperature compression set, and has a good balance of other qualities be obtained. That is, in the present invention, after kneading a mixture consisting of the following (a) to (d) in advance, an organic peroxide, a crosslinking aid, and optionally an antioxidant are added to partially crosslink the resulting thermoplastic partially crosslinked product. The present invention relates to a method for producing an elastomer-like molded article, which comprises melt-molding it by a conventional method. (a) General formula A(-B-A)n (where A is a monovinyl-substituted aromatic hydrocarbon polymer block, B is a conjugated diene elastomeric polymer block, and n is an integer from 1 to 5) 100 parts by weight of a hydrogenated derivative of a block copolymer represented by d) Inorganic filler 0 to 900 parts by weight Component (a) Component (a) used in the present invention is obtained by hydrogenating a block copolymer represented by the general formula A(-B-A)n. In the above general formula, A is a monovinyl-substituted aromatic hydrocarbon polymer block, B is a conjugated diene elastomeric polymer block, and n is 1.
It is an integer of ~5. The monovinyl-substituted aromatic hydrocarbon monomer constituting the polymer block A is preferably styrene, and α-methylstyrene or the like may also be used. The conjugated diene monomer in polymer block B is preferably butadiene or isoprene, or may be a mixture of the two. When butadiene is used as the single conjugated diene monomer to form polymer block B, the block copolymer retains its elastomeric properties after being hydrogenated to saturate the double bonds. In order to achieve this, it is preferable to adopt polymerization conditions such that the 1,2-microstructure accounts for 20 to 50% of the microstructure in the polybutadiene block, and more preferably, the 1,2-microstructure accounts for 35 to 50% of the microstructure in the polybutadiene block.
45%. The number average molecular weight of polymer block A in the block copolymer is 5,000 to 125,000, and the number average molecular weight of block B is 15,000 to 125,000.
Preferably, it is in the range of 250,000. Many methods have been proposed for producing these block copolymers, but a typical method is, for example, the method described in Japanese Patent Publication No. 40-23798, using a lithium catalyst or Ziegler type. It can be obtained by block polymerization in an inert solvent using a catalyst. The hydrogenation treatment of these block copolymers is
For example, hydrogenation is carried out in the presence of a hydrogenation catalyst in an inert solvent by the method described in the specifications of Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, or Japanese Patent Publication No. 46-20814. . In this hydrogenation,
At least 50%, preferably 80% or more of the olefinic double bonds in polymer block B are hydrogenated, and the aromatic unsaturated bonds in polymer block A are hydrogenated.
Less than 25% is hydrogenated. One such hydrogenated block copolymer is Ciel.
There is one commercially available from Chemical Company under the trade name "KRATON-G." Component (b) The rubber softener used as component (b) in the present invention is suitably a non-aromatic mineral oil or a liquid or low molecular weight synthetic softener. Mineral oil-based rubber softeners, commonly called process oils or extender oils, are used to soften, increase volume, and improve processability of rubber, and are a mixture of aromatic rings, naphthenic rings, and paraffin chains. Those in which the number of carbon atoms in the paraffin chain accounts for 50% or more of all carbons are called paraffinic, those in which the number of carbon atoms in the naphthene ring is 30 to 45% are called naphthenic, and those in which the number of aromatic carbons is more than 30%. are considered aromatic. The mineral oil-based rubber softener used as component (b) of the present invention is preferably a naphthenic or paraffinic one in the above category, and has an aromatic carbon number of 30%.
The above aromatic compounds are not preferred in terms of dispersibility in the composition with component (a). The properties of these non-aromatic rubber softeners include a kinematic viscosity of 20 to 500 cst at 37.8°C, a pour point of -10 to -15°C, and a flash point of 170 to 300°C. As the synthetic softener, polybutene, low molecular weight polybutadiene, etc. can be used, but the above-mentioned mineral oil-based softeners for rubber give better results. The blending amount of the softener as component (b) is 80 to 300 parts by weight, preferably 150 parts by weight, per 100 parts by weight of component (a).
~250 parts by weight. If the amount exceeds 300 parts by weight, the softener tends to bleed out, which may result in tackiness in the final product and may also reduce mechanical properties. On the other hand, if the amount is less than 80 parts by weight, there is no problem in practical use, but it is insufficient from an economic point of view and flexibility is also lost. Component (c) The peroxide-decomposed olefin resin used as component (c) in the present invention is a resin that is thermally decomposed by heat treatment in the presence of peroxide to reduce the molecular weight and increase the fluidity of the resin. Refers to olefin-based resins, such as isotactic polypropylene and copolymers of propylene and small amounts of other α-olefins, such as propylene-ethylene copolymers, propylene-1-butene copolymers, propylene-1-hexene copolymers, etc. Polymer, propylene-4-
Examples include methyl-1-pentene copolymer. MFR of the peroxide-decomposed olefin resin used (ASTM-D-1238-L conditions, 230
C) is preferably in the range of 0.1 to 50 g/10 minutes, particularly 0.5 to 30 g/10 minutes. The blending amount of component (c) is 30 parts by weight per 100 parts by weight of component (a).
-400 parts by weight; if it exceeds 400 parts by weight, the hardness of the resulting elastomeric composition becomes too high and flexibility is lost, making it impossible to obtain a product with a rubbery feel. A preferred formulation is 50 to 300 parts by weight. Additional Components (d) Additional components such as inorganic fillers may be added to the composition of the present invention, if necessary. Inorganic fillers not only have the benefit of reducing product costs as fillers, but also have positive effects on quality improvement (compression set, etc.). Examples of inorganic fillers include calcium carbonate,
Carbon black, talc, magnesium hydroxide, mica, clay, barium sulfate, natural silicic acid, synthetic silicic acid (white carbon), titanium oxide, etc. are available, and as carbon black, channel black, furnace black, etc. can be used. Among these inorganic fillers, talc, calcium carbonate and furnace black are economically advantageous and preferred. The amount of the inorganic filler blended is 0 to 900 parts by weight, preferably up to 500 parts by weight, based on 100 parts by weight of the hydrogenated derivative of component (a). If the amount exceeds 900 parts by weight, the mechanical strength of the composition will drop significantly, and the hardness will increase, resulting in a loss of flexibility, making it impossible to obtain a product with a rubbery feel. Manufacturing method The manufacturing method of the present invention consists of three steps. First, the first step is a step of kneading a blend consisting of components (a) to (d). The kneading method may be a method commonly used for rubber, plastic, etc., such as a single screw extruder, twin screw extruder, roll, Banbury mixer, or various kneaders. The second step is a step of partially crosslinking the composition obtained in the first step by adding an organic peroxide, a crosslinking aid, and optionally an antioxidant. There is a method of kneading using a machine or the like. Particularly when using a Banbury mixer, there is an advantage that the first step and the second step can be performed continuously. Another partial crosslinking method is a method in which peroxide etc. are impregnated into the pellet composition made of each component obtained in the first step in hot water, and then the temperature is raised to statically partially crosslink the composition (for example, Unexamined Japanese Patent Publication 1987-
98248 (publication specification)). The organic peroxide used in the second step may be either aromatic or aliphatic, and may be a single peroxide or a mixture of two types of peroxide. Specifically, 2,5-dimethyl 2,5-di(benzoylperoxy)-hexane,
t-Butylperoxybenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)-hexane, t-butylcumyl peroxide, diisopropylbenzohydroperoxide, 1,3- Bis-(t-butylperoxyisopropyl)-benzene, benzoyl peroxide, etc. are used. In addition, crosslinking aids used in combination with the peroxide include acrylic polyfunctional monomers such as ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane triacrylate, etc., as well as divinylbenzene and liquid polybutadiene. . In addition, examples of antioxidants that may be used include (1) monophenol compounds, (2) bis,
Tris or polyphenol compounds, (3) thiobisphenol compounds, and (4) phenolic compounds consisting of polyvalent phenols or derivatives thereof, (5) naphthylamine compounds, (6) diphenylamine compounds, or (7) P - There are amine compounds such as phenylene diamine compounds. (1) Compounds belonging to monophenolic compounds include 2,6-di-tert-butyl-p-cresol, 2,6-di-tert-butylphenol,
Examples include 2,4-dimethyl-6-tert-butylphenol and 2,4,6-tri-tert-butylphenol. (2) Bis, tris or polyphenol compounds include 4,4-dihydroxydiphenyl,
2,2'-methylenebis(4-ethyl-6-tert
-crotylphenol), tris(2-methyl-4-hydroxy-5-tert-butylphenyl)butane, tetrakis[methylene-3-(3',
Examples include 5'-di-tert-butyl-4'-hydroxyphenyl)propionate]methane. (3) Thiobisphenol compounds include 4,4'-
Examples include thiobis(6-tert-butyl-3-methylphenol) and 2,2'-thiobis(6-tert-butyl-4-methylphenol). (4) Polyhydric phenols or their derivatives contain di-
Examples include tert-butylhydroquinone. (5) Naphthylamine compounds include phenyl-α
-Naphthylamine, etc. (6) Diphenylamine compounds include p-isopropoxydiphenylamine. (7) The p-phenylenediamine compound contains N,
N'-diphenyl-p-phenylenediamine,
Examples include N,N'-di-2-naphthyl-p-phenylenediamine. Among these, phenolic antioxidants (1), (2), and (3) are preferred. The amount of organic peroxide, crosslinking aid, and antioxidant used in the second step is 0.1 to 3 parts by weight of organic peroxide per 100 parts by weight of the composition consisting of components (a) to (d). (preferably 0.1 to 1 part by weight) Crosslinking aid 0.1 to 5 parts by weight (preferably 0.1 to 3 parts by weight) Antioxidant 3 parts by weight or less (preferably 1 part by weight or less), but in reality the components ( The proportions of a) to (d) are determined by taking into account the degree of crosslinking, which affects the quality of the resulting elastomeric composition. The amount of the crosslinking aid is generally preferably set at a molar ratio of about 1 to 3 times that of the organic peroxide. The degree of crosslinking [wt%] of the partially crosslinked elastomeric composition thus obtained was as follows for sample 1.
After wrapping the sample in a mesh wire mesh and extracting it with boiling xylene for 10 hours using a Soxhlet extractor, the remaining solid content is expressed as the ratio of the weight of the sample to 1 g of the sample. In the present invention, the preferable degree of crosslinking is in the range of 5 to 70% by weight based on the above measured values, and if it is less than 5% by weight, the resulting elastomeric composition will suffer from high temperature compression set, oil resistance, and stickiness of the molded product. It's bad. Moreover, if it exceeds 70% by weight, moldability deteriorates and at the same time, tensile elongation decreases. A particularly preferred degree of crosslinking is in the range from 10 to 60% by weight. The third step is a step of melt-molding the thermoplastic partially crosslinked product obtained through the first and second steps by a conventional method. When molding, pigments, heat stabilizers,
Additives such as antioxidants and UV absorbers can also be added. For the melt molding, conventional methods such as thermoplastic resin molding methods such as injection molding, extrusion molding, blow molding, and calendar molding can be applied. The field of use of the elastomeric molded article of the present invention is for various electric wire coatings (insulation, sheath), and industrial parts such as household appliance parts and automobile parts. Specific uses include various gaskets,
Flexible tube, hose cover, weather strip, flexible bumper, side bumper, molding,
Includes filler panels, lamp housings, wire cable coverings, air intake hoses, etc. Examples In these Examples and Comparative Examples, the test methods used for various evaluations are as follows. (1) Hardness [-] JIS-K-6301, A type. (2) Tensile strength [Kg/cm 2 ] and tensile elongation [%] JIS-K-6301, the sample used was a 2 mm thick in-die extension sheet, and the test piece was No. 3 type. (3) Compression set [%] JIS-K-6301, 100℃, 22 hours, 25% deformation. (4) Oil resistance [%] JIS-K-6301, JIS No. 1 oil, volume change rate at 100℃ for 70 hours. (5) Injection moldability Injection molding machine: 5 oz in-line screw type. Mold: 100mm x 100mm x 2mm thick sheet Injection pressure: 500Kg/cm 2 Injection temperature: 230℃ Mold temperature: 100× when injection molding is performed under conditions of 40℃ or higher
Injection moldability was judged to be good if it was possible to mold a sheet of 100 x 2 mm thick, without delamination or deformation, and without flow marks that significantly deteriorated the appearance. (6) Stickiness of molded product Two sheets of 100 x 100 x 2 mm thick each obtained by the above injection molding are stacked, a load of 1 kg is applied on top of them, and after being left at room temperature for 24 hours, the two sheets are separated. If no blocking was observed when the two sheets were removed and the two sheets were peeled off, the stickiness was judged to be good. (1) Component (a) KRATON-G1651 manufactured by Ciel Chemical Co., Ltd.
(Brookfield viscosity: 20% by weight toluene solution,
2000cps, 77〓) (2) Component (b) Diana Process Oil PW− manufactured by Idemitsu Kosan Co., Ltd.
380 [Paraffin-based, kinematic viscosity: 381.6cst (40℃)
30.1ocst (100℃), average molecular weight: 746, ring analysis: CN
=27.0%・C P =73.0%] (3) Component (c) PP-1: Polypropylene resin manufactured by Mitsubishi Yuka Co., Ltd.
MA-4〈MFR (230℃) 5.0g/10min, density 0.905
g/cm 3 〉 PP-2: Propylene-ethylene copolymer resin manufactured by Mitsubishi Yuka Co., Ltd. BC-5C〈MFR (230℃) 2.8g/10
Min., density 0.905g/cm 3 〉 PP-3: Propylene-ethylene copolymer resin SP-X 9800 (MFR (230℃) 1.5 manufactured by Mitsubishi Yuka Co., Ltd.)
g/10 min, density 0.892 g/cm 3 〉 (4) Component (d) Calcium carbonate with an average particle size of 2.5 microns, surface-treated with higher fatty acid ester (5) Organic peroxide PO-1: Manufactured by NOF Corporation Niper B (benzoyl peroxide) PO-2: Perhexa 2,5B (manufactured by NOF Corporation) (2,
5-dimethyl-2,5-di(t-butylperoxy)hexane-3> (6) Crosslinking aid CA-1: Divinylbenzene CA-2: Trimethylolpropane triacrylate (7) Antioxidant AO-1 : Irganox manufactured by Ciba Geigy
1010〈Tetrakis〔methylene-3-(3',5'-di-
tert-butyl-4'-hydroxyphenyl)propionate [methane] AO-2: Nokrac White manufactured by Ouchi Shinko Chemical Co., Ltd. <N,N'-di-2-naphthyl-p-phenylenediamine> Example Implementation In Example 1, 100 parts by weight of component (a)
KRATON-G1651 and 190 parts by weight of PW-380 as component (b) were mixed in advance in a Henschel mixer for about 5 minutes, and then polypropylene MA-4 and BC5C were mixed as component (c) at 21.4 parts each. Add 143 parts by weight of calcium carbonate as component (d), mix for about 1 minute, blend at 200°C in a 40 mm diameter single screw extruder, and then
To 100 parts by weight of the obtained mixture, 0.3 parts by weight of organic peroxide (Niper B), 0.45 parts by weight of crosslinking aid (divinylbenzene) and 0.2 parts by weight of antioxidant (Irganox 1010) were added and mixed,
Next, the mixture was reacted in a 30 mm diameter twin-screw extruder at 200°C to obtain partially crosslinked thermoplastic elastomer pellets. This was injection molded and evaluated. The obtained molded product had a hardness of 55, little decrease in strength and elongation, and had good physical property variations such as oil resistance (22%), compression set (45%), and stickiness. Furthermore, Examples 2 to 8 were manufactured by the same method as Example 1, and the blending composition was the same as that of Example 1.
As shown in the table. As for quality, compression set, oil resistance, injection moldability, stickiness, etc. were all well balanced compared to Comparative Examples 1 to 6 below. Comparative Examples 1, 2 and 3 are Example 1,
The hardness corresponds to hardnesses of 2 and 7, and they were blended in a 30 mm diameter twin screw extruder according to the formulation shown in Table 1, and were not crosslinked. Comparative Example 4 has the same formulation as Example 1, but
Components (a) to (d) were not blended using an extruder before the crosslinking reaction, but blending and crosslinking were directly carried out at the same time using a 30 mm diameter twin screw extruder. Although this product had improved compression set, oil resistance, and stickiness compared to Comparative Example 1, its strength and elongation were low, and the appearance of the injection molded product was poor, such as spots appearing on the surface. It was bad. Comparative Examples 5 and 6 had the same formulation and manufacturing method as Example 1, but did not use a crosslinking aid. As can be seen from the gel fraction, these were almost at the same level as those without crosslinking, and there was no improvement in quality compared to Comparative Example 1. From the above, it can be seen that in the present invention, the effects of blending components (a) to (d) in advance in a kneader and then carrying out the crosslinking treatment and the combined use of the crosslinking aid are very large.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1(a) 一般式 A(―B−A)n (ここで、Aはモノビニル置換芳香族炭化水素
の重合体ブロツク、Bは共役ジエンのエラスト
マー性重合体ブロツクであり、nは1〜5の整
数である。)で表わされるブロツク共重合体の
水素添加誘導体100重量部、 (b) 非芳香族系ゴム用軟化剤80〜300重量部、お
よび (c) パーオキサイド分解型オレフイン系樹脂30〜
400重量部 からなる配合物を予め混錬した後、有機パーオ
キサイド、架橋助剤および場合により酸化防止剤
を加えて部分架橋し、その熱可塑性部分架橋物を
常法により溶融成形することを特徴とするエラス
トマー状成形体の製造方法。
[Claims] 1(a) General formula A(-B-A)n (where A is a monovinyl-substituted aromatic hydrocarbon polymer block, B is a conjugated diene elastomeric polymer block, 100 parts by weight of a hydrogenated derivative of a block copolymer represented by (n is an integer from 1 to 5), (b) 80 to 300 parts by weight of a non-aromatic rubber softener, and (c) peroxide decomposition. Type olefin resin 30~
400 parts by weight is kneaded in advance, an organic peroxide, a crosslinking aid, and optionally an antioxidant are added to partially crosslink the mixture, and the thermoplastic partially crosslinked product is melt-molded by a conventional method. A method for producing an elastomeric molded article.
JP606583A 1983-01-18 1983-01-18 Preparation of elastomer ic composition Granted JPS59131613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP606583A JPS59131613A (en) 1983-01-18 1983-01-18 Preparation of elastomer ic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP606583A JPS59131613A (en) 1983-01-18 1983-01-18 Preparation of elastomer ic composition

Publications (2)

Publication Number Publication Date
JPS59131613A JPS59131613A (en) 1984-07-28
JPH0311291B2 true JPH0311291B2 (en) 1991-02-15

Family

ID=11628176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP606583A Granted JPS59131613A (en) 1983-01-18 1983-01-18 Preparation of elastomer ic composition

Country Status (1)

Country Link
JP (1) JPS59131613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365706B2 (en) 2011-09-15 2016-06-14 Asahi Kasei Chemicals Corporation Crosslinked composition, method for producing crosslinked composition, and molded product

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613628B2 (en) * 1985-03-25 1994-02-23 三菱油化株式会社 Thermoplastic elastomer composition
JPS61247460A (en) * 1985-04-26 1986-11-04 塩谷エムエス株式会社 Stop plug for injection drug
US5929165A (en) * 1995-10-27 1999-07-27 Riken Vinyl Industry Co., Ltd. Thermoplastic elastomeric resin composition and a process for the preparation thereof
CA2238881A1 (en) * 1996-10-04 1998-04-09 Kuraray Co., Ltd. Thermoplastic polymer composition
JP4153577B2 (en) 1997-11-28 2008-09-24 旭化成ケミカルズ株式会社 Thermoplastic elastomer with excellent oil resistance
US7053145B1 (en) 1998-08-31 2006-05-30 Riken Technos Corporation Fire-retardant resin composition and molded part using the same
WO2002090433A1 (en) 2001-05-01 2002-11-14 Kuraray Co., Ltd. Thermoplastic elastomer composition
KR100535199B1 (en) 2002-04-24 2005-12-08 아사히 가세이 가부시키가이샤 Modified block copolymer composition
MY149394A (en) 2006-08-08 2013-08-30 Asahi Kasei Chemicals Corp Hydrogenated block copolymers and crosslinking compositions containing the same
JP5650405B2 (en) 2008-02-08 2015-01-07 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and method for producing the same
US20120190786A1 (en) 2009-09-30 2012-07-26 Kuraray Co., Ltd Thermoplastic elastomer composition, molded article, and sealing material for medical use
EP2519580B1 (en) 2009-12-29 2015-03-04 Saint-gobain Performance Plastics Corporation A flexible tubing material and method of forming the material
EP2858813A4 (en) 2012-06-06 2016-02-10 Saint Gobain Performance Plast Thermoplastic elastomer tubing and method to make and use same
JP6425477B2 (en) * 2014-09-15 2018-11-21 リケンテクノス株式会社 Thermoplastic elastomer composition
JP6440444B2 (en) * 2014-10-09 2018-12-19 リケンテクノス株式会社 Thermoplastic elastomer composition
JP6440445B2 (en) * 2014-10-09 2018-12-19 リケンテクノス株式会社 Thermoplastic elastomer composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145751A (en) * 1982-02-25 1983-08-30 Fujikura Ltd Crosslinkable resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145751A (en) * 1982-02-25 1983-08-30 Fujikura Ltd Crosslinkable resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9365706B2 (en) 2011-09-15 2016-06-14 Asahi Kasei Chemicals Corporation Crosslinked composition, method for producing crosslinked composition, and molded product

Also Published As

Publication number Publication date
JPS59131613A (en) 1984-07-28

Similar Documents

Publication Publication Date Title
US5936037A (en) Thermoplastic elastomeric resin composition and a process for the preparation thereof
JPH0358381B2 (en)
JPH0311291B2 (en)
JPS58206644A (en) Elastomer composition
EP1405877B1 (en) Process for production of thermoplastic elastomer composition
JP4023927B2 (en) Thermoplastic elastomer composition
JP4030664B2 (en) Thermoplastic elastomer resin composition and method for producing the same
JPS60166339A (en) Thermoplastic elastomeric composition
JP2001059049A (en) Thermoplastic elastomer composition
JPH0613628B2 (en) Thermoplastic elastomer composition
JPH09151295A (en) Thermoplastic elastomer resin composition and its production
JP3448582B2 (en) Thermoplastic elastomer composition, molded product thereof and composite molded product
JP4909467B2 (en) Thermoplastic elastomer composition and method for producing the same
JPH0149424B2 (en)
JP3669858B2 (en) Thermoplastic elastomer composition
JP3672132B2 (en) Composite molding resin composition
JP4173500B2 (en) Method for producing thermoplastic elastomer composition
JPH09316285A (en) Thermoplastic elastomer-resin composition and its production
JP2002234985A (en) Thermoplastic elastomer composition
JP2003183450A (en) Thermoplastic elastomer composition
JP3875551B2 (en) Thermoplastic elastomer composition
JPH0253849A (en) Thermoplastic elastomer composition
JPH0578582B2 (en)
JP4909468B2 (en) Method for producing thermoplastic elastomer composition
JPH0427255B2 (en)