JPH03112867A - Preparation of fiber-reinforced composite material - Google Patents

Preparation of fiber-reinforced composite material

Info

Publication number
JPH03112867A
JPH03112867A JP1248853A JP24885389A JPH03112867A JP H03112867 A JPH03112867 A JP H03112867A JP 1248853 A JP1248853 A JP 1248853A JP 24885389 A JP24885389 A JP 24885389A JP H03112867 A JPH03112867 A JP H03112867A
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
carbon
pressure medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1248853A
Other languages
Japanese (ja)
Inventor
Masatake Sakagami
正剛 阪上
Makoto Kawase
誠 川瀬
Tomoyuki Wakamatsu
智之 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1248853A priority Critical patent/JPH03112867A/en
Publication of JPH03112867A publication Critical patent/JPH03112867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To readily, safely and inexpensively prepare a homogeneously and highly densified fiber-reinforced composite material by pressing a fiber-reinforced composite material having a three-dimensional shape through a powdery pressure medium when the fiber-reinforce composite material is calcined by a hot press method. CONSTITUTION:A mold 3 prepared in coincidence with the curvature of the inner surface of a product 4 is placed on a receiving plate 1. A non-calcined fiber-reinforced composite material 4 having a three-dimensional shape is closely placed on the mold 3 and a carbon mold 2 is attached. A suitable amount of a powdery pressure medium 5 (e.g. carbon powder) is homogeneously filled in the carbon mold 2 and a carbon punch 6 is inserted into the carbon mold 2. The fiber-reinforced composite material 4 is hot-pressed and calcined under conditions of a temperature and a pressure corresponding to the product 4 to provide a fiber-reinforced composite material. The carbon powder having an average particle size of 100-500mum is suitable as the powdery pressure medium 5.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、繊維強化複合材料の製造方法に関し、特に
、三次元形状を有する繊維強化複合材料をホットプレス
を用いて焼成する繊維強化複合材料の製造方法に関する
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a fiber-reinforced composite material, and particularly to a fiber-reinforced composite material in which a fiber-reinforced composite material having a three-dimensional shape is fired using a hot press. Relating to a manufacturing method.

[従来の技術] 従来、繊維強化複合材料は主として気相化学蒸着法(以
下CVD法という)、液相含浸法により製造されている
。CVD法は、高温に熱した繊維基材上に減圧下で炭化
水素ガスを接触させ、炭素原子を基材上に沈着させる方
法であり、液相含浸法は繊維基材に液状レジンまたは溶
融ピッチなどのマトリクス材料を含浸させ炭化焼成する
[Prior Art] Conventionally, fiber-reinforced composite materials have been mainly produced by vapor phase chemical vapor deposition (hereinafter referred to as CVD) and liquid phase impregnation. The CVD method is a method in which a hydrocarbon gas is brought into contact with a fiber base material heated to a high temperature under reduced pressure to deposit carbon atoms on the base material, and the liquid phase impregnation method is a method in which a fiber base material is heated with a liquid resin or molten pitch. Impregnated with matrix material such as and carbonized and fired.

CVD法および液相含浸法により繊維強化複合材料を製
造する場合、基材の表面近くは高密度となるが基材の板
厚中央部では、気相、液相ともに進入し難いため低密度
となる。低密度になると強度が低下するので、この対策
として、CVD法では、製造中に基材表面に付着した蒸
着物を取り除きできるだけ気相が侵入しやすくして基材
の板厚中央部の高密度化を図っている。また、液相含浸
法では、含浸、焼成の工程を繰返すことにより炭化収率
を向上し、基材の板厚中央部での高密度化を図っている
When manufacturing fiber-reinforced composite materials using the CVD method and liquid phase impregnation method, the density is high near the surface of the base material, but the density is low at the center of the thickness of the base material because it is difficult for both the gas and liquid phases to enter. Become. As the strength decreases as the density decreases, as a countermeasure for this, the CVD method removes the deposits that adhere to the surface of the substrate during manufacturing, making it as easy as possible for the gas phase to penetrate, and increasing the density in the center of the thickness of the substrate. We are trying to make this happen. Furthermore, in the liquid phase impregnation method, the carbonization yield is improved by repeating the impregnation and firing steps, thereby increasing the density at the center of the thickness of the base material.

このように、CVD法および液相含浸法では、製造工程
が複雑であり、製造期間が非常に長くなるという欠点が
あり、製造コストの削減が行ないない問題点があった。
As described above, the CVD method and the liquid phase impregnation method have disadvantages in that the manufacturing process is complicated and the manufacturing period is extremely long, and the manufacturing cost cannot be reduced.

そこで、最近、ホットプレスを用いる簡便な製造方法が
提案されている。これらは、たとえば、特開昭61−2
1973に開示されている。これは、繊維基村上に電気
泳動により炭素微粉末と担体とを沈積させ、乾燥、加熱
した後ホットプレスにより積層方向に加圧、加熱して焼
成することにより容易に高密度な焼成体を作ることがで
きるものである。
Therefore, recently, a simple manufacturing method using hot pressing has been proposed. These are, for example, JP-A-61-2
It was disclosed in 1973. This method involves depositing fine carbon powder and a carrier on a fiber substrate by electrophoresis, drying and heating, and then applying pressure in the stacking direction using a hot press, heating, and firing to easily create a high-density fired body. It is something that can be done.

第2図は、従来のホットプレスを用いる三次元形状を有
する繊維強化複合材料の製造方法を説明するためのカー
ボン型の概略図である。第2図を参照して、カーボン型
は、受台1と、受台1に嵌め込まれたカーボンモールド
2と、受台1上に接して置かれたカーボン治具3と、カ
ーボンモールド2に嵌め込まれた製品4に圧力を加える
だめのカーボンバンチ10とを含む。
FIG. 2 is a schematic diagram of a carbon mold for explaining a method of manufacturing a fiber-reinforced composite material having a three-dimensional shape using a conventional hot press. Referring to FIG. 2, the carbon mold includes a pedestal 1, a carbon mold 2 fitted into the pedestal 1, a carbon jig 3 placed in contact with the pedestal 1, and a carbon mold 2 fitted into the carbon mold 2. and a carbon bunch 10 for applying pressure to the product 4.

次に、製造方法について説明する。まず、カーボン型の
組立順序を説明する。受台3の上に製品4の内面形状の
曲率に合わせて作製したカーボン治具3を設置する。カ
ーボン治具3の上に焼成前の製品4を密告させるように
置きその後カーボンモールド2を設置し、カーボンバン
チ10を入れる。このように組立てられたカーボン型を
ホットプレスにセ・シトし製品4に合わせて温度および
圧力を調整して繊維強化複合材料を焼成する。
Next, the manufacturing method will be explained. First, the assembly order of the carbon mold will be explained. A carbon jig 3 manufactured to match the curvature of the inner surface shape of the product 4 is installed on the pedestal 3. A product 4 before firing is placed on a carbon jig 3 so as to be in close contact with each other, and then a carbon mold 2 is installed and a carbon bunch 10 is inserted. The carbon mold thus assembled is placed in a hot press, and the temperature and pressure are adjusted according to the product 4 to fire the fiber-reinforced composite material.

[発明が解決しようとする課題] 前述のように、従来のホットプレスを用いる繊維強化複
合材料の製造方法では、その焼成の際、ホットプレスに
よって積層方向に加圧、加熱することにより、高密度な
焼成体を容易に作製することができる。しかし、従来の
方法では、カーボンバンチ10およびカーボン治具3の
形状は、焼成前の製品4の形状に合わせて形成されてい
るので、焼成前に製品4の板厚が減少した場合、製品4
の形状にカーボンバンチ10およびカーボン治具3の形
状が追従できない。この結果、焼成の際に製品4の全面
に−様な圧力を加えることができなくなり、密度の−様
な焼成体を得ることができないという欠点があった。
[Problems to be Solved by the Invention] As mentioned above, in the conventional manufacturing method of fiber-reinforced composite materials using a hot press, high density A fired body can be easily produced. However, in the conventional method, the shapes of the carbon bunch 10 and the carbon jig 3 are formed to match the shape of the product 4 before firing.
The shapes of the carbon bunch 10 and the carbon jig 3 cannot follow the shape of the carbon bunch 10 and the carbon jig 3. As a result, it is not possible to apply a uniform pressure to the entire surface of the product 4 during firing, resulting in the disadvantage that a fired body with a uniform density cannot be obtained.

つまり、従来のホットプレスを用いる繊維強化複合材料
の製造方法では、均一に高密度化した繊維強化複合材料
を得ることは困難であった。
In other words, it is difficult to obtain a uniformly high-density fiber-reinforced composite material using the conventional method for producing a fiber-reinforced composite material using hot pressing.

また、均一に高密度化された三次元形状を有する繊維強
化複合材料を製造する方法として、従来からセラミック
スの焼結に用いられているHIP(HOT  l5os
tatic  Pressing)法を用いる方法があ
る。HIP法は、通常100〜数1000気圧の圧力で
気体を圧力媒体として焼成するため、焼成中に製品の板
厚が減少しても製品への圧力は均一である。したがって
密度が均一な製品を得ることができる。しかし、このH
IP法は、ガスを数1000気圧にするために気密性が
要求され、高圧に対する安全対策にかなりの費用がかか
るため設備が非常に高価になり、製造コストの削減が図
れないという問題点がある。
In addition, as a method for manufacturing fiber-reinforced composite materials with a uniformly densified three-dimensional shape, HIP (HOT
There is a method using the tatic pressing method. In the HIP method, the product is usually fired at a pressure of 100 to several thousand atmospheres using gas as a pressure medium, so even if the thickness of the product decreases during firing, the pressure on the product remains uniform. Therefore, a product with uniform density can be obtained. However, this H
The IP method has the problem that airtightness is required in order to bring the gas to several thousand atmospheres, and safety measures against high pressure require considerable expense, making equipment extremely expensive and making it impossible to reduce manufacturing costs. .

この発明は、上記のような課題を解決するためになされ
たもので、均一に高密度化した繊維強化複合材料を安価
に得ることが可能な繊維強化複合材料の製造方法を提供
することを目的とする。
This invention was made to solve the above-mentioned problems, and an object thereof is to provide a method for producing a fiber-reinforced composite material that can obtain a uniformly high-density fiber-reinforced composite material at a low cost. shall be.

[課題を解決するための手段] 第1請求項における発明は、ホットプレスにより繊維強
化複合材料を焼成する際に粉末状の圧力媒体を介して繊
維強化複合材料に圧力を加えることを特徴とする。
[Means for Solving the Problem] The invention in the first claim is characterized in that pressure is applied to the fiber-reinforced composite material via a powdered pressure medium when firing the fiber-reinforced composite material by hot pressing. .

第2請求項における発明は、圧力媒体が炭素粉末である
ことを特徴とする。
The invention in claim 2 is characterized in that the pressure medium is carbon powder.

第3請求項における発明は、圧力媒体の粒径が100〜
500μmであることを特徴とする。
The invention in claim 3 provides that the particle size of the pressure medium is 100 to 100.
It is characterized by being 500 μm.

[作用] 第1請求項に係る発明では、ホットプレスにより繊維強
化複合材料を焼成する際に、粉末状の圧力媒体を介して
繊維強化複合材料に圧力が加えられるので、焼成時に繊
維強化複合材料の板厚が減少してもそれに追従してその
全面に−様な圧力が加えられ、かつ、ガスを用いて加圧
する方法のように爆発の危険性がないので高度な安全対
策を要求されないとともに高度な気密性を要求されない
ので高価な設備を必要としない。
[Function] In the invention according to the first claim, when the fiber reinforced composite material is fired by hot pressing, pressure is applied to the fiber reinforced composite material through the powder pressure medium, so that the fiber reinforced composite material is heated during firing. Even if the thickness of the plate decreases, a similar pressure can be applied to the entire surface of the plate, and there is no risk of explosion like with pressurizing methods using gas, so advanced safety measures are not required. Since a high degree of airtightness is not required, expensive equipment is not required.

第2請求項に係る発明では、圧力媒体が高温に耐えられ
る炭素粉末であるため、特に、高温での処理が要求され
る繊維強化複合材料の焼成に対応できる。
In the invention according to the second claim, since the pressure medium is carbon powder that can withstand high temperatures, it is particularly applicable to firing of fiber-reinforced composite materials that require processing at high temperatures.

請求項3に係る発明では、圧力媒体の粒径が100〜5
00μmであるため、小さすぎることによるモールドの
間隙からの圧力媒体の流出が防止できるとともに、大き
すぎることによる加圧時の圧力媒体の圧縮破壊が極力防
止できる。
In the invention according to claim 3, the particle size of the pressure medium is 100 to 5.
Since the diameter is 00 μm, it is possible to prevent the pressure medium from flowing out from the gap in the mold due to being too small, and it is possible to prevent compressive destruction of the pressure medium during pressurization due to being too large.

[発明の実施例] 第1図は、本発明の一実施例を示した繊維強化複合材料
の製造方法に使用されるホットプレス用のカーボン型を
示した概略図である。第1図を参照して、カーボン型は
、受台1と、受台1上に嵌め込まれたカーボンモールド
2と、受台1上に接して設置されたカーボン治具3と、
カーボンモールド2に嵌め込まれた焼成前の製品4に圧
力媒体5を介して圧力を加えるカーボンバンチ6とを含
む。
[Embodiment of the Invention] FIG. 1 is a schematic diagram showing a carbon mold for hot pressing used in a method for producing a fiber reinforced composite material showing an embodiment of the invention. Referring to FIG. 1, the carbon mold includes a pedestal 1, a carbon mold 2 fitted onto the pedestal 1, a carbon jig 3 installed in contact with the pedestal 1,
It includes a carbon bunch 6 that applies pressure via a pressure medium 5 to a pre-fired product 4 fitted in a carbon mold 2.

次に、製造方法について説明する。まず、金型の組立順
序を説明する。受台3の上に製品4の内面形状の曲率に
合わせて作製したカーボン治具3を設置する。カーボン
治具3の上に焼成前の製品4を密着させるように設置し
、カーボンモールド2を取付ける。圧力媒体5を均一に
適当量充填し、カーボンバンチ6をカーボンモールド2
に挿入する。このように組立てられた金型をホットプレ
スにセットし、製品4に合わせて温度および圧力を設定
して繊維強化複合材料を焼成する。ここで、圧力媒体は
粉体であり、その材料としては、金属。
Next, the manufacturing method will be explained. First, the assembly order of the mold will be explained. A carbon jig 3 manufactured to match the curvature of the inner surface shape of the product 4 is installed on the pedestal 3. The product 4 before firing is placed on the carbon jig 3 so as to be in close contact with it, and the carbon mold 2 is attached. The pressure medium 5 is uniformly filled in an appropriate amount, and the carbon bunch 6 is placed in the carbon mold 2.
Insert into. The mold thus assembled is set in a hot press, the temperature and pressure are set according to the product 4, and the fiber-reinforced composite material is fired. Here, the pressure medium is powder, and its material is metal.

セラミックス、カーボンなどが用いられ、繊維強化複合
材料の焼成温度に合わせて選択する。すなわち、繊維強
化複合材料が繊維強化セラミックスあるいは繊維強化炭
素材料である場合は、金属は溶けてしまうため使用でき
ずセラミックスを用いる。さらに、焼成温度が2000
℃を越える場合は、セラミックスでも耐熱性に問題が生
じるのでカーボンを用いる。
Ceramics, carbon, etc. are used, and are selected according to the firing temperature of the fiber-reinforced composite material. That is, when the fiber-reinforced composite material is fiber-reinforced ceramics or fiber-reinforced carbon material, metal cannot be used because it melts, and ceramics are used. Furthermore, the firing temperature is 2000
If the temperature exceeds ℃, even ceramics have problems with heat resistance, so carbon is used.

このような、圧力媒体を加圧手段に用いることにより、
焼成時の製品4の板厚減少による曲率の変化にも追従し
て製品4全面に均一の圧力を加えることができ、かつ、
圧力媒体が粉体であることからHIP法のように高価な
設備を必要とせず静水圧に近い条件での加圧が可能とな
り、高密度の均一な焼成体を安価に得ることができる。
By using such a pressure medium as a pressurizing means,
It is possible to apply uniform pressure to the entire surface of the product 4 by following the change in curvature due to the decrease in the thickness of the product 4 during firing, and
Since the pressure medium is powder, it does not require expensive equipment unlike the HIP method, and pressurization can be performed under conditions close to hydrostatic pressure, making it possible to obtain a high-density and uniform fired body at a low cost.

以下に示す第1表は、本実施例のカーボン型を用いて主
に圧力媒体の粒径を変化させて繊維強化複合材料を製造
した場合の実験結果を示したものである。
Table 1 below shows the experimental results when a fiber reinforced composite material was produced using the carbon mold of this example and mainly changing the particle size of the pressure medium.

(以下余白) 第1表を参照して、実施例1と実施例2の材質すなわち
、炭素繊維に自己焼結性炭素粉末を加えたものとSiC
ウィスカにSiC粉末を加えたものとの両方において圧
力媒体の平均粒径は100〜500μmが適しているこ
とがわかる。
(Left below) Referring to Table 1, the materials of Example 1 and Example 2 are carbon fiber with self-sintering carbon powder added and SiC.
It can be seen that an average particle size of the pressure medium of 100 to 500 μm is suitable for both the whisker and the SiC powder.

一方、比較例1のように圧力媒体であるカーボン粉末の
平均粒径を50μm程度まで小さくすると、焼成中の加
圧により、カーボン型のクリアランスからカーボン粉末
が流出してしまう不都合が生じる。この結果、加圧力が
減少することとなり、良好な製品が得られなかった。
On the other hand, if the average particle size of the carbon powder serving as the pressure medium is reduced to about 50 μm as in Comparative Example 1, there is a problem that the carbon powder flows out from the clearance of the carbon mold due to pressurization during firing. As a result, the pressing force was reduced, and a good product could not be obtained.

また、比較例2のように圧力媒体であるカーボン粉末の
平均粒径を750μm程度まで大きくすると、焼成中の
加圧により、粒径が500μmを越えるものの一部が圧
縮破壊を起こし、その結果、均一に圧力を伝えることが
できなくなり均一な板厚の焼成体が得られなかった。
Furthermore, if the average particle size of the carbon powder used as the pressure medium is increased to about 750 μm as in Comparative Example 2, some of the particles with particle sizes exceeding 500 μm will undergo compression fracture due to the pressure applied during firing, and as a result, Pressure could not be transmitted uniformly, and a fired body with a uniform thickness could not be obtained.

上記の結果より、圧力媒体の平均粒径は100〜500
μmが望ましいことがわかる。
From the above results, the average particle size of the pressure medium is 100 to 500.
It can be seen that μm is desirable.

[発明の効果] 請求項第1に記載の発明によれば、ホットプレスにより
繊維強化複合材料を焼成する際に、粉末状の圧力媒体を
介して繊維強化複合材料に圧力を加えることにより、焼
成時に繊維強化複合材料の板厚が減少に追従してその全
面に−様な圧力が加えられるので、均一に高密度かした
繊維強化材料を容易に得ることができ、かつ、高気圧ガ
スを用いて加圧する方法のように爆発の危険性がないの
で高度な安全対策を要求されることがないとともに高度
な気密性も要求されないので高価な設備を必要とするこ
とがなく製造コストの削減が図れ安価な繊維強化材料を
提供することができる。
[Effects of the Invention] According to the invention described in claim 1, when firing the fiber reinforced composite material by hot pressing, the firing is performed by applying pressure to the fiber reinforced composite material through a powder pressure medium. At times, as the thickness of the fiber-reinforced composite material decreases, pressure is applied to the entire surface of the material, making it easy to obtain a fiber-reinforced material with uniformly high density. Unlike pressurized methods, there is no risk of explosion, so advanced safety measures are not required, and high airtightness is not required, so there is no need for expensive equipment, which reduces manufacturing costs and is inexpensive. It is possible to provide a fiber-reinforced material.

請求項第2に記載の発明によれば、圧力媒体が高温に耐
えられる炭素粉末であるため、特に、高温での処理が要
求される繊維強化複合材料の焼成に対応でき、良好な繊
維強化複合材料を得ることができる。
According to the second aspect of the invention, since the pressure medium is carbon powder that can withstand high temperatures, it can be used particularly for firing fiber-reinforced composite materials that require processing at high temperatures. materials can be obtained.

請求項第3に係る発明によれば、圧力媒体の粒径が10
0〜500μmであるため、小さすぎることによるモー
ルドの間隙からの圧力媒体の流出が防止できるとともに
、大きすぎることによる加圧時の圧力媒体の圧縮破壊が
極力防止できるので、圧力を減少させることなく、かつ
、均一に加えることができ、良質の繊維強化複合材料を
得ることができる。
According to the invention according to claim 3, the particle size of the pressure medium is 10
Since it is 0 to 500 μm, it is possible to prevent the pressure medium from flowing out from the gap in the mold due to being too small, and it is possible to prevent compressive destruction of the pressure medium during pressurization due to being too large, so there is no need to reduce the pressure. , and can be added uniformly to obtain a high-quality fiber-reinforced composite material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示した繊維強化複合材料の
製造方法に使用されるホットプレス用のカーボン型を示
した概略図、第2図は従来の繊維強化複合材料の製造方
法に使用されるホットプレス用のカーボン型を示した概
略図である。 図において、1は受台、2はカーボンモールド、3はカ
ーボン治具、4は製品、5は圧力媒体、6はカーボンパ
ンチである。 なお、図中、同一符号は同一または相当部分を示す。 目
Fig. 1 is a schematic diagram showing a carbon mold for hot pressing used in the method for producing fiber reinforced composite materials according to an embodiment of the present invention, and Fig. 2 is a schematic diagram showing a carbon mold for hot pressing used in the method for producing fiber reinforced composite materials according to an embodiment of the present invention. It is a schematic diagram showing a carbon mold for hot press used. In the figure, 1 is a pedestal, 2 is a carbon mold, 3 is a carbon jig, 4 is a product, 5 is a pressure medium, and 6 is a carbon punch. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. eye

Claims (3)

【特許請求の範囲】[Claims] (1)三次元形状を有する繊維強化複合材料をホットプ
レスを用いて焼成する繊維強化複合材料の製造方法であ
って、 前記ホットプレスにより前記繊維強化複合材料を焼成す
る際に粉末状の圧力媒体を介して前記繊維強化複合材料
に圧力を加えることを特徴とする、繊維強化複合材料の
製造方法。
(1) A method for producing a fiber-reinforced composite material in which a fiber-reinforced composite material having a three-dimensional shape is fired using a hot press, wherein a powdery pressure medium is used when firing the fiber-reinforced composite material by the hot press. A method for producing a fiber-reinforced composite material, the method comprising: applying pressure to the fiber-reinforced composite material via the method.
(2)前記圧力媒体が炭素粉末であることを特徴とする
、請求項第1に記載の繊維強化複合材料の製造方法。
(2) The method for producing a fiber-reinforced composite material according to claim 1, wherein the pressure medium is carbon powder.
(3)前記圧力媒体の粒径が、100〜500μmであ
ることを特徴とする、請求項第1に記載の繊維強化複合
材料の製造方法。
(3) The method for producing a fiber-reinforced composite material according to claim 1, wherein the pressure medium has a particle size of 100 to 500 μm.
JP1248853A 1989-09-25 1989-09-25 Preparation of fiber-reinforced composite material Pending JPH03112867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1248853A JPH03112867A (en) 1989-09-25 1989-09-25 Preparation of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1248853A JPH03112867A (en) 1989-09-25 1989-09-25 Preparation of fiber-reinforced composite material

Publications (1)

Publication Number Publication Date
JPH03112867A true JPH03112867A (en) 1991-05-14

Family

ID=17184398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1248853A Pending JPH03112867A (en) 1989-09-25 1989-09-25 Preparation of fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JPH03112867A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044534A1 (en) * 2003-10-20 2005-05-19 Pontus Bergmark Autoclave for composite materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005044534A1 (en) * 2003-10-20 2005-05-19 Pontus Bergmark Autoclave for composite materials

Similar Documents

Publication Publication Date Title
US4396663A (en) Carbon composite article and method of making same
US4722762A (en) Method of making shaped bodies of silicon carbide or of graphite or graphite-like material with a silicon carbide surface
US4955135A (en) Method of making matrix composites
CA1178409A (en) Method of fabricating carbon composites
CA1158847A (en) Process for the manufacture of substantially pore- free shaped polycrystalline articles by isostatic hot-pressing
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
JPS605070A (en) Composite material and manufacture
JPS6256103B2 (en)
EP1377759A1 (en) Annular carbon fiber brake preform and manufacturing method
US5244623A (en) Method for isostatic pressing of formed powder, porous powder compact, and composite intermediates
US10464849B2 (en) Fast-densified ceramic matrix composite and fabrication method
JPH04232002A (en) Forming of mandrel
US5167889A (en) Process for pressure sintering polymeric compositions
US6180223B1 (en) Densification of a porous structure
JPH03112867A (en) Preparation of fiber-reinforced composite material
US4904538A (en) One step HIP canning of powder metallurgy composites
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
EP0029851B1 (en) Method of making carbon composite article
US3607613A (en) Electrically conductive refractory bodies
US3509017A (en) Multi-layered pyrolized para-polyphenylene structures and method of making same
CA2005002C (en) Improved method for electroconsolidation of a preformed particulate workpiece
JP2665957B2 (en) Carbon fiber / carbon composite
Huang et al. 4350728 Cross reinforcement in a graphite-epoxy laminate
Huber 4350718 Method of fabricating graphite tube
Layden et al. 4350672 Binderless carbon or graphite articles