JPH03112846A - Production of sintered ceramic - Google Patents

Production of sintered ceramic

Info

Publication number
JPH03112846A
JPH03112846A JP1249737A JP24973789A JPH03112846A JP H03112846 A JPH03112846 A JP H03112846A JP 1249737 A JP1249737 A JP 1249737A JP 24973789 A JP24973789 A JP 24973789A JP H03112846 A JPH03112846 A JP H03112846A
Authority
JP
Japan
Prior art keywords
particles
particle size
degreasing
principal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1249737A
Other languages
Japanese (ja)
Inventor
Yukihiro Kimura
幸広 木村
Sumuto Ikemura
池村 澄人
Rokuro Kanbe
六郎 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1249737A priority Critical patent/JPH03112846A/en
Publication of JPH03112846A publication Critical patent/JPH03112846A/en
Priority to US07/911,782 priority patent/US5250244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a sintered material having improved degreasing property and sinterability and high sintered density and free from warpage by specifying the particle size distribution of principal particles, especially the distribution at the fine particle side, in the calcination of a mixture containing principal ceramic particles, sintering assistant particles and an organic binder. CONSTITUTION:A mixture containing principal ceramic particles, sintering assistant particles and an organic binder is calcined in a non-oxidizing atmosphere to obtain a sintered material. The principal particles to be used in the above process are those having particle size distribution having an average particle diameter of <=5mum and containing <=15wt.% of particles having particle size of <=1.0mum. Gaps between the particles in degreasing step can be secured by this process to improve the degreasing efficiency and, accordingly, uniformly remove the residual binder in calcination step. When the content of the principal particles finer than 1.0mum exceeds 15%, the flow of gas in the degreasing step becomes difficult to cause insufficient sintered density. When the average particle diameter exceeds 5mum, the sinterability becomes poor to increase the problem of void formation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、脱脂効率及び焼結性に優れた、セラミック焼
結体の製造方法に関し、電子部品等に使用するセラミッ
ク基板(特にセラミック多層配線基板)等に利用される
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a ceramic sintered body having excellent degreasing efficiency and sinterability, and relates to a method for manufacturing a ceramic sintered body having excellent degreasing efficiency and sinterability. used for substrates) etc.

〔従来の技術〕[Conventional technology]

従来、例えばセラミック多層配線基板の製造において使
用されるセラミック基本粒子は、平均粒径のみを律して
使用されていた。
Conventionally, basic ceramic particles used, for example, in the production of ceramic multilayer wiring boards, have been used with only the average particle size being regulated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の製造方法では、通常、非酸化3囲気下で14
00〜1600℃の温度で焼成するが、平均粒径の大き
なセラミック基本粒子を使用すると、通常、その中に大
きなセラミック基本粒子が相当数存在することとなる。
In the conventional manufacturing method, usually 14
When firing is performed at a temperature of 00 to 1600° C., if ceramic elementary particles with a large average particle size are used, a considerable number of large ceramic elementary particles will normally be present therein.

この大きな粒子が、焼はムラの原因となりボイドが生じ
易いので、焼結密度が十分に向上しない。かといって、
平均粒径の小さなセラミック基本粒子を使用しても、般
にはセラミック基本粒子の焼結性が向上するものの、非
酸化雰囲気下で焼成する場合は、逆に焼結密度が上がら
ないし、焼結体の品質が必ずしも向上しない。
These large particles cause uneven sintering and tend to cause voids, so the sintered density cannot be sufficiently improved. However,
The use of ceramic basic particles with a small average particle size generally improves the sinterability of the ceramic basic particles, but when firing in a non-oxidizing atmosphere, the sintered density does not increase and the sintering Body quality does not necessarily improve.

本発明は、前記問題点を解消するものであり、セラミッ
ク基本粒子の粒度分布、特に微粒子側の分布が脱脂性、
焼結性に大きく影響することを、新たに見出して完成し
たものである。即ち、本発明は、脱脂性及び焼結性に浸
れた製造方法、即ち焼結密度が大きく、反りの少ない高
品質なセラミツク焼結体を製造する方法を提供すること
を目的とする。
The present invention solves the above problems, and the particle size distribution of basic ceramic particles, especially the distribution on the fine particle side, has good degreasing properties.
This was completed based on the new discovery that it greatly affects sinterability. That is, an object of the present invention is to provide a manufacturing method that is excellent in degreasing and sintering properties, that is, a method for manufacturing a high-quality ceramic sintered body with a high sintered density and little warpage.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のセラミック焼結体の製造方法は、セラミック基
本粒子と焼結助剤粒子と有機バインダを含む混合物を用
いて成形し、非酸化雰囲気下で焼成して焼結体を製造す
る方法において、前記セラミック基体粒子の粒度分布は
、1.0μm以下の粒子が15重量%(以下、%という
)以下であり、かつ平均粒径が5μm以下であることを
特徴とする。
The method for manufacturing a ceramic sintered body of the present invention is a method of manufacturing a sintered body by molding a mixture containing ceramic basic particles, sintering aid particles, and an organic binder and firing it in a non-oxidizing atmosphere. The particle size distribution of the ceramic substrate particles is characterized in that particles of 1.0 μm or less account for 15% by weight (hereinafter referred to as %) or less, and the average particle size is 5 μm or less.

有機バインダを用いる場合、特にそれを比較的多く用い
る場合〈シート成形、射出成形等の場合)は、通常、成
形体を構成する成分が酸化しない温度まで(アルミナ多
層配線基板の場合は、配線パターン中のタングステン又
はモリブデンの酸化を防ぐため200〜300℃程度ま
で)大気中で脱脂を行い、その後、非酸化雰囲気中、1
400〜1600℃で焼成する。しかし、このバンイダ
が前記脱脂工程及び焼成工程途中で効率よく除去されな
いと、カーボンとして焼結体中に残留して、これが焼成
を阻害して内部にボイドが生じ、そのため焼結密度が向
上しなかったり、またバインダの除去にムラが生じるの
で、基板等に反りが発生するという問題が生じることを
、本発明者等は種々検討の結果、見出した。本発明は、
このような問題を、セラミック基本粒子の粒度分布によ
り解決できることを鋭意検討の結果、新たに見出して完
成したものである。
When using an organic binder, especially when using a relatively large amount (in the case of sheet molding, injection molding, etc.), it is usually kept at a temperature at which the components constituting the molded product do not oxidize (in the case of an alumina multilayer wiring board, the wiring pattern To prevent oxidation of the tungsten or molybdenum contained in the tungsten or molybdenum, degreasing is performed in the air (up to about 200 to 300°C), and then in a non-oxidizing atmosphere for 1
Calculate at 400-1600°C. However, if this vanida is not efficiently removed during the degreasing and firing steps, it will remain in the sintered body as carbon, which will inhibit firing and create voids inside, resulting in an increase in sintered density. As a result of various studies, the inventors of the present invention have discovered that, as a result of various studies, there is a problem in that the removal of the binder is uneven, resulting in warping of the substrate and the like. The present invention
As a result of extensive research, we have discovered that these problems can be solved by changing the particle size distribution of basic ceramic particles.

前記セラミック基本粒子、焼結助剤及び有機バインダの
種類は、目的、用途により種々選択される。このを機バ
インダの配合量も、特に限定されない。しかし、本発明
は、通常、シート成形、射出成形又は押出し成形等の比
較的それが多く用いられる場合が、特に好適である。こ
れは、粒度分布が脱脂効率に大きく影響するからである
The types of the ceramic basic particles, sintering aid, and organic binder are selected depending on the purpose and use. The amount of the binder added is also not particularly limited. However, the present invention is particularly suitable for cases in which sheet molding, injection molding, or extrusion molding is used relatively frequently. This is because particle size distribution greatly affects degreasing efficiency.

このセラミック粒子の粒度分布は、1.0μm以下の粒
子が15%以下である。これを越えると、微粒子が多く
なり脱脂工程においてガスの通過が十分でなく、脱指効
率が低くなるので、内部にボイドが多くなり、焼結密度
が十分でなくなる。
The particle size distribution of the ceramic particles is such that particles of 1.0 μm or less account for 15% or less. If this value is exceeded, the number of fine particles increases, and gas passage during the degreasing process is insufficient, resulting in a low de-fingering efficiency, resulting in a large number of voids inside, and insufficient sintering density.

更に、この場合は、均一に脱脂されないので焼成工程に
おいて、残留バインダが均一に除去されず、そのため、
焼成後の焼結体、特に基板の場合には反りが大きくなる
。また、このセラミック粒子の平均粒径が5μmを越え
ると、粒子径が大きくなり、特に10〜20μm以上と
いう大きな粒子が相当数存在することとなるので、焼結
性が十分でなく、ボイドも生じ易くなり、そのため焼結
密度が悪くなる。
Furthermore, in this case, since the degreasing is not uniform, the residual binder is not removed uniformly during the firing process.
After firing, the sintered body, especially the substrate, becomes more warped. In addition, if the average particle size of the ceramic particles exceeds 5 μm, the particle size becomes large, and a considerable number of large particles, especially 10 to 20 μm or more, will be present, resulting in insufficient sinterability and voids. This causes the sintered density to deteriorate.

前記脱脂は酸化雰囲気で実施され、通常、大気中で実施
される。また、前記焼成雰囲気は、非酸化雰囲気で実施
され、これは通常、窒素−水素の混合還元雪囲気等が用
いられる。焼成温度は、前記雰囲気焼成において用いら
れる温度(通常、1400〜1600℃程度)が用いら
れる。
The degreasing is carried out in an oxidizing atmosphere, usually in the atmosphere. Further, the firing atmosphere is a non-oxidizing atmosphere, which is usually a nitrogen-hydrogen mixed reduction snow atmosphere or the like. As the firing temperature, the temperature used in the above-mentioned atmosphere firing (usually about 1400 to 1600°C) is used.

〔作用〕[Effect]

前記各雰囲気下の脱脂及び焼成において、このセラミッ
ク基本粒子の粒度分布は、1.0μm以下の粒子が15
%以下と微粒子が少I;いので、脱脂工程において粒子
と粒子の空隙が確保され、ガスの通過が十分確保され、
そのため脱脂効率が向上する。また、脱脂効率が向上す
るので、焼成工程にお51て残留バインダが均一に除去
される。
In the degreasing and firing under each of the above atmospheres, the particle size distribution of the ceramic basic particles was such that the particles of 1.0 μm or less were 15
% or less, so the voids between the particles are ensured during the degreasing process, and sufficient gas passage is ensured.
Therefore, the degreasing efficiency is improved. Furthermore, since the degreasing efficiency is improved, residual binder is uniformly removed in the firing step 51.

また、このセラミック基本粒子の平均粒径が5μm以下
であるので、10〜20μm以上の粗粒子が極めて少な
く、そのため焼結性に優れる。
Further, since the average particle size of the ceramic basic particles is 5 μm or less, there are extremely few coarse particles of 10 to 20 μm or more, and therefore, the sinterability is excellent.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

まず、表に示す粒度分布及び平均粒径をもつアルミナ(
基本粒子)の試験粉末品h1〜6を用意した。
First, alumina (
Test powder products h1 to h6 of basic particles) were prepared.

表 尚、この粒度分布は、「マイクロトラック」 (商品名
、LEEDS&N0RTHRUP社製)を用いてレーザ
ー式粒度分布測定法により測定し、平均粒径は累積数が
50%の粒径値とした。同Nα2.6における粒度分布
の結果を第3図に示す。
The particle size distribution was measured by a laser particle size distribution measuring method using "Microtrack" (trade name, manufactured by LEEDS & NORTHRUP), and the average particle size was defined as the particle size value at which the cumulative number was 50%. The results of the particle size distribution at Nα2.6 are shown in FIG.

その後、前記各粒度分布をもつアルミナ92%、その他
に5iOa 、CaOlMgO等の焼結助剤(平均粒径
約2.0μm)8%の組成に係わる各粉末(併せて10
0部)に、所定量の有機溶媒(例えばメチルエチルケト
ン、トルエン)及び珪石(アルミナ製)を入れ、回転ミ
ルにて混合粉砕し、更にブチラール系樹脂(約8部)及
び可塑剤(約4部)を加えて、混合し、均質なスラリー
を調製する。このスラリーを用いて、テープキャスティ
ング法により厚さQ、5mmのグリーンシートを作成し
、このグリーンシートを4層積層した。次に、この積層
品を36X24mmの大きさに切断した。
After that, each powder (total of 10
0 parts), add a predetermined amount of organic solvent (for example, methyl ethyl ketone, toluene) and silica stone (made of alumina), mix and grind in a rotary mill, and then add butyral resin (about 8 parts) and plasticizer (about 4 parts). and mix to prepare a homogeneous slurry. Using this slurry, a green sheet with a thickness Q of 5 mm was produced by tape casting, and four layers of this green sheet were laminated. Next, this laminate was cut into a size of 36 x 24 mm.

次いで、これを大気中で30℃/時間の昇温速度で25
0℃まで加熱して、脱脂処理をした。その後、水素(約
50容積%)−窒素(約50同%)の混合ガス還元雰囲
気中にて、被焼成物が1440〜1560℃間における
第1,2図図示の各温度となるように焼成して、各焼結
板Nα1〜6を作成した。尚、このNα2.3が本発明
品であり、他は比較例品である。
This was then heated in air at a heating rate of 30°C/hour for 25 minutes.
It was heated to 0°C and degreased. Thereafter, the object to be fired is fired in a reducing atmosphere of a mixed gas of hydrogen (approximately 50% by volume) and nitrogen (approximately 50% by volume) so that the firing target reaches the temperatures shown in Figures 1 and 2 between 1440 and 1560°C. Thus, each sintered plate Nα1 to Nα6 was created. Note that this Nα2.3 is the product of the present invention, and the others are comparative example products.

この各焼結板の焼成密度を第1図、その反り量(反り深
さ、μm)を第2図に示した。この結果によれば、本発
明範囲に含まれる焼結板Nα2.3は、焼結密度が高く
、1500〜1560℃の温度でほぼ理論密度に達して
おり、理論密度に達する焼結温度域が広い。また、反り
量についても、同Nα2.3はいずれの焼成温度におい
ても極めて少ない。
The firing density of each sintered plate is shown in FIG. 1, and the amount of warpage (warp depth, μm) is shown in FIG. According to this result, the sintered plate Nα2.3 included in the range of the present invention has a high sintered density, reaching almost the theoretical density at a temperature of 1500 to 1560°C, and the sintering temperature range in which the theoretical density is reached is wide. Also, regarding the amount of warpage, Nα2.3 is extremely small at any firing temperature.

一方、細かい粒子が多い同Nα5.6は、内部にボイド
が多く焼結密度が低く、反り量も大きい。
On the other hand, Nα5.6, which has many fine particles, has many voids inside, has a low sintering density, and has a large amount of warpage.

更に、これらは焼成温度が高い程、焼成密度が低下して
おり、反り量も多い。これは、高温になる程、ガスの通
過が悪くなり脱脂が不十分かつ不均一になるので、内部
に閉じ込められたバインダ、カーボンがガス化して生じ
ると考えられるボイドが多くなり、かつ反り量も多くな
ることを示している。更に、粗粒子の多い同Nα1は焼
成温度の上昇とともに焼成密度が上昇しているが、理論
密度に達せず、焼結性が十分でないことを示している。
Furthermore, the higher the firing temperature, the lower the firing density and the greater the amount of warpage. This is because the higher the temperature, the more difficult the gas passage becomes and the degreasing becomes insufficient and uneven, which increases the number of voids that are thought to be caused by the gasification of the binder and carbon trapped inside, and also reduces the amount of warpage. It shows that there will be more. Furthermore, although the sintered density of Nα1, which has a large number of coarse particles, increases as the sintering temperature rises, it does not reach the theoretical density, indicating that the sinterability is insufficient.

以上より、本発明に係わる焼結板Nα2.3では、内部
ボイドが少なく、焼成密度が高く、反り量が少ない極め
て精度のよいものである。また、広い焼成温度範囲で理
論密度と少ない反り量を確保でき、安定した焼結板が得
られた。
From the above, the sintered plate Nα2.3 according to the present invention has very high precision with few internal voids, high firing density, and small amount of warpage. In addition, a stable sintered plate was obtained with a theoretical density and a small amount of warpage over a wide firing temperature range.

〔発明の効果〕〔Effect of the invention〕

本製造方法によれば、前記作用を存するので、脱脂性及
び焼結性に優れ、かつ両者のバランスが極めてよい。従
って、本製造方法によれば、この両者が相俟って、内部
ボイドが少なく焼結密度が高く、焼結体く特に基板)の
反りが少なく、また、前記良好な効果を有する焼成温度
域が広いので焼結の安定したものを製造できる。
According to this manufacturing method, since it has the above-mentioned effects, it has excellent degreasing properties and sintering properties, and has an extremely good balance between the two. Therefore, according to the present manufacturing method, both of these factors are combined, resulting in fewer internal voids, higher sintering density, less warping of the sintered body (especially the substrate), and a firing temperature range in which the above-mentioned favorable effects can be achieved. Since the area is wide, it is possible to produce products with stable sintering.

以上より、本発明は、特に有機バインダを比較的多く用
−)るシート成形、射出成形等による場合には、通常の
経済的な脱脂及び焼成条件によっても、高品質な焼結体
を製造でき、特にセラミック多層配線基板等の製造には
極めて有用である。
From the above, the present invention shows that high-quality sintered bodies can be produced even under normal economical degreasing and firing conditions, especially when using sheet molding, injection molding, etc. that use a relatively large amount of organic binder. In particular, it is extremely useful for manufacturing ceramic multilayer wiring boards and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例においてセラミック基本粒子の粒度分布
と焼成温度と焼成密度との関係を示すグラフ、第2図は
同様にセラミック基本粒子の粒度分布と焼成温度と反り
量との関係を示すグラフ、第3図は試験粉末品Nα2.
6 (セラミック基体粒子)の粒度分布を示すグラフで
ある。
Figure 1 is a graph showing the relationship between the particle size distribution of basic ceramic particles, firing temperature, and firing density in Examples, and Figure 2 is a graph similarly showing the relationship between the particle size distribution of basic ceramic particles, firing temperature, and amount of warpage. , Figure 3 shows the test powder product Nα2.
6 is a graph showing the particle size distribution of (ceramic substrate particles).

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック基本粒子と焼結助剤粒子と有機バイン
ダを含む混合物を用いて成形し、非酸化雰囲気下で焼成
して焼結体を製造する方法において、前記セラミック基
本粒子の粒度分布は、1.0μm以下の粒子が15重量
%以下であり、かつ平均粒径が5μm以下であることを
特徴とするセラミック焼結体の製造方法。
(1) In a method of manufacturing a sintered body by molding a mixture containing ceramic basic particles, sintering aid particles, and an organic binder and firing it in a non-oxidizing atmosphere, the particle size distribution of the ceramic basic particles is as follows: A method for producing a ceramic sintered body, characterized in that the content of particles of 1.0 μm or less is 15% by weight or less, and the average particle size is 5 μm or less.
JP1249737A 1989-09-26 1989-09-26 Production of sintered ceramic Pending JPH03112846A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1249737A JPH03112846A (en) 1989-09-26 1989-09-26 Production of sintered ceramic
US07/911,782 US5250244A (en) 1989-09-26 1992-07-10 Method of producing sintered ceramic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1249737A JPH03112846A (en) 1989-09-26 1989-09-26 Production of sintered ceramic

Publications (1)

Publication Number Publication Date
JPH03112846A true JPH03112846A (en) 1991-05-14

Family

ID=17197458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1249737A Pending JPH03112846A (en) 1989-09-26 1989-09-26 Production of sintered ceramic

Country Status (1)

Country Link
JP (1) JPH03112846A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207634A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Cleaning device for vehicle
JP2015151307A (en) * 2014-02-14 2015-08-24 株式会社アテクト Alumina sintered compact and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207634A (en) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd Cleaning device for vehicle
JP2015151307A (en) * 2014-02-14 2015-08-24 株式会社アテクト Alumina sintered compact and method for producing the same

Similar Documents

Publication Publication Date Title
JPH05506422A (en) Reaction-sintered mullite-containing ceramic molded body, method for producing the molded body, and method for using the molded body
CN114180943B (en) Composite sintered body, semiconductor manufacturing device member, and method for manufacturing composite sintered body
RU2587669C2 (en) Method of making aluminium nitride-based heat-conducting ceramic
JP4383062B2 (en) Method for producing porous silicon carbide sintered body
JPH03112846A (en) Production of sintered ceramic
KR20140047607A (en) Aln substrate and method for producing same
KR101692219B1 (en) Composite for vacuum-chuck and manufacturing method of the same
JP2001158674A (en) Sintered compact of porous silicon carbide, method for producing the same, member for wafer-polishing device and table for wafer-polishing device
US5250244A (en) Method of producing sintered ceramic body
JPH07113103A (en) Production of gas permeable compact
JPH11171671A (en) Production of plate silicon carbide-silicon composite ceramic
JPS59156961A (en) Manufacture of alumina sintered substrate
JPH0251868B2 (en)
JPS5891059A (en) Composite ceramic sintered body and manufacture
JP3053949B2 (en) Manufacturing method of aluminum nitride multilayer substrate
KR0178577B1 (en) Method for manufacturing tray for cemented carbides sintering
CN117735980A (en) BNT target material for magnetron sputtering and method for preparing BNT target material by using hot pressing method
JP2007169095A (en) Manufacturing method of tridymite
JPH03112847A (en) Production of sintered ceramic
JPH0456392A (en) Manufacture of multilayer interconnection board of aluminum nitride
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
CN103011831A (en) Dielectric substrate for metamaterial and method for preparing same
JPH0564697B2 (en)
JPH0492868A (en) Production of sintered compact
JPH01131448A (en) Production of element for oxygen sensor