JPH0311256A - Multi-type air conditioner - Google Patents

Multi-type air conditioner

Info

Publication number
JPH0311256A
JPH0311256A JP1146221A JP14622189A JPH0311256A JP H0311256 A JPH0311256 A JP H0311256A JP 1146221 A JP1146221 A JP 1146221A JP 14622189 A JP14622189 A JP 14622189A JP H0311256 A JPH0311256 A JP H0311256A
Authority
JP
Japan
Prior art keywords
heat exchanger
pipe
indoor
gas branch
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1146221A
Other languages
Japanese (ja)
Other versions
JPH0765793B2 (en
Inventor
Masakazu Honda
正和 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1146221A priority Critical patent/JPH0765793B2/en
Publication of JPH0311256A publication Critical patent/JPH0311256A/en
Publication of JPH0765793B2 publication Critical patent/JPH0765793B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obviate the need for confirmation operation for mispiping and misconnection by carrying out normal operation on the basis of data of storage means storing results of decision by signal processing means which judge to which indoor unit each liquid branch pipe and each gas branch pipe are connected based on the detected signals at the refrigerant operation cycle during the test operation. CONSTITUTION:An operation control means 47 controlling space cooling or space heating operation is installed and further an operation control part 42 at the test operation time and a signal processing means 45 which decides the arbitrary piping connecting condition at the test operation time and installed. Into this means 45 respective detected temp. at temp. sensors 31 of heat exchangers for respective indoor units A-D, room temp. sensors 33, and temp. sensors 32 for respective gas branch pipes are fed and the results of decision by the means 45 are stored in a storage means 46. Data in the means 46 are delivered to the means 47 and on the basis of these data the operation of a compressor 1, switching operation of a four-way transfer valve 4, and opening and closing control of primary and secondary electric motor-driven expansion valves 8, 23 is carried out.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は一台の室外ユニットに複数の室内ユニットを
接続して構成するマルチ形空気調和機に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-type air conditioner configured by connecting a plurality of indoor units to one outdoor unit.

(従来の技術) 上記のようなマルチ形空気調和機の従来例としては、例
えば特開昭62−134436号公報記載の装置を挙げ
ることができる。その装置は、室外ユニットに内装した
圧縮機の吐出配管と吸込配管とを四路切換弁に接続し、
さらにこの四路切換弁の一方の接続ポートに順次室外熱
交換器と液管を、また他方の接続ボートにガス管をそれ
ぞれ接続し、そして上記ガス管の先端を4本のガス支管
に、また上記液管の先端を、それぞれ電動膨張弁の介設
された4本の液支管にそれぞれ分岐して、これらのガス
支管と液支管との間に、4台の室内ユニットにそれぞれ
内装されている各室内熱交換器を、連絡配管によって互
いに並列に接続する構成となされている。また上記室外
ユニットと各室内ユニットとの間には、各種信号を伝送
するための伝送線がそれぞれ接続されている。
(Prior Art) As a conventional example of the above-mentioned multi-type air conditioner, there can be mentioned, for example, a device described in Japanese Patent Application Laid-open No. 134436/1983. The device connects the discharge piping and suction piping of the compressor built into the outdoor unit to a four-way switching valve.
Furthermore, connect an outdoor heat exchanger and a liquid pipe to one connection port of this four-way switching valve, and a gas pipe to the other connection port, and then connect the tips of the gas pipes to the four gas branch pipes, and The tips of the liquid pipes are branched into four liquid branch pipes, each equipped with an electric expansion valve, and installed in each of the four indoor units between these gas branch pipes and liquid branch pipes. The indoor heat exchangers are connected in parallel to each other by connecting pipes. Furthermore, transmission lines for transmitting various signals are connected between the outdoor unit and each indoor unit.

(発明が解決しようとする諜N) ところで上記室外ユニットと各室内ユニットとの接続は
、据付現地で連絡配管の敷設工事を行うことによってな
される訳であるが、このとき、上記ガス支管と液支管と
の対によって構成される室外ユニット側の複数の配管接
続ポートと、各室内ユニットとの接続が誤ってなされた
場合に、その確認作業に多大の労力を要するという問題
が生している。ガス側と法例とでは互い上記管径が異な
るために、これらの間で混同を生ずる恐れはないものの
、ガス側同士、また源側同士は同じ配管径の連絡配管が
用いられることから、室外ユニット側ではいずれの室内
ユニットからの連絡配管であるかを充分に確認できず、
このため、例えば第8図に示しているように、室外ユニ
ッ1〜51の各ガス側ポート52〜54と各法例ボート
55〜57との多対からなる31Jlの接続ボート58
.59.60に、それぞれA室、B室、C室上記置され
た各室内ユニット61.62.63の室内熱交換器64
.65.66を接続する際に、据付工事仕様では、図中
破線で示すように、第1の接続ボート58にA室の室内
熱交換器64、第2の接続ボート59にB室の室内熱交
換器65、第3の接続ボート60にC室の室内熱交換器
66をそれぞれ接続するものであるにもかかわらず、例
えば図中実線で示しているように、A室の室内熱交換器
64は、第2接続ポート59のガス側ポート53と第3
接続ポート60の法例ポート57に接続される等の誤配
管を生じるのである。同様に上記伝送線についても誤接
続が発生する。
(Spy N to be solved by the invention) By the way, the connection between the above outdoor unit and each indoor unit is made by laying connection piping at the installation site, but at this time, the above gas branch pipe and liquid If a plurality of piping connection ports on the outdoor unit side, which are formed by pairs with branch pipes, are incorrectly connected to each indoor unit, a problem arises in that a great deal of effort is required to confirm the connection. Since the pipe diameters mentioned above are different between the gas side and the legal example, there is no risk of confusion between them, but since connecting piping with the same pipe diameter is used on the gas side and the source side, the outdoor unit On the other hand, it was not possible to sufficiently confirm which indoor unit the connection piping was coming from.
For this reason, as shown in FIG. 8, for example, a 31Jl connection boat 58 is made up of multiple pairs of gas side ports 52 to 54 of the outdoor units 1 to 51 and respective legal boats 55 to 57.
.. At 59.60, the indoor heat exchangers 64 of the indoor units 61, 62, and 63 located above rooms A, B, and C, respectively.
.. 65 and 66, according to the installation specifications, the indoor heat exchanger 64 of room A is connected to the first connection boat 58, and the indoor heat exchanger of room B is connected to the second connection boat 59, as shown by the broken line in the figure. Although the indoor heat exchanger 66 in room C is connected to the exchanger 65 and the third connection boat 60, for example, as shown by the solid line in the figure, the indoor heat exchanger 64 in room A is connected to the exchanger 65 and the third connection boat 60. is the gas side port 53 of the second connection port 59 and the third
This may result in incorrect piping, such as connecting the connection port 60 to the standard port 57. Similarly, erroneous connections also occur with respect to the transmission line.

このような誤配管、誤接続の状態で、例えばA室の室内
ユニット61の運転スイッチのみをONにして冷房試運
転を開始したときに、室外ユニット側では第1接続ポー
ト58に通ずる液支管に介設されている電動膨張弁を開
弁して運転がなされるものの、この電動膨張弁を通過し
た冷媒は上記の室内ユニット61には供給されないため
に、A室での冷風の吹出しが得られず、これにより誤配
管を生していることが検知され、この場合には、温度低
下を生じる他室の室内熱交換器を調べて、法例連絡配管
の接続状態を確認することが必要となる。さらにこの法
例連絡配管を正常な接続状態に修正した後においても、
室外ユニット側では第1接続ポートに通ずるガス支管で
検出される蒸発後の冷媒温度に基づいて上記の電動膨張
弁の開度制御(過熱度制御)を行うようになされており
、このとき上記のガス支管にはA室からの冷媒の流通が
なされないために、上記の過熱度制御が正常に行われず
、これにより例えば低圧異常を生しることとなる。この
結果、いずれのガス支管で温度低下を生しているかをさ
らに調べて、ガス側の連絡配管の修正を行うことが必要
となる。このような各室毎の試運転を順次行いながら、
室外側と各室内側との運転状態の対応を調べていく確認
作業にはかなりの時間を必要とし、また多人数を必要と
する作業になっている。
In such a state of incorrect piping and incorrect connections, for example, when only the operation switch of the indoor unit 61 in room A is turned ON and a cooling test run is started, the outdoor unit side connects the liquid branch pipe leading to the first connection port 58. Although the operation is performed by opening the installed electric expansion valve, since the refrigerant that has passed through this electric expansion valve is not supplied to the indoor unit 61, cold air cannot be blown out in room A. As a result, it is detected that there is an incorrect piping, and in this case, it is necessary to check the indoor heat exchanger in the other room where the temperature decreases and check the connection state of the legal connection piping. Furthermore, even after correcting this legal connection piping to a normal connection state,
On the outdoor unit side, the opening degree control (superheat degree control) of the electric expansion valve described above is performed based on the temperature of the refrigerant after evaporation detected in the gas branch pipe leading to the first connection port. Since the refrigerant from room A does not flow through the gas branch pipe, the above-mentioned degree of superheat control is not performed normally, which causes, for example, a low pressure abnormality. As a result, it is necessary to further investigate which gas branch pipe is causing the temperature drop and to correct the gas-side connecting pipe. While conducting trial runs of each room in sequence,
The work of checking the correspondence between the operating conditions between the outdoor side and each indoor side takes a considerable amount of time and requires a large number of people.

この発明は上記に鑑みなされたものであって、その目的
は、上記のような誤配管、誤接続に対する確認作業を不
要にできるマルチ形空気調和機を提供することにある。
The present invention has been made in view of the above, and an object thereof is to provide a multi-type air conditioner that eliminates the need to check for incorrect piping and connections as described above.

(課題を解決するための手段) そこでこの発明のマルチ形空気調和機は、第1図に示す
ように、圧縮機1と、この圧縮機1の吐出側又は吸込側
の一方に接続される室外熱交換器7とを内装すると共に
、上記室外熱交換器7に一端が接続された液管11の他
端を、それぞれ開閉弁23の介設された複数の液支管1
7−1〜17−4に、また上記圧縮機1の吐出側又は吸
込側の他方に一端が接続されるガス管6の他端を複数の
ガス支管19−1〜19−4にそれぞれ分岐して構成し
た室外ユニットXの上記液支管17−1〜17−4とガ
ス支管19−1〜19−4との間に、複数の室内ユニッ
トA−Dの各室内熱交換器22をそれぞれ接続してなる
マルチ形空気調和機であって、上記圧縮機1からの吐出
冷媒を上記室外熱交換器7と室内熱交換器22とに回流
させる冷媒循環サイクル時の上記各室内熱交換器22及
び各ガス支管19−1〜19−4の温度変化をそれぞれ
検出する熱交換器温度検出手段31とガス支管温度検出
手段32とを設けると共に、上記各開閉弁23のいずれ
か一つを開弁して行う試運転時の冷媒運転サイクルにお
ける上記各温度検出手段31.32の検出信号に基づい
て上記各液支管17−1〜17−4及びガス支管19−
1〜19−4がどの室内ユニッ)A−Dに接続されてい
るかを判定する信号処理手段45を設け、上記試運転時
の信号処理手段45の判定結果を記憶する記憶手段46
を設け、この記憶手段46のデータによって通常運転す
る運転制御手段47を設けている。
(Means for Solving the Problems) Therefore, as shown in FIG. 1, the multi-type air conditioner of the present invention includes a compressor 1 and an outdoor The other end of the liquid pipe 11, one end of which is connected to the outdoor heat exchanger 7, is connected to a plurality of liquid branch pipes 1 each having an on-off valve 23 interposed therein.
7-1 to 17-4, and the other end of the gas pipe 6, one end of which is connected to the other of the discharge side or suction side of the compressor 1, is branched into a plurality of gas branch pipes 19-1 to 19-4, respectively. Each of the indoor heat exchangers 22 of the plurality of indoor units A to D is connected between the liquid branch pipes 17-1 to 17-4 and the gas branch pipes 19-1 to 19-4 of the outdoor unit X configured as follows. It is a multi-type air conditioner consisting of the above-mentioned indoor heat exchangers 22 and each during a refrigerant circulation cycle in which the refrigerant discharged from the compressor 1 is circulated to the above-mentioned outdoor heat exchanger 7 and indoor heat exchanger 22. Heat exchanger temperature detection means 31 and gas branch temperature detection means 32 are provided to detect temperature changes in gas branch pipes 19-1 to 19-4, respectively, and any one of the on-off valves 23 is opened. Each of the liquid branch pipes 17-1 to 17-4 and the gas branch pipe 19-
1 to 19-4 are connected to which indoor unit A to D, and a storage means 46 that stores the determination result of the signal processing means 45 during the test run.
An operation control means 47 is provided which normally operates according to the data stored in the storage means 46.

(作用) 上記のマルチ形空気調和機においては、各液支管17−
1〜17−4に介設されている開閉弁23のいずれか一
つを開弁して、例えば圧縮機1からの吐出冷媒を室外熱
交換器7側から室内熱交換器22へと回流させる冷房時
の冷媒循環サイクルで試運転を行う場合に、上記開弁さ
れた開閉弁23が介設されている液支管に接続されてい
る室内熱交換器22及びこの室内熱交換器22に接続さ
れているガス支管を通して冷媒は循環し、したがって冷
媒が流通するこれらの室内熱交換器22及びガス支管の
みに温度低下(暖房時の循環サイクルとする場合には温
度上昇)を生じることから、このような温度変化を生じ
る室内熱交換器22及びガス支管を上記両温度検出手段
31.32で検出し、この検出信号に基づいて信号処理
手段45で各液支管17−1〜17−4及びガス支管1
9−1〜19−4がどの室内ユニットA−Dに接続され
ているかを判定し、この判定結果を上記記憶手段46に
格納L2ておく。
(Function) In the above multi-type air conditioner, each liquid branch pipe 17-
Opening any one of the on-off valves 23 provided in 1 to 17-4 to circulate the refrigerant discharged from the compressor 1 from the outdoor heat exchanger 7 side to the indoor heat exchanger 22, for example. When performing a trial run in the refrigerant circulation cycle during cooling, the indoor heat exchanger 22 connected to the liquid branch pipe in which the opened on-off valve 23 is interposed and the indoor heat exchanger 22 connected to the indoor heat exchanger 22 are The refrigerant circulates through the gas branch pipes in which the refrigerant flows, and therefore the temperature decreases only in the indoor heat exchanger 22 and the gas branch pipes through which the refrigerant flows (temperature rises in the case of a circulation cycle during heating). The indoor heat exchanger 22 and gas branch pipes that cause temperature changes are detected by both the temperature detection means 31 and 32, and based on the detection signals, the signal processing means 45 detects each of the liquid branch pipes 17-1 to 17-4 and the gas branch pipe 1.
It is determined which indoor unit A-D each of 9-1 to 19-4 is connected to, and the determination result is stored in the storage means 46 L2.

一方通常運転時には、以上の試運転時に得られた記憶手
段46に格納されているデータに基づいて上記室外ユニ
ットXを運転制御手段47で制御する。したがって、誤
配管、誤接続に対する確認作業を行わなくても正常な通
常運転が可能になる。
On the other hand, during normal operation, the outdoor unit X is controlled by the operation control means 47 based on the data stored in the storage means 46 obtained during the trial operation. Therefore, normal operation can be performed without checking for incorrect piping or incorrect connections.

(実施例) 次にこの発明のマルチ形空気清和機の具体的な実施例に
ついて、図面を参照しつつ詳細に説明する。
(Embodiments) Next, specific embodiments of the multi-type air purifier of the present invention will be described in detail with reference to the drawings.

第2図には、1台の室外ユニットXに第1〜第4の室内
ユニットA−Dを接続して構成したマルチ形空気調和機
の冷媒回路図を示しでいる。上記室外ユニソ+−Xには
圧縮機lが内装されており、この圧縮機1の吐出配管2
と吸込配管3とはそれぞれ四路切換弁4に接続され、こ
の四路切換弁4にさらに第1ガス管5と第2ガス管6と
が接続されている。上記第1ガス管5には室外熱交換器
7が接続されており、この室外熱交換器7に、第1電動
膨張弁8、受液器9、液閉鎖弁10が順次介設された液
管11がさらに接続されている。なお上記圧縮[1は、
その回転速度を制御するためのインバータ12を有する
ものである。また上記吸込配管3にはアキュームレータ
13が、上記第2ガス管6にはガス閉鎖弁14がそれぞ
れ介設される一方、上記室外熱交換器7には室外ファン
15が付設されている。
FIG. 2 shows a refrigerant circuit diagram of a multi-type air conditioner configured by connecting first to fourth indoor units A to D to one outdoor unit X. A compressor 1 is installed inside the outdoor Uniso +-X, and the discharge piping 2 of this compressor 1
and suction pipe 3 are each connected to a four-way switching valve 4, and a first gas pipe 5 and a second gas pipe 6 are further connected to this four-way switching valve 4. An outdoor heat exchanger 7 is connected to the first gas pipe 5, and a first electric expansion valve 8, a liquid receiver 9, and a liquid closing valve 10 are sequentially provided to the outdoor heat exchanger 7. A tube 11 is further connected. Note that the above compression [1 is
It has an inverter 12 for controlling its rotation speed. Further, an accumulator 13 is provided in the suction pipe 3, a gas shutoff valve 14 is provided in the second gas pipe 6, and an outdoor fan 15 is provided in the outdoor heat exchanger 7.

−F記液管11の先端は、第1〜第4の被測配管接続ボ
ート16〜1〜16−4にそれぞれ接続された第1〜第
4の液支管17−1〜17−4に分岐され、また上記第
2ガス管6の先端は、第1〜第4のガス側配管接続ボー
ト18−1〜18−4にそれぞれ接続された第1〜第4
のガス支管19−1〜19−4に分岐されている。
-F The tip of the liquid pipe 11 branches into first to fourth liquid branch pipes 17-1 to 17-4 connected to the first to fourth measured piping connection boats 16 to 1 to 16-4, respectively. The tip of the second gas pipe 6 is connected to the first to fourth gas side piping connection boats 18-1 to 18-4, respectively.
It is branched into gas branch pipes 19-1 to 19-4.

そして上記各被測配管接続ボート16−1〜16−4と
ガス側配管接続ポート1s−i〜18−4との間に、そ
れぞれ機側連絡配管20・・20及びガス側連絡配管2
1・・21によって、第1〜第4室内ユニットA−Dに
それぞれ内装されている室内熱交換器(第1室内ユニッ
l−Aについてのみ図示する)22が互いに並列に接続
されている。なお上記各液支管17−1〜17−4には
それぞれ第2電動膨張弁(開閉弁)23・・23が介設
されている。また各室内ユニットA−Dは、上記室内熱
交換器22と室内ファン24とによってそれぞれ構成さ
れている。
And between each of the above-mentioned measured piping connection boats 16-1 to 16-4 and the gas side piping connection ports 1s-i to 18-4, machine side connecting piping 20...20 and gas side connecting piping 2 are provided, respectively.
Indoor heat exchangers 22 (only the first indoor unit I-A is shown) installed in the first to fourth indoor units A-D are connected in parallel to each other by 1 . . . 21 . In addition, second electrically operated expansion valves (opening/closing valves) 23, . . . 23 are interposed in each of the liquid branch pipes 17-1 to 17-4. Further, each of the indoor units A to D is composed of the indoor heat exchanger 22 and the indoor fan 24, respectively.

」二記構成の空気調和機における冷房運転は、四路切換
弁4を図中実線で示す切換位置に位置させ、圧縮機1か
らの吐出冷媒を、凝縮器となる室外熱交換器7から蒸発
器となる各室内熱交換器22・・22へと回流させるこ
とによって行う。このとき、第1電動膨張弁8は全開に
し、各第2電動膨張弁23・・23で冷媒の過熱度制御
を行う。なお冷房停止部屋の室内ユニットに対応する第
2電動膨張弁23は全開にする。上記冷房運転時の過熱
度制御を行うために、各室内熱交換器22の温度を冷媒
蒸発温度として検出するサーミスタ等より成る熱交換器
温度センサ(熱交換器温度検出手段)31が各室内熱交
換器22・・22に取着されると共に、ガス支管19−
1〜19−4の温度を蒸発冷媒の過熱温度として検出す
るガス支管温度センサ(ガス支管温度検出手段)32が
各ガス支管19〜1〜19−4に取着されている。また
各室内ユニッI−A〜Dには、さらに、室内温度を検出
する室温センサ33がそれぞれ配設されている。
Cooling operation in the air conditioner having the configuration shown in section 2 is performed by placing the four-way switching valve 4 in the switching position shown by the solid line in the figure, and evaporating the refrigerant discharged from the compressor 1 from the outdoor heat exchanger 7, which serves as a condenser. This is done by circulating the heat to each indoor heat exchanger 22, which serves as a heat exchanger. At this time, the first electric expansion valve 8 is fully opened, and each of the second electric expansion valves 23 . . . 23 controls the degree of superheating of the refrigerant. Note that the second electric expansion valve 23 corresponding to the indoor unit in the room where cooling is stopped is fully opened. In order to control the degree of superheating during the cooling operation, a heat exchanger temperature sensor (heat exchanger temperature detection means) 31 consisting of a thermistor or the like detects the temperature of each indoor heat exchanger 22 as the refrigerant evaporation temperature. It is attached to the exchanger 22...22, and the gas branch pipe 19-
A gas branch pipe temperature sensor (gas branch pipe temperature detection means) 32 is attached to each gas branch pipe 19-1 to 19-4, which detects the temperatures 1 to 19-4 as superheating temperatures of the evaporative refrigerant. Further, each of the indoor units I-A to D is further provided with a room temperature sensor 33 that detects the indoor temperature.

一方、暖房運転は、四路切換弁4を図中破線で示す切換
位置に切換え、圧縮機1からの吐出冷媒を、凝縮器とな
る室内熱交換器22から蒸発器となる室外熱交換器7へ
と回流させることによって行う。この場合、蒸発冷媒の
過熱度制御を第1電動膨張弁8で行う。また各第2電動
膨張弁23・・23では、各室内熱交換器22への冷媒
分配量の制御を行うが、これは各室内熱交換器22出口
での凝縮冷媒温度を同一温度となるように上記各第2電
動膨張弁23・・23の開度を制御することによって行
う。なお停止部屋の室内ユニ・ントに対応する第2電動
膨張弁23は所定の停止開度(圧N機1への液戻りを防
止するため、自然放熱に見合うだけのわずかな量の冷媒
を流し得る開度)にする。上記暖房運転時の過熱度制御
を行うために、室外熱交換器7の温度を冷媒蒸発温度と
して検出するための室外熱交換器温度センサ34が上記
室外熱交換器7に取着されると共に、蒸発冷媒の過熱温
度を検出するための吸込配管温度センサ35が吸込配管
3に取着されている。また各室内熱交換器22出口での
凝縮冷媒温度を検出するために、液支管温度センサ36
・・36が各液支管17−1〜17−4に取着されてい
る。
On the other hand, in heating operation, the four-way switching valve 4 is switched to the switching position shown by the broken line in the figure, and the refrigerant discharged from the compressor 1 is transferred from the indoor heat exchanger 22, which serves as a condenser, to the outdoor heat exchanger 7, which serves as an evaporator. This is done by circulating the flow to. In this case, the first electric expansion valve 8 controls the degree of superheating of the evaporative refrigerant. In addition, each second electric expansion valve 23...23 controls the amount of refrigerant distributed to each indoor heat exchanger 22, but this is done so that the condensed refrigerant temperature at the outlet of each indoor heat exchanger 22 is the same temperature. This is done by controlling the opening degree of each of the second electric expansion valves 23 . . . 23 . The second electric expansion valve 23 corresponding to the indoor unit in the stop room is opened at a predetermined stop opening (in order to prevent liquid from returning to the pressure N machine 1, a small amount of refrigerant corresponding to natural heat dissipation is allowed to flow). the desired opening). In order to control the degree of superheating during the heating operation, an outdoor heat exchanger temperature sensor 34 for detecting the temperature of the outdoor heat exchanger 7 as a refrigerant evaporation temperature is attached to the outdoor heat exchanger 7, and A suction pipe temperature sensor 35 is attached to the suction pipe 3 for detecting the superheat temperature of the evaporative refrigerant. In addition, a liquid branch pipe temperature sensor 36 is used to detect the condensed refrigerant temperature at the outlet of each indoor heat exchanger 22.
...36 is attached to each liquid branch pipe 17-1 to 17-4.

そして上記装置においては、据付工事終了時の試運転で
、室外ユニットXと各室内ユニッ)A〜Dを接続する各
連絡配管20.2Iが任意の接続状態で接続されていて
も試運転時に室外ユニットX側で各連絡配管20.21
の接続順位に応じた運転を行う運転制御機能が設けられ
ており、第3図にその制御ブロック図を示している。な
お、上記運転制御機能の詳細については、詳しくは後述
する第5図〜第7図の制御フローチャートを参照して説
明する。第3図において、41は、上記室外ユニントX
内に設けられている室外制御装置であって、室外制御装
置としては例えばマイクロコンピュータ等が利用できる
。この室外制御装置41には、第1図に示すように、各
室内ユニットA〜D側で利用者により運転スイッチがO
N操作されたときに、前記した冷房運転、或いは暖房運
転を制御する定常時用の運転制御手段47が設けられ、
さらに任意の配管接続状態で試運転を行うための試運転
時運転制御部42及び試運転時における任意の配管接続
状態を判定するための信号処理手段45が設けられてい
る。この信号処理手段45には、各室内ユニットA−D
にそれぞれ配設されている熱交換器温度センサ31・・
3I及び室温センサ33・・33と、各ガス支管温度セ
ンサ32・・32での各検出温度が入力されるようにな
されており、また上記信号処理手段45での判定結果は
記憶手段46に格納されるようになされている。一方、
通常の定常運転時において、この記憶手段46のデータ
は運転制御手段47に出力され、上記運転制御手段47
はこのデータに基づいて圧縮機1の運転、四路切換弁4
の切換え、及び第1、第2電動膨張弁8.23・・23
の開閉制御を行うようになされている。
In the above device, even if the connecting pipes 20.2I connecting the outdoor unit Each connecting pipe 20.21 on the side
An operation control function is provided to perform operation according to the connection order of the controllers, and a control block diagram thereof is shown in FIG. The details of the operation control function will be described in detail with reference to the control flowcharts shown in FIGS. 5 to 7, which will be described later. In FIG. 3, 41 is the outdoor unit
The outdoor control device is provided inside the vehicle, and a microcomputer or the like can be used as the outdoor control device. As shown in FIG. 1, this outdoor control device 41 has an operation switch that is turned on and off by the user on each of the indoor units A to D.
An operation control means 47 for normal operation is provided, which controls the cooling operation or heating operation described above when the N operation is performed.
Furthermore, there are provided a test run operation control section 42 for performing a trial run in an arbitrary pipe connection state, and a signal processing means 45 for determining an arbitrary pipe connection state during the test run. This signal processing means 45 includes each indoor unit A-D.
The heat exchanger temperature sensors 31 respectively arranged in the...
3I and room temperature sensor 33...33, and each gas branch pipe temperature sensor 32...32 are inputted, and the determination result by the signal processing means 45 is stored in the storage means 46. It is made to be done. on the other hand,
During normal steady operation, the data in this storage means 46 is output to the operation control means 47.
Based on this data, compressor 1 is operated and four-way switching valve 4 is operated.
switching, and the first and second electric expansion valves 8.23...23
The opening/closing control is performed.

上記試運転を開始し得る配管接続工程が完了した状態を
示す第4図において、上記第1〜第4の被測配管ボート
16−1〜16−4及びガス側配管接続ボーH8−1〜
18−4はそれぞれ第1〜第4の群48−1〜48−4
に対として配列され、各群48〜1〜48−4にはそれ
ぞれ各室内ユニットA−Dの伝送線44が接続される接
続コネクタ49−1〜49−4が設けられている。
In FIG. 4 showing a state in which the piping connection process for starting the trial run is completed, the first to fourth piping boats to be measured 16-1 to 16-4 and the gas side piping connection boats H8-1 to
18-4 are the first to fourth groups 48-1 to 48-4, respectively.
Connectors 49-1 to 49-4 are arranged in pairs, and each group 48-1 to 48-4 is provided with connection connectors 49-1 to 49-4 to which the transmission lines 44 of the indoor units A to D are respectively connected.

そして、上記連絡配管20.21及び伝送線44は任意
の順位で上記各ボート及びコネクタに接続されている。
The communication pipes 20 and 21 and the transmission line 44 are connected to the boats and connectors in any order.

また各室内ユニン)A−Dの室内熱交換器温度センサ3
1・・31は順次にDCn(n−1〜4)の番号が付与
され、同様にガス支管温度センサ32−=32にもIl
!II次にDGn  (n = 1〜4)が付与されて
いる。
Also, each indoor unit) A-D indoor heat exchanger temperature sensor 3
1...31 are sequentially given numbers DCn (n-1 to 4), and similarly, gas branch pipe temperature sensors 32-=32 are also given Il numbers.
! II next, DGn (n = 1 to 4) is given.

また上記室外制御装置41では、配管、配線の接続状態
をチエツクする試運転モードと通常時の定常運転モード
とに切換自在になっており、上記両モードの切換制御に
ついて、第5図で説明する。
Furthermore, the outdoor control device 41 can be switched freely between a test run mode for checking the connection state of piping and wiring and a normal steady operation mode.Switching control between the two modes will be explained with reference to FIG.

第5圓において、まずステップS1では試運転モードに
切換操作されているか、否かを判定し、試運転モードの
場合にはステップS2へ進み、試運転モードではない場
合には通常運転制御のステップs3へ進む。試運転モー
ドと判断された時にはステップS2からステップS4へ
進み、ステップS4で上記第4図に示す配管、配線の接
続状態を記憶する。次いでステップS5で記憶処理が終
了したかを判定し、終了している場合には上記通常運転
制御のステップS3へ進み、終了していない場合には上
記ステップS2へ戻る。
In the fifth circle, first, in step S1, it is determined whether or not the switching operation has been performed to the test run mode, and if it is the test run mode, the process proceeds to step S2, and if it is not the test run mode, the process proceeds to step s3 for normal operation control. . When it is determined that it is the test run mode, the process proceeds from step S2 to step S4, and in step S4, the connection state of the piping and wiring shown in FIG. 4 is stored. Next, in step S5, it is determined whether the storage process has been completed, and if it has been completed, the process proceeds to step S3 of the normal operation control, and if it has not been completed, the process returns to step S2.

上記試運転時には、上記試運転時運軸制御部42によっ
て、まず四路切換弁4をOFFにして前記した冷房運転
時の切換え位置に位置させると共に、第1電動膨張弁8
を全開にする。次いで、試運転時運軸制御部42によっ
て上記4つの第2電動膨張弁23のうち例えば室外ユニ
ットXT:A室用と仮定されている群48−1の接続ボ
ート16−1に連通ずる第2電動膨張弁23を開弁じ、
かつその他の第2電動膨張弁23を全閉に維持する。そ
の後、所定のインバータ周波数にて圧縮機1の運転を開
始する。これにより、試運転時における圧縮機1からの
吐出冷媒が室外熱交換器7側から室内熱交換器22へと
循環する冷房サイクルでの運転が開始される。この第2
電動膨張弁23・・23の開閉状態では、第4図の室外
ユニントX側でA室用と仮定されている群48−1の法
例配管接続ボート16−1にだけ液支管17−1から冷
媒が流れることになる。
During the test run, the test run shaft movement control section 42 first turns off the four-way switching valve 4 and positions it at the switching position for the cooling operation described above.
fully open. Next, the axis movement control unit 42 during the test run selects the second electric expansion valve 23, which is connected to the connection boat 16-1 of the group 48-1 assumed to be for outdoor unit XT: room A, for example. Open the expansion valve 23,
And the other second electric expansion valves 23 are kept fully closed. Thereafter, the compressor 1 starts operating at a predetermined inverter frequency. As a result, operation is started in the cooling cycle in which the refrigerant discharged from the compressor 1 during the test run circulates from the outdoor heat exchanger 7 side to the indoor heat exchanger 22. This second
When the electric expansion valves 23, . will flow.

そして上記ステップS2における配管配線判定処理の詳
細を示す第6図のステップ510において、上記接続ポ
ー目6−1にだけ冷媒を流すように上記第2電動膨張弁
23・・23を室外制御装置41によって開閉制御して
いるか否かを判定し、その開閉状態であれば次のステッ
プS11へ進む。なお、ステップSIOではA室用と仮
定されている群48−1の液支管17−1に冷媒を流が
している室外ユニットXの運転状態をrA室運転」と記
載している。
Then, in step 510 of FIG. 6 showing the details of the piping wiring determination process in step S2, the second electric expansion valves 23... It is determined whether or not opening/closing control is being performed, and if the opening/closing state is determined, the process advances to the next step S11. Note that in step SIO, the operating state of the outdoor unit X that is flowing refrigerant to the liquid branch pipe 17-1 of the group 48-1, which is assumed to be for room A, is described as "rA room operation".

ところで、以上の第2電動膨張弁23・・23の開閉状
態における冷房サイクルでは、第1図に示す室外熱交換
器7で凝縮した高温高圧の液冷媒が上記開弁された第2
電動膨張弁23を通過時に低温低圧の液冷媒となり、そ
して上記第1液支管17−1に法例連絡配管20を介し
て接続されている室内熱交換器22に流入して蒸発する
。これによりこの室内熱交換器22は低温の温度状態に
変化する。そして蒸発冷媒は、上記の室内熱交換器22
がガス側連絡配管21によって接続されているガス支管
を介して圧縮機1に返流される。このとき上記蒸発冷媒
が通過するガス支管も低温の温度状態への変化が生じる
こととなる。したがってト記第1液支管17−1にいず
れの室内ユニットにおける室内熱交換器22が接続され
ているか、またこの室内熱交換器22はさらにいずれの
ガス支管19−1〜19−4に接続されているかを、上
記冷房サイクル運転時に各室内熱交換器22、及びガス
支管19−1〜19−4のなかで、いずれが温度低下を
生じるかを順次上記両温度検出手段31.32によって
検出し、この検出信号を上記信号処理手段45で判定す
ることで、どのボート及びコネクタにどの室内ユニット
A−Dが接続されているかを、判別することができる。
By the way, in the cooling cycle in which the second electric expansion valves 23 are opened and closed, the high temperature and high pressure liquid refrigerant condensed in the outdoor heat exchanger 7 shown in FIG.
When passing through the electric expansion valve 23, the refrigerant becomes a low-temperature, low-pressure liquid refrigerant, flows into the indoor heat exchanger 22 connected to the first liquid branch pipe 17-1 via the legal connection pipe 20, and evaporates. This changes the indoor heat exchanger 22 to a low temperature state. The evaporative refrigerant is then transferred to the indoor heat exchanger 22.
is returned to the compressor 1 via a gas branch pipe connected by a gas side communication pipe 21. At this time, the gas branch pipe through which the evaporative refrigerant passes also changes to a low temperature state. Therefore, the indoor heat exchanger 22 in which indoor unit is connected to the first liquid branch pipe 17-1, and to which gas branch pipe 19-1 to 19-4 this indoor heat exchanger 22 is further connected. During the cooling cycle operation, the temperature detecting means 31 and 32 sequentially detect which of the indoor heat exchangers 22 and the gas branch pipes 19-1 to 19-4 causes a temperature drop. By determining this detection signal by the signal processing means 45, it is possible to determine which indoor units A to D are connected to which boat and connector.

この配管配線判定処理を第4図の接続状態において説明
すると、群48−1の液支管17〜1に冷媒が流れてい
る場合には群48−1の上記法例配管接続ボー目6−1
に繋がっている被測連絡配管20を通って冷媒が例えば
C室用の室内ユニットCへ流れ、室内ユニ7トCの番号
DC3のセンサ31からの信号は伝送線44によって群
48−4の接続コネクタ49−4から室外ユニットXの
室外制御装置41へ入力される。同時に室内ユニットC
Oガス側連絡配管21を通ってガス状に膨張した冷媒が
群48−2のガス側配管接続ボー[8−2を通って室外
ユニットXへ戻る。このとき番号DG2のガス支管温度
センサ32が一番低温になる。
To explain this piping wiring determination process in the connection state shown in FIG. 4, if refrigerant is flowing in the liquid branch pipes 17 to 1 of group 48-1,
The refrigerant flows, for example, to the indoor unit C for room C through the connecting pipe 20 to be measured, which is connected to the group 48-4. The signal is input to the outdoor control device 41 of the outdoor unit X from the connector 49-4. At the same time, indoor unit C
The refrigerant expanded into a gaseous state through the O gas side connecting pipe 21 returns to the outdoor unit X through the gas side pipe connecting bow [8-2] of the group 48-2. At this time, the gas branch pipe temperature sensor 32 numbered DG2 becomes the lowest temperature.

以上のような試運転の第1段階において、上記ステップ
Sl!では各ガス支管温度センサ32・・32の内の一
番低温のセンサ32の番号DGnを検出する。例えば第
4図の接続状態では番号DG2のセンサ32が一番低温
になり、その検出信号は上記室外制御装置41へ入力さ
れる。次にステップS12で、その検出された番号DG
2に対応するガス側配管接続ボー目8−2を室内ユニッ
トC用と判定する。すなわち、ステップ512では室外
ユニ、ントXOA室用と仮定されている群48−1から
送り出された冷媒が室内ユニットCを経て、上記接続ボ
ート18−2へ戻ってくることを判定し、そのことをス
テップS12では「そのNOのDGnをA室用とする」
と記載している。
In the first stage of the trial run as described above, step Sl! Then, the number DGn of the lowest temperature sensor 32 among the gas branch pipe temperature sensors 32 . . . 32 is detected. For example, in the connection state shown in FIG. 4, the sensor 32 numbered DG2 has the lowest temperature, and its detection signal is input to the outdoor control device 41. Next, in step S12, the detected number DG
It is determined that the gas side piping connection bore 8-2 corresponding to No. 2 is for indoor unit C. That is, in step 512, it is determined that the refrigerant sent out from the group 48-1, which is assumed to be for the outdoor unit XOA room, returns to the connection boat 18-2 through the indoor unit C. In step S12, "the NO DGn is used for room A"
It states:

そして、ステップS13で上記各熱交換器温度センサ3
1・・31の内の一番低温のセンサ31の番号DCnを
検出する。例えば第4図の接続状態では、番号DC3の
センサ31が検出される。すなわち室内ユニットX側で
A室用と仮定されている群48−1の接続ボート16−
1から流出した冷媒は室内ユニットCに流入し、この番
号DC3のセンサ31からの検出信号は伝送線44を通
って群48−4の接続コネクタ49−4に入力されるこ
とになる訳で、したがってステップS14において、上
記室外制御装置41は、最も検出温度の低い接続コネク
タ49−4に室内ユニットCのセンサ31からの信号が
入力されていることを検知する。なおステップ51.4
においてはそのことを「そのNoの室内機をA室用とす
る」と記載している。
Then, in step S13, each of the heat exchanger temperature sensors 3
The number DCn of the lowest temperature sensor 31 among 1...31 is detected. For example, in the connection state shown in FIG. 4, the sensor 31 with number DC3 is detected. In other words, the connection boat 16- of group 48-1, which is assumed to be for room A on the indoor unit X side,
The refrigerant flowing out from 1 flows into the indoor unit C, and the detection signal from the sensor 31 with this number DC3 is inputted to the connection connector 49-4 of the group 48-4 through the transmission line 44. Therefore, in step S14, the outdoor control device 41 detects that the signal from the sensor 31 of the indoor unit C is input to the connector 49-4 with the lowest detected temperature. Note that step 51.4
describes this as ``the indoor unit with that number is for room A''.

二の結果、上記室外制御装置41は群48−1の接続ボ
ート16−1と群4B−2の接続ボー) 18−2と群
48−4の接続コネクタ49−4とを一組きして制御し
、これらの各接続ボート16−1.18−2及び接続コ
ネクタ494で室内ユニットCを運転制御する状態を確
認できることになる。
As a result of (2), the outdoor control device 41 combines the connection boat 16-1 of the group 48-1, the connection boat 18-2 of the group 4B-2, and the connection connector 49-4 of the group 48-4 into one set. It is possible to check the state in which the indoor unit C is controlled by each of the connection boats 16-1, 18-2 and the connection connector 494.

上記ステップS10で群48−1の接続ボート16−1
に冷媒を流すように室外ユニットXが運転されていない
場合には、上記ステップ510からステップS15へ進
む。このとき、次に判定を行う室外ユニットX側で例え
ばB室用と仮定されている群48−2の液支管17−2
から接続ボート16−2だけへ冷媒を流すように上記4
個の第2電動膨張弁23・・23を開閉制御し、上記第
6図のステップ511〜S14と同様の判定処理を行う
。したがって各群48−2〜48−4について順次に以
上の判定処理を繰り返すことによって、残りの各群48
−2〜48−4の接続ボー目62〜16−4から流れた
冷媒がどの室内ユニットA、B又はDへ流れ、どの群4
8−L 48−3.48−4の接続ボート18−1又は
18−3.18−4から室外ユニットxへ戻り、各伝送
線44からの信号はどの接続コネクタ49−1〜49−
3に入力しているかを判定し、室外ユニントXの各群4
8−2〜48−4の判定を上記と同様に行う。このこと
をステップS15においては、rA室と同様に各室の判
断を行う」と記載している。
In step S10 above, connection boat 16-1 of group 48-1
If the outdoor unit X is not operated so as to flow the refrigerant, the process advances from step 510 to step S15. At this time, on the outdoor unit
4 above so that the refrigerant flows only from the connecting boat 16-2.
The second electric expansion valves 23, . . . 23 are controlled to open and close, and the same determination process as steps 511 to S14 in FIG. 6 is performed. Therefore, by sequentially repeating the above determination process for each group 48-2 to 48-4, each of the remaining groups 48-2 to 48-4 is
- To which indoor unit A, B or D does the refrigerant flow from the connecting holes 62 to 16-4 of 2 to 48-4 and to which group 4?
8-L 48-3. Returns from connection boat 18-1 or 18-3.18-4 of 48-4 to outdoor unit
3, and each group 4 of outdoor unit
The determinations from 8-2 to 48-4 are made in the same manner as above. Regarding this, in step S15, each room is judged in the same way as the rA room.''

以上の試運転を行った後に、第7図のステップS20に
示すように全群48−1〜48−4の判定処理で得たデ
ータを上記記憶手段46(第1図)に記憶する。そして
通常時の定常運転モードに切換えると、第5図のステッ
プS1で試運転モードではないと判定され、ステップS
tからステップS3へ進み、上記運転制御手段47は記
憶手段46に格納されているデータに基づいて通常運転
制御を行う。したがって、従来のような配管、配線の接
続状態を確認する面倒な作業を行わなくても、任意に接
続された接続状態に対応して上記室外ユニットXの第2
電動膨張弁23・・23等が各群48−1〜48−4に
所定の冷媒を流がすように制御されることになり、面倒
な配管、配線の接続作業が不要になる。
After performing the above test run, as shown in step S20 in FIG. 7, the data obtained in the determination process for all groups 48-1 to 48-4 is stored in the storage means 46 (FIG. 1). When the mode is switched to the normal steady operation mode, it is determined in step S1 of FIG. 5 that the mode is not the trial operation mode, and step
The process advances from step S3 to step S3, where the operation control means 47 performs normal operation control based on the data stored in the storage means 46. Therefore, without having to perform the troublesome work of checking the connection status of piping and wiring as in the past, the second connection of the outdoor unit
The electric expansion valves 23, . . . 23, etc. are controlled to flow a predetermined refrigerant to each group 48-1 to 48-4, eliminating the need for troublesome piping and wiring connection work.

なお、上記においては4台の室内ユニットA〜Dを接続
するマルチ形空気調和機を例に挙げて説明したが、その
他の接続台数で構成されるマルチ形空気調和機にもこの
発明を通用することができる。また上記では冷房循環サ
イクルで試運転を行うこととしたが、場合によっては暖
房循環サイクルとして室内熱交換器及びガス支管の温度
上昇変化を検出することも可能である。
In addition, although the above description has been given as an example of a multi-type air conditioner that connects four indoor units A to D, the present invention is also applicable to multi-type air conditioners that are configured with other connected numbers. be able to. Further, in the above description, the trial run was performed in the cooling circulation cycle, but depending on the case, it is also possible to detect temperature rise changes in the indoor heat exchanger and gas branch pipes in the heating circulation cycle.

(発明の効果) 上記のようにこの発明のマルチ形空気調和機においては
、試運転時に温度変化を生じる室内熱交換器及びガス支
管を上記両温度検出手段で検出し、この検出信号に基づ
いて信号処理手段で各液支管及びガス支管がどの室内ユ
ニットに接続されているかを判定することができ、この
判定結果を上記記憶手段に格納できる。
(Effects of the Invention) As described above, in the multi-type air conditioner of the present invention, the indoor heat exchanger and the gas branch pipe that cause temperature changes during trial operation are detected by both the temperature detection means, and a signal is sent based on the detection signal. The processing means can determine which indoor unit each liquid branch pipe and gas branch pipe is connected to, and this determination result can be stored in the storage means.

一方通常運転時には、以上の試運転時に得られた記憶手
段に格納されているデータに基づいて上記室外ユニット
を運転制御手段で運転制御することができ、誤配管、誤
接続に対する確認作業を行わなくても正常な通常運転が
可能になる。
On the other hand, during normal operation, the operation of the outdoor unit can be controlled by the operation control means based on the data stored in the storage means obtained during the test run, and there is no need to check for incorrect piping or connections. normal operation is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の機能ブロック図、第2図はこの発明
の一実施例におけるマルチ形空気調和機の冷媒回路図、
第3図は上記空気調和機における試運転時の運転制御ブ
ロック図、第4図は上記試運転時での接続状態を示す構
造略図、第5図は制御装置における制御フローチャート
、第6図は配管配線判定処理の制御フローチャート、第
7図は記憶処理の制御フローチャート、第8図は室外ユ
ニットと室内ユニットとの誤配管の一例を示す模式図で
ある。 1・・・圧縮機、6・・・第2ガス管、7・室外熱交換
器、11・・・液管、17−1〜17−4・・・液支管
、19−1〜19−4・・・ガス支管、22・・・室内
熱交換器、23・・・第2電動膨張弁(開閉弁)、31
・・・熱交換器温度センサ(熱交換器温度検出手段)、
32・・・ガス支管温度センサ(ガス支管温度検出手段
)、45・・・信号処理手段、46・・・記憶手段、4
7・・・運転制御手段、X・・・室外ユニット、A−D
・・・室内ユニッ ト。 第1図
FIG. 1 is a functional block diagram of the present invention, and FIG. 2 is a refrigerant circuit diagram of a multi-type air conditioner according to an embodiment of the present invention.
Fig. 3 is a block diagram of the operation control during the test run of the air conditioner, Fig. 4 is a structural diagram showing the connection state during the test run, Fig. 5 is a control flowchart of the control device, and Fig. 6 is the piping wiring determination. FIG. 7 is a control flowchart of the process, FIG. 7 is a control flowchart of the storage process, and FIG. 8 is a schematic diagram showing an example of incorrect piping between the outdoor unit and the indoor unit. DESCRIPTION OF SYMBOLS 1...Compressor, 6...Second gas pipe, 7.Outdoor heat exchanger, 11...Liquid pipe, 17-1 to 17-4...Liquid branch pipe, 19-1 to 19-4 ... Gas branch pipe, 22 ... Indoor heat exchanger, 23 ... Second electric expansion valve (on-off valve), 31
...Heat exchanger temperature sensor (heat exchanger temperature detection means),
32... Gas branch pipe temperature sensor (gas branch pipe temperature detection means), 45... Signal processing means, 46... Storage means, 4
7...Operation control means, X...Outdoor unit, A-D
...Indoor unit. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、圧縮機(1)と、この圧縮機(1)の吐出側又は吸
込側の一方に接続される室外熱交換器(7)とを内装す
ると共に、上記室外熱交換器(7)に一端が接続された
液管(11)の他端を、それぞれ開閉弁(23)の介設
された複数の液支管(17−1〜17−4)に、また上
記圧縮機(1)の吐出側又は吸込側の他方に一端が接続
されるガス管(6)の他端を複数のガス支管(19−1
〜19−4)にそれぞれ分岐して構成した室外ユニット
(X)の上記液支管(17−1〜17−4)とガス支管
(19−1〜19−4)との間に、複数の室内ユニット
(A〜D)の各室内熱交換器(22)をそれぞれ接続し
てなるマルチ形空気調和機であって、上記圧縮機(1)
からの吐出冷媒を上記室外熱交換器(7)と室内熱交換
器(22)とに回流させる冷媒循環サイクル時の上記各
室内熱交換器(22)及び各ガス支管(19−1〜19
−4)の温度変化をそれぞれ検出する熱交換器温度検出
手段(31)とガス支管温度検出手段(32)とを設け
ると共に、上記各開閉弁(23)のいずれか一つを開弁
して行う試運転時の冷媒運転サイクルにおける上記各温
度検出手段(31)、(32)の検出信号に基づいて上
記各液支管(17−1〜17−4)及びガス支管(19
−1〜19−4)がどの室内ユニット(A〜D)に接続
されているかを判定する信号処理手段(45)を設け、
上記試運転時の信号処理手段(45)の判定結果を記憶
する記憶手段(46)を設け、この記憶手段(46)の
データによって通常運転する運転制御手段(47)を設
けたことを特徴とするマルチ形空気調和機。
1. A compressor (1) and an outdoor heat exchanger (7) connected to either the discharge side or the suction side of this compressor (1) are installed internally, and one end is connected to the outdoor heat exchanger (7). The other end of the liquid pipe (11) connected to the liquid pipe (11) is connected to a plurality of liquid branch pipes (17-1 to 17-4) each having an on-off valve (23), and also to the discharge side of the compressor (1). Alternatively, the other end of the gas pipe (6), one end of which is connected to the other end of the suction side, is connected to a plurality of gas branch pipes (19-1
- 19-4) between the liquid branch pipes (17-1 to 17-4) and the gas branch pipes (19-1 to 19-4) of the outdoor unit (X), which are configured by branching into A multi-type air conditioner in which indoor heat exchangers (22) of units (A to D) are connected to each other, the compressor (1)
Each indoor heat exchanger (22) and each gas branch pipe (19-1 to 19) during a refrigerant circulation cycle in which refrigerant discharged from the outdoor heat exchanger (7) and the indoor heat exchanger (22) are circulated.
-4) are provided with a heat exchanger temperature detection means (31) and a gas branch pipe temperature detection means (32) for detecting the temperature changes respectively, and one of the above-mentioned on-off valves (23) is opened. Each of the liquid branch pipes (17-1 to 17-4) and the gas branch pipe (19) are
-1 to 19-4) are connected to which indoor unit (A to D) a signal processing means (45) is provided,
A storage means (46) for storing the determination result of the signal processing means (45) during the trial run is provided, and an operation control means (47) is provided for normal operation based on the data of the storage means (46). Multi-type air conditioner.
JP1146221A 1989-06-08 1989-06-08 Multi-type air conditioner Expired - Lifetime JPH0765793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1146221A JPH0765793B2 (en) 1989-06-08 1989-06-08 Multi-type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1146221A JPH0765793B2 (en) 1989-06-08 1989-06-08 Multi-type air conditioner

Publications (2)

Publication Number Publication Date
JPH0311256A true JPH0311256A (en) 1991-01-18
JPH0765793B2 JPH0765793B2 (en) 1995-07-19

Family

ID=15402850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1146221A Expired - Lifetime JPH0765793B2 (en) 1989-06-08 1989-06-08 Multi-type air conditioner

Country Status (1)

Country Link
JP (1) JPH0765793B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678718A2 (en) * 1994-04-19 1995-10-25 Sanyo Electric Co., Ltd. Multi-type air conditioner address setting method and address setting device
US6751541B2 (en) 2000-03-23 2004-06-15 Hitachi Construction Machinery Co., Ltd. Method and apparatus for transmitting machine operation data
JP2013108651A (en) * 2011-11-18 2013-06-06 Daikin Industries Ltd Floor heating system
JP2013204863A (en) * 2012-03-27 2013-10-07 Sharp Corp Multi-air conditioner
AU2012227466B2 (en) * 2011-03-15 2016-06-16 Nippon Steel & Sumikin Engineering Co., Ltd. Coal gasification method
WO2017002215A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigerant leak detection system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0678718A2 (en) * 1994-04-19 1995-10-25 Sanyo Electric Co., Ltd. Multi-type air conditioner address setting method and address setting device
US5603225A (en) * 1994-04-19 1997-02-18 Sanyo Electric Co., Ltd. Multi-type air conditioner address setting method and address setting device
EP0678718A3 (en) * 1994-04-19 1997-05-02 Sanyo Electric Co Multi-type air conditioner address setting method and address setting device.
US6751541B2 (en) 2000-03-23 2004-06-15 Hitachi Construction Machinery Co., Ltd. Method and apparatus for transmitting machine operation data
AU2012227466B2 (en) * 2011-03-15 2016-06-16 Nippon Steel & Sumikin Engineering Co., Ltd. Coal gasification method
JP2013108651A (en) * 2011-11-18 2013-06-06 Daikin Industries Ltd Floor heating system
JP2013204863A (en) * 2012-03-27 2013-10-07 Sharp Corp Multi-air conditioner
WO2017002215A1 (en) * 2015-06-30 2017-01-05 三菱電機株式会社 Refrigerant leak detection system
JPWO2017002215A1 (en) * 2015-06-30 2018-01-18 三菱電機株式会社 Refrigerant leak detection system
GB2554267A (en) * 2015-06-30 2018-03-28 Mitsubishi Electric Corp Refrigerant leak detection system
GB2554267B (en) * 2015-06-30 2020-12-16 Mitsubishi Electric Corp Refrigerant leakage detection system

Also Published As

Publication number Publication date
JPH0765793B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
EP1371914B1 (en) Multi-unit air conditioner and method for controlling the same
JP5558625B2 (en) Refrigeration air conditioner
KR101270540B1 (en) Apparatus for inspecting refrigerant pipe connection of multi pipe air conditioner and method thereof
EP1691139B1 (en) Checking Air Conditioning System Installation
US11874039B2 (en) Refrigeration cycle apparatus
JPH11257806A (en) Multizone air conditioner and method for checking its connecting state
EP1643193B1 (en) Method of determining the configuration of an air conditioning system
JPH09112998A (en) Trially operating method for multizone air conditioner
JPH0311256A (en) Multi-type air conditioner
JPH0297848A (en) Multi type air conditioner
JP2001215037A (en) Air conditioning system and its operation control method
JPH07305879A (en) Detecting method of erroneous wiring of multi-type air conditioner
JP2014173816A (en) Multi-type air conditioner
KR101116211B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
JP2504247B2 (en) Operation control device for air conditioner
JPH0712417A (en) Air-conditioning machine
JP2003056933A (en) Multiple air conditioner
JP2001355943A (en) Air conditioner
JP3123873B2 (en) Air conditioner
JP2002349927A (en) Air conditioner
JPH0480569A (en) Air-conditioning machine
JPH0476342A (en) Air conditioner
JP2002147824A (en) Air conditioner
JPH11325538A (en) Improper wiring detection method of multi-type air-conditioning equipment
JPH05203228A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 14

EXPY Cancellation because of completion of term