JPH03112483A - Bacillus licheniformis - Google Patents

Bacillus licheniformis

Info

Publication number
JPH03112483A
JPH03112483A JP25161089A JP25161089A JPH03112483A JP H03112483 A JPH03112483 A JP H03112483A JP 25161089 A JP25161089 A JP 25161089A JP 25161089 A JP25161089 A JP 25161089A JP H03112483 A JPH03112483 A JP H03112483A
Authority
JP
Japan
Prior art keywords
soybean protein
enzyme
bacillus licheniformis
soybean
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25161089A
Other languages
Japanese (ja)
Inventor
Tatsuo Emura
江村 達男
Kiyoshi Oba
大庭 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKKAIDO NISSEI KK
Original Assignee
HOKKAIDO NISSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKKAIDO NISSEI KK filed Critical HOKKAIDO NISSEI KK
Priority to JP25161089A priority Critical patent/JPH03112483A/en
Publication of JPH03112483A publication Critical patent/JPH03112483A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain Bacillus licheniformis mutant low in sore forming ability with high productivity for soybean protein coagulation enzyme useful for producing soybean protein-processed foods by pitting Bacillus licheniformis to mutation. CONSTITUTION:Bacillus licheniformis B-6-4J is put to mutation to obtain the objective mutant low in spore forming ability with high productivity for soybean protein-coagnlation enzyme. An example of the present mutant is Bacillus licheniformis 26D-7 (FERM P1778). The present mutant is incubated in a medium, and using a soybean protein-cagulation enzyme collected from the cultured product, soybean milk is coagulated to obtain a soybean processed food. For example, lactic bacteria and soybean protein coagulation enzyme are added to a mixture of soybean milk, lactose, fatty oil and emulsifier to effect fermentation, and whey is removed from the fermented product followed by pressing, thus obtaining a food similar to cheese.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は大豆蛋白凝固酵素を生産するバチルス・リケニ
ホルミスに関する。
The present invention relates to Bacillus licheniformis which produces soybean protein coagulase.

【技術的背景】[Technical background]

牛乳からチーズを作るように、動物性蛋白質を凝固酵素
によって凝固させて食品を作ることは。 従来からよく知られている。一方、近年、健康上及び経
済的な理由から、大豆蛋白を凝固させることにより、安
価かつ豊富にある大豆を利用して大豆加工食品を製造す
ることが希望されていた。
Foods are made by coagulating animal proteins with coagulating enzymes, just as cheese is made from milk. It has been well known for a long time. On the other hand, in recent years, for health and economic reasons, there has been a desire to produce processed soybean foods by coagulating soybean protein using inexpensive and abundant soybeans.

【従来技術】[Prior art]

このような背景に鑑み、本発明者は、自然界に生存する
細菌の中から、大豆蛋白凝固酵素を菌体外に生産するバ
チルス・リケニホルミスを発見するとともに、これを単
離することに成功し、該菌株をrB−6−4JJと命名
して工業技術院微生物工業技術研究所に微工研菌寄第8
626号(FERMP−8626)として寄託するとと
もに、蒜菌株を利用して生産される大豆蛋白凝固酵素及
びその製造方法について特許出願している(特開昭62
−179386号公報参照)。なお、得られた大豆蛋白
凝固酵素は苦みがなくて食料素材に適している。
In view of this background, the present inventor discovered and isolated Bacillus licheniformis, which produces soybean protein coagulase extracellularly, among bacteria existing in the natural world. The strain was named rB-6-4JJ and submitted to the Institute of Microbial Technology, Agency of Industrial Science and Technology, as part of the 8th Microbiological Research Institute.
No. 626 (FERMP-8626), and a patent application has been filed for a soybean protein coagulase produced using a Mycobacterium strain and a method for producing the same (Japanese Patent Laid-Open No. 62
(Refer to Publication No.-179386). The obtained soybean protein coagulase has no bitter taste and is suitable as a food material.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかるに、上記バチルス・リケニホルミスB−6−4J
 (微工研菌寄第8626号)にあっては、大豆蛋白凝
固酵素を生産するものの、その量はあまり多くなく、大
豆蛋白を凝固させることにより大豆加工食品を工業的に
大量に生産するためには、充分な量の大豆蛋白凝固酵素
を得ることが難しかった。また、このバチルス・リケニ
ホルミスB−6−4Jは胞子形成頻度が高く、生産され
た大豆蛋白凝固酵素を菌体と分離して抽出する際に胞子
が混入し易く、該胞子から生育した前記B−6−45が
前記酵素とともに大豆蛋白に作用して、でき上がった大
豆蛋白食品に意図しない味が付与されるという問題があ
る。 本発明は上記問題に対処するためになされたもので、そ
の目的は、大量の大豆蛋白凝固酵素を生産するとともに
、該酵素のみを菌体から容易に分離して抽出することが
可能な新規なバチルス・リケニホルミスを提供すること
にある。
However, the above Bacillus licheniformis B-6-4J
(Feikoken Bibori No. 8626) produces soybean protein coagulase, but the amount is not very large, and it is necessary to industrially produce large quantities of soybean processed foods by coagulating soybean protein. It was difficult to obtain a sufficient amount of soybean protein coagulase. In addition, this Bacillus licheniformis B-6-4J has a high spore formation frequency, and when the produced soybean protein coagulase is separated from the bacterial cells and extracted, spores are likely to be mixed in. There is a problem in that 6-45 acts on soybean protein together with the enzyme, imparting an unintended taste to the finished soybean protein food. The present invention was made in order to solve the above problems, and its purpose is to produce a large amount of soybean protein coagulase and to develop a new method that allows only the enzyme to be easily separated and extracted from bacterial cells. To provide Bacillus licheniformis.

【課題を解決するための手段】[Means to solve the problem]

本発明はバチルス・リケニホルミスに関し、その第1の
発明は胞子形成能が低くかつ大豆蛋白凝固酵素の生産能
が高いバチルス・リケニホルミスにある。 また、本発明の第2の発明は大豆蛋白凝固酵素の生産能
が高いバチルス・リケニホルミス微工研条寄第1778
号にある。 しかして、本発明に係るバチルス・リケニホルミスはバ
チルス・リケニホルミスB−6−4Jを親株とする変異
株であり、本発明において胞子形成能が低いとは、後述
する規定された条件下で測定した胞子形成頻度が親株の
バチルス・リケニホルミスに比較して11500倍また
はそれ以下であることを意味し、かつ大豆蛋白凝固酵素
の生産能が高いとは同様に大豆蛋白凝固活性が親株のバ
チルス・リケニホルミスに比較して5倍またはそれ以上
であることを意味する。
The present invention relates to Bacillus licheniformis, and its first invention resides in Bacillus licheniformis, which has a low spore-forming ability and a high ability to produce soybean protein coagulase. In addition, the second invention of the present invention is Bacillus licheniformis, which has a high production ability of soybean protein coagulase.
It's in the issue. Therefore, Bacillus licheniformis according to the present invention is a mutant strain whose parent strain is Bacillus licheniformis B-6-4J. This means that the formation frequency is 11,500 times or less compared to the parent strain Bacillus licheniformis, and the production ability of soybean protein coagulase is high. 5 times or more.

【発明の作用・効果】[Actions and effects of the invention]

本発明に係るバチルス・リケニホルミスにおいては、胞
子形成能がきわめて低くかつ大豆蛋白凝固酵素の生産能
が高いことから、大豆蛋白凝固酵素の生成系から該酵素
を菌体と分離して胞子を混入させることなく大量に抽出
することができ、かつ得られた酵素は苦みのない滑らか
な口当りの大豆蛋白凝固物を形成する。従って、本発明
に係るバチルス・リケニホルミスによれば、大豆蛋白加
工食品の製造に適した大豆蛋白凝固酵素を大量に得るこ
とができる。
Since the Bacillus licheniformis according to the present invention has extremely low spore-forming ability and high production ability of soybean protein coagulase, the enzyme is separated from the bacterial cells from the soybean protein coagulase production system and spores are mixed in. The enzyme can be extracted in large quantities without any bitterness, and the resulting enzyme forms a soybean protein coagulate with no bitterness and a smooth texture. Therefore, according to Bacillus licheniformis according to the present invention, it is possible to obtain a large amount of soybean protein coagulating enzyme suitable for producing processed soybean protein foods.

【実施例】【Example】

本発明に係るバチルス・リケニホルミスは上記したバチ
リス・リケニホルミスB−6−4J (野生株)の中間
変異株を経て取得した変異株であり、これらの菌株につ
いて分離、m製、培養、突然変異の発生、有用性等の実
験を行うとともに、それらの特性を測定した。 a、大豆蛋白凝固酵素生産菌のスクリーニング(al)
分離源 静岡県三島市にある国立遺伝学研究所内及び箱根の山の
ふもとの植物、土壌及び豚、牛等家畜の排せつ物から試
料を広く採取した。 (al)分離方法(大豆蛋白凝固酵素)採取した各資料
(植物、土壌、排せつ物等をそれぞれ粉砕した耳かき一
杯程度の資料)を、滅菌した豆乳が各3m7ずつ分注さ
れている試験管にそれぞれ入れて、12〜16時間、3
7℃にて振とう培養する(1次スクリーニング)、これ
らの中でカードを形成している(凝固した物を含む)試
験管内の豆乳のp IIを測定し、P Hが5.5以上
の試験管内の資料について、前記と同様のスクリーニン
グを繰り返し行なった。なお、凝固した試料の中からp
H5,5未満のものを除く理由は、酸によりカード形成
された資料を除外するためである。 目的とする微生物の純化のために豆乳によるスクリーニ
ングを5次まで行った。かかる5次までのスクリーニン
グにより、豆乳凝固能を有する微生物を、カード形成し
た豆乳から滅菌した豆乳へ植え継ぎできることが確認さ
れた。その結果、■前記スクリーニングした資料中に、
大豆蛋白凝固能を有する微生物が存在すること、■この
微生物が豆乳の中で繁殖していることが確認できた。 その後、5次スクリーニングにより得た微生物を、下記
表1に示す組成でpH6,0に調製された増殖培地で、
 12〜16時間、37℃にて振どう培養することによ
り、植え継いだ。 1 硫酸アンモニウム       0.1%リン酸塩  
          1.0%硫酸マグネシウム   
    0.01%クエン酸ナトリウム      0
.05%カザミノ酸          0.02%酵
母エキス          0.1%グルコース  
         0.5%b、大豆蛋白凝固酵素生産
菌の純化 5次スクリーニングを行ったサンプルから平板希釈法に
より、大豆蛋白凝固能が最も高い菌株を単一菌株として
得た。この菌株をrB−6−4JJと命名し、同菌株を
工業技術院微生物工業技術研究所に寄託した。寄託番号
は徹工研菌寄8626号(FERM  P−8626)
である。この菌株は竹の葉および竹の根に集中して分布
していた。 次に、得られた菌株(B−6−4J)において、大豆蛋
白凝固能を有する物質が菌体内あるいは菌体外に存在す
るのかを確認した。まず、この菌株を上記表2に示す組
成でpH6,0に調製された生産培地で、 24時間、
 37℃にて振とう培養した。 硫酸アンモニウム リン酸二水素カリウム 硫酸マグネシウム クエン酸ナトリウム カザミノ酸 酵母エキス グルコース 11.1%の塩化カルシウム溶液 地 0.1% 1.0% 0.01% 0.05% 0.02% 0.1% 0.5% 0.01% 豆乳(大豆蛋白濃度10%)  5% このようにして培養したものを、0℃、6000 rp
mで10分間遠心分離を行い、上澄液と菌体とに分離し
てそれぞれの活性を調べた。上澄液に関しては、該上澄
液を平均細孔径0.22μmのフィルタを通すことによ
って除菌し、同波に含まれるものの豆乳凝固活性を調べ
た。また、菌体に関しては、該菌体を乳ばちにおいて石
英砂と共によく磨砕し、そこにpH7,0のリン酸緩衝
液を加えて、上記と同様に0.22μmのフィルタを通
して得た菌体抽出液に含まれるものの豆乳凝固活性を調
べた。 なお、かかる場合に、 リン酸緩衝液を入れるのは、菌
体の粉砕によって変化したpHを元に戻して酸による豆
乳凝固の影響をなくすためであり、また。 フィルタを通すのは、不要な成分を除去するためである
。 その結果、上澄液には豆乳を凝固させる活性能が存在し
、菌体抽出液には豆乳を凝固させる活性は全く存在して
いないことが確認できた。 さらに、前記上澄液を80℃で30分間加熱して、該加
熱した上澄液に豆乳凝固活性能が存在するかを調べた結
果、前記活性能がなくなることから、加熱によって豆乳
凝固活性能が消失することが確認された。 これらの実験により、豆乳凝固活性能を有する物質は無
機物ではなく、前記微生物が生産する菌体外酵素である
ことを確認できた。 C0酵素生産性を増加させる培養条件の検討(cl)こ
の菌株(B−6−4J)を各種条件で培養を行うことに
より、大豆蛋白凝固酵素生産能を増加させる培養条件の
検討を行なった。かかる場合、基本的培地として、上記
表2の組成のものを用いた。なお、この培地組成は、資
化しうる(菌株が栄養素として培地に接種できるととも
に、その培地で増殖できる)炭素源、窒素源、栄養源等
を含有するものであり、かつ大豆蛋白凝固酵素を分泌す
るものであれば、いかなる培地でもかまわない。 前記実験の結果、大豆蛋白凝固酵素の生産を増加させる
菌株の培養条件に関し、次のことを知得した。なお、説
明の便宜上、上記表2の組成を有する培地を例に取り説
明する。 ■無機塩((Nl14hsOa、  KI12PO4,
Mg5Oa・7+120)、クエン酸ナトリウム、グル
コース、酵母エキス及びカザミノ酸は、菌体を増殖させ
るものであって、大豆蛋白凝固酵素の生産性を高める上
ではあまり関係ない。換言すれば、これらの化合物は大
豆蛋白凝固活性能を引き出す上ではあまり関係ない。 ■豆乳(蛋白質濃度=10%)を添加するかしないかは
、大豆蛋白凝固酵素生産能を引き出すことに大きく影響
する。第1図は表2に示す生産培地への豆乳添加量と大
豆蛋白凝固活性との関係を示すもので、温度45℃で2
4時間振とう培養シた場合の結果であり、凝固活性は後
述する定義に基づいて算出した。第1図によれば、豆乳
(大豆蛋白10%)を培地に2.5〜7.5%程度添加
すると、菌体の大豆蛋白凝固活性能を有効に引き出せる
こと、及び豆乳を培地に5%程度添加すると、菌体の大
豆蛋白凝固活性能を最も有効に引き出せることが解る。  また、この場合、豆乳がこの菌株に対して大豆蛋白凝
固酵素の生産能を高めるインデューサとして働いている
ものと考えられる。 ■第2図は45℃、pI(6,0で振とう培養した場合
の培養時間に対する菌数(colony formiB
unit/+j)及び大豆蛋白凝固活性の関係を示して
いる。この結果によれば、培養時間は20時間以上必要
であり、50時間までは前記凝固活性が残っていること
が解る。また、上記培養条件において最適時間で温度を
変化させ、かつ最適時間および最適温度でp Hを変化
させて振とう培養を行った結果、培養温度は45℃前後
が適当であり、かつ培養地のp Hは6〜7で安定であ
った。 (C2)大豆蛋白凝固活性SCAの定義豆乳(蛋白質濃
度:10%)に培養液を加え65℃でカードを形成する
基準時間を1時間とし、下記式にて算出する。 S CA = Soymilk  Clotting 
 Activity(unit)= (S/E)x (
3600/l) S:基質(豆乳)のffi(m)) E:培養液を遠心し菌体を取り除いた上澄液の量(m)
) を二 カードの生じる時間(秒) d1分泌酵素量を増大させるための菌体の改良(突然変
異株の取得) 前記菌株(B−6−4J)の菌体外酵素の分泌量を増大
させるために、以下の方法で突然変異株を取得した。な
お、この菌株を、表3に示す市販の栄養増殖培地により
45℃、pH6,0で振とう培養した後、菌体だけを遠
心分離により採取し、採取した菌体を長く生存させるた
め壜こ、同菌体にリン酸緩衝液を入れることにより懸濁
して以下の実験に供した。 3゜ Antibiotic 肉エキス 酵母エキス ペプトン デキストローゼ 塩化ナトリウム リン酸水素二カリウム リン酸二水素カリウム 地     1 2(デイフコ社製商品名) 0615% 0.15% 0.5% 0.1% 0.35% 0.388% 0.132% Mediu園 (dl)紫外線(UV)処理 上記の処理で得られた懸濁状態にある菌体を100倍に
希釈して、表3の組成を培地とする栄養増殖平板プレー
トに塗抹し、紫外線を種々条件を変えて照射した。かか
る照射後、前記プレート上で37℃、1昼夜培養した。 該培養後、胞子形成能が低い変異株を取り出したところ
、9株の変異株が得られた。この得られた変異株の大豆
蛋白凝固活性能を調べたが、この中には大豆蛋白凝固活
性能を持つ菌株は見い出されなかった。 (d2)γ線照射処理 上記100倍に希釈したものと同じ菌株にγ線を20に
レントゲン照射後、菌体を表3の組成を培地とする栄養
増殖平板プレートにまき、45℃で3日間培養した。プ
レート上に増殖した菌株より、胞子形成能が低い株を捜
したが、一つも見い出されなかった。また、大豆蛋白凝
固活性能を有する菌株も見い出されなかった。 (d3)ニトロソグアニジン(NTG)処理NTG5m
zをリン酸II!IWJ液4.5dに溶解し、この溶液
の中に前記100倍に希釈した菌体液を0.5mt添加
して、 37℃で60分捏上うさせた。次に、この菌体
をリン酸緩衝液で3回洗浄を行なった後上記した栄養増
殖平板プレートにまき、45℃で1昼夜培養した。その
結果、胞子形成能が低いと思われる菌株は22株得られ
た。 この22株のうち、大豆蛋白凝固活性能を有する菌株が
3株見い出された。この中で、最も凝固活性が高いもの
を中間変異株26Dとし、以後の実験に供した。 この中間変異株26Dの野生株B−6−4Jに対する性
質を以下に記す。 ■胞子形成頻度 野性株B−6−4Jの1/1000 〜1/10000倍 ■大豆蛋白凝固活性の比較 野性株の約2倍 これらの性質は、野性株B−4−6Jを培養するときよ
り、エアレーション(通気量)が低い培養条件時に観察
される。なお、他の培養条件は上記(cl)で述べた菌
株B−6,−4Jの場合と同様である。また、胞子形成
頻度は下記の方法により菌株を処理し、測定して算出し
た。 a:菌株のコロニーを1つ1つプレートに移す。 この同じプレートを2枚作る。 b:底部にクロロホルムを1満々下したシャーレの  
蓋に上記プレートの1枚を被せるとともに、他のプレー
トをクロロホルムの滴下してないシャーレの蓋に被せ(
コントロール)、これらのプレート上の菌株を45℃、
16時間培養する。胞子形成能が弱い菌株、胞子形成の
少ない菌株はクロロホルムの影響で生えない。 C:生えていない菌株(クロロホルム側)に対応するコ
ントロール側の菌株の凝固活性を調べ凝固活性を持つ菌
株を表3に示す栄養増殖培地で増殖する。 d:菌体を80℃で15分間熱処理し、熱処理前後の菌
数を測定して下記式により胞子形成頻度を算出する。 胞子形成頻度=(熱処理後の菌数)/ (熱処理前の菌数) 増殖した菌体が100%胞子を形成している場合胞子形
成頻度は1となる。 (d4)中間変異株26DのNTG処理中間変異株26
Dから、さらに変異株を取得するために次のような処理
を行なった。 ■中間変異株26Dを表3に示す栄養増殖培地3m[中
で、45℃にて1晩培養する。 ■前記■の培養液0.1mJ2を上記栄養増殖培地3m
g中に添加し、45℃で対数増殖期(ログフェーズ)ま
で振とう培養する。なお、対数増殖期まで培養する理由
は、該増殖期における菌株が最も突然変異する傾向が強
いためである。 ■前記■の培養液を0.5n+/ずつ5つの試験管に分
注し、それぞれにll1g/afのNTGを0.0. 
2.5. 5.0゜10.0. 25.0μlずつ入れ
る。これにより、各試験管内のNTGm度は、それぞれ
0. 5. 10. 20.50μg/mノとなる。 ■前記■の各試験管を45℃で30分分間上うする。 ■前記■の処理後、各試験管内の菌体を1+neの上記
栄養増殖培地で3回ずつ洗浄する。 ■前記■の処理後、菌体にそれぞれ0.5mlの上記栄
養増殖培地を添加してJl!TI濁する。 ■前記■の懸濁液の、各30μノを3Illlの上記栄
養増殖培地に加えて、45℃で1晩振とう培養する。 前記■の処理後、各培養液を一80℃に保存して以後の
実験に供する。 次に、細菌は通常カナマイシン(抗生物′Ii”)に対
して感受性であるが(今回得た中間突然変異株26Dも
カナマイシンに対して感受性である)、突然変異によっ
て得られた細菌はカナマイシンに対して耐性となる場合
があることに鑑み、前記保存しである菌株を0.2μg
ノIII/!のカナマイシンを含む栄養増殖平板プレー
トにまき、ミューチージョン頻度の高いNTG1度群を
選別した。その結果、NTG21度が20Pg/mノで
ある場合に、 ミューテーシ目ン頻度が最も高く、その
頻度は3.52x 10−3であった。NTG濃度20
μg/mlの群を、上記表1の培地にプロテアーゼ活性
測定試薬(シグマ製のハイドパウダー 商品名)0.5
%と、寒天とを加えて平板培地としたものにまき、ハロ
ーを形成した菌株を採取する。菌数は1.3xlO5と
なり、その中から1株の目的とする菌株(蛋白凝固活性
能が最も高い菌株)が得られた。この菌株を変異株26
D=7と命名し、工業技術院微生物工業技術研究所に国
際寄託した。寄託番号は微工研条寄第1778号(FE
RM  BP−1778)である。 野性株(B−6−4J)、  中間変異株(26D)お
よび変異株26D−7の胞子形成頻度及び大豆蛋白凝固
活性の比較を下記表4に示す。 (以下余白) 表4゜ び大豆 e、  B−6−4J、  26D−7の菌学的性質上
記表5に示したB−2培地を用いて、両菌株B−6−4
J、  26D−7を培養し、  rThe Genu
sBacillusJ及びrBergey’s Man
ual of Determinat。 ive Bact、eriologyJ  に基づいて
、それらの菌学的性質を調べた。 (以下余白) 表5゜ 旦二二又」L墳」「威 なお、上記組成の培地をプレートにする場合は1.5%
の寒天粉末を加える。 下記表5に、B−6−4J、26D−7の菌学的性質を
示した。 (以下余白) 表6゜ 苗ご1葡1質 表6に示す菌学的性質から野生株B−6−4J及び変異
株26D−7は共にバチルス(Bacillus)属で
あると考えられ、さらにバチルス属の中では、寒天に固
く張り付いたコロニーを作ること、成育温度が高いこと
、嫌気下での成育が見られることなどから、前記両画は
バチルス・リケニホルミス(Bacillus lic
heniformis)種であると同定した。 また、こ九らの野生株B = 6−4 J、中間変異株
26D及び変異株26D−7の大豆蛋白凝固酵素生産能
及び胞子形成頻度に関しては表4に示したとおりである
。さらに、前記NTG処理の過程にて、野生株B−6−
4J及び中間変異株26Dは抗生物質としてのカナマシ
ンに感受性であるが、変異株26D−7は前記カナマイ
シンに耐性であることも確認された。 f、大豆蛋白凝固酵素の単離及び精製 2を容量のジャーファーメンタ−に1.51の培地(上
記式2の培地)を入れて殺菌を行った後、変異株26D
−7を植えて、45℃で48時間通気攪伴培養を行った
。培養液は、珪藻±(SSC)で濾過して菌体を除去し
た後、55%の飽和硫酸アンモニウムを用いて硫安分画
を行い、ゲル濾適用充填剤(ファーマシア社製5eph
adexG −100、商品名)を用いて脱塩した。 1’l Ii;X後の培養液をカルボキシメチルセルロ
ースカラム(CM−52カラム)に透し、塩化ナトリウ
ム直線濃度勾配法で経時的にフラクションを採取した。 この場合の培養液の溶出パターン(分光光度針による波
長280Iの吸光度)を第3図に破線で示すとともに、
大豆蛋白凝固酵素の凝固活性を実線で示した。 これらの各フラクションのうち、第3図に実線で示すビ
ーク■に対応する酵素とビークHに対応する酵素とに大
豆蛋白凝固活性が見られた。更に、酵素の溶出量が多か
ったビーク■を前記ゲル濾適用充填剤のカラムを用いて
、ビーク■を単一な物質に精製した。第4図にはかかる
精製物の上記した塩化ナトリウム直線濃度勾配法での溶
出パターンを示しであるが、かかる場合も、破線のよう
な溶出パターンのうちで、実線で示す部分の酵素に大豆
蛋白凝固活性能が認めら九た。 これにより、所望とする大豆蛋白凝固酵素が単離及び精
製される。 g、大豆蛋白111固酵素の性質 前記ビークI、  IIに対応する酵素(以下、単に酵
素ピークI、  IIという)の理化学的性質は、各種
実験の結果、次のとおりであることを確認した。 ■酵素ビークI、  IIは共に、豆乳に作用させると
大豆蛋白を凝固させる。 ■酵素ピークI、■は共に、苦みがなく、毒性もなく食
品加工用に適する。 ■酵素ビーク■は5DSt気泳動的に単一なバンドとな
り、分子量は30,000前後である。酵素ビーク■は
その生産量が少ないために、前記測定が不能である。 ■第5図のグラフは下記条件(1)により測定された酵
素の大豆蛋白凝固活性と温度との関係、第6図のグラ°
フは下記条件(II)により測定した酵素の熱安定性、
第7図のグラフは下記条件(III)により測定した酵
素の同凝固活性とpHとの関係、第8図のグラフは下記
条件(rV)により測定した酵素のpH安定性をそれぞ
れ示している。これらのグラフの結果から、凝固活性を
示す最適温度は酵素ピーク!では約80℃、酵素ピーク
■では約65℃であり、かつこれら両酵素共30〜40
℃の下では1時間安定である。また、これら両酵素は共
に酸性側で高い凝固活性を示し、p H> 7では凝固
活性をほとんど消失するが、4°Cの下では両酵素共に
pH4〜9ではほぼ安定であり、少なくとも70%の活
性が残存する。 条件(■):酵素ピーク■、■の各200μノを180
0μlの豆乳にそれぞれ添加するとと もにp Hを6.5に調整し、各温度での凝固活性を測
定。 条件(■):酵素ピークr、  rrを1時間各温度に
保持した後、酵素ピーク■は80℃ にて酵素ピーク■は65℃にて、か つ他の条件は条件(1)と同様にし て凝固活性を測定。 条件(■):豆乳を各p Hに調整するとともにこれら
の凝固活性測定温度を80°C1 65℃とした点を除き条件(1)と 同様にして凝固活性を測定。 条件(■):酵素ピーク!、■を各p Hに調整すると
ともに4℃で161I4J間冷蔵し、凝固活性測定温度
を80℃、65℃ とした点を除き条件(1)と同様に して凝固活性を測定。 ■表7は下記条件により測定した酵素の大豆蛋白凝固活
性に対する各化合物の影響を示しており、同表に示すよ
うに、酵素ピーク!、 ■は、共に金属イオンによる影
響が認められない。酵素ピーク■は、PMSF(フェニ
ルメチルスルフォニルフルオライド)及びTSF ()
ルエンスルフオニルフルオライド)によって100%阻
害され、酵素ピーク■はEDTA (エチレンジアミン
四#酸)によって100%阻害された。これらにより、
酵素ピーク■はセリンプロテアーゼの一種と考えられ、
酵素ピーク■は金属酵素の一種であると考えられる。 表7゜ 大豆蛋白凝固酵素に対する各化合物の影響り、酵素の有
用性 上記ピークIに対応する酵素を用いて豆乳を凝固させて
、大豆加工食品を¥A造できる。例えば、豆乳、乳糖、
油脂及び乳化剤の混合物に、乳酸菌及び前記酵素を添加
して発酵させ、該発酵物からホエー(乳しよう)を排除
してプレスすることにより離水すると、固形物が得られ
る。かかる場合、乳酸菌を添加するのは、大豆特有の臭
味を消すためである。この固形物に、水、安定剤、チー
ズ用の呈味、チーズ用フレーバ等を加えて殺菌を行うと
、乳製品としてのチーズに近いものが製造される。なお
、この場合、水及び安定剤の添加量を種々変えることに
より、ハードタイプ、クリームタイプ等のチーズが製造
される。また、前記チーズ用の呈味及びチーズ用フレー
バに変えて、他の食品に適した呈味及びフレーバを添加
すれば、チーズとは異なる大豆加工食品も製造できる。 このようにして製造された食品はコレステロールが少な
く、健康食品として優れている。また、原料としての大
豆は豊富にあり、安価に乳製品と類似した大豆加工食品
を提供できる。
Bacillus licheniformis according to the present invention is a mutant strain obtained through intermediate mutants of the above-mentioned Bacillus licheniformis B-6-4J (wild strain), and these strains are isolated, produced, cultured, and mutated. , conducted experiments on their usefulness, etc., and measured their characteristics. a. Screening for soybean protein coagulase producing bacteria (al)
Isolation Source: Samples were widely collected from plants, soil, and excrement from livestock such as pigs and cows at the National Institute of Genetics in Mishima City, Shizuoka Prefecture, and at the foot of the mountains in Hakone. (al) Separation method (soybean protein coagulase) Each collected material (about the size of an earpick made by crushing plants, soil, excrement, etc.) was placed into test tubes each containing 3 m7 of sterilized soy milk. Put it in for 12-16 hours, 3
Culture the soybean milk with shaking at 7°C (primary screening), measure the p II of the soymilk in the test tube that has formed a curd (including the coagulated product), and find the soybean milk with a pH of 5.5 or higher. The same screening as above was repeated for in vitro materials. In addition, p from the solidified sample
The reason for excluding those with less than H5.5 is to exclude materials formed into cards by acid. In order to purify the target microorganism, screening using soy milk was performed up to the fifth stage. Through such screening up to the fifth stage, it was confirmed that microorganisms capable of coagulating soymilk could be transferred from curd-formed soymilk to sterilized soymilk. As a result, ■ Among the materials screened above,
It was confirmed that there is a microorganism capable of coagulating soybean protein, and that this microorganism is breeding in soymilk. Thereafter, the microorganisms obtained through the 5th screening were grown in a growth medium adjusted to pH 6.0 with the composition shown in Table 1 below.
The cells were subcultured by shaking culture at 37° C. for 12 to 16 hours. 1 Ammonium sulfate 0.1% phosphate
1.0% magnesium sulfate
0.01% Sodium Citrate 0
.. 05% Casamino Acid 0.02% Yeast Extract 0.1% Glucose
Purification of 0.5%b soybean protein coagulase-producing bacteria A strain with the highest soybean protein coagulation ability was obtained as a single strain by plate dilution from samples subjected to the fifth screening. This strain was named rB-6-4JJ and was deposited at the Institute of Microbial Technology, Agency of Industrial Science and Technology. The deposit number is Tetsukoken Bacillus No. 8626 (FERM P-8626)
It is. This bacterial strain was concentrated in bamboo leaves and roots. Next, in the obtained bacterial strain (B-6-4J), it was confirmed whether a substance having soybean protein coagulation ability was present inside or outside the bacterial cell. First, this strain was incubated for 24 hours in a production medium adjusted to pH 6.0 with the composition shown in Table 2 above.
Culture was carried out with shaking at 37°C. Ammonium sulfate Potassium dihydrogen phosphate Magnesium sulfate Sodium citrate Casamino acid Yeast extract Glucose 11.1% Calcium chloride solution 0.1% 1.0% 0.01% 0.05% 0.02% 0.1% 0 .5% 0.01% Soy milk (soy protein concentration 10%) 5% The thus cultured product was incubated at 0°C and 6000 rp.
The cells were centrifuged for 10 minutes at m, and the supernatant and bacterial cells were separated and their respective activities were examined. Regarding the supernatant liquid, the supernatant liquid was passed through a filter with an average pore diameter of 0.22 μm to remove bacteria, and the soybean milk coagulation activity of the supernatant liquid was examined. Regarding the bacterial cells, the bacterial cells were thoroughly ground with quartz sand in a milk pestle, a phosphate buffer solution of pH 7.0 was added thereto, and the bacterial cells obtained were filtered through a 0.22 μm filter in the same manner as above. The soy milk coagulation activity of substances contained in the body extract was investigated. In this case, the purpose of adding a phosphate buffer is to restore the pH that has changed due to the crushing of the bacterial cells and eliminate the effects of acid on soymilk coagulation. The purpose of passing it through a filter is to remove unnecessary components. As a result, it was confirmed that the supernatant liquid had an activity to coagulate soymilk, and the bacterial cell extract had no activity to coagulate soymilk. Furthermore, as a result of heating the supernatant at 80° C. for 30 minutes and examining whether the heated supernatant had soymilk coagulation activity, the activity was found to be absent. was confirmed to disappear. Through these experiments, it was confirmed that the substance having soymilk coagulation activity was not an inorganic substance but an extracellular enzyme produced by the microorganism. Study of culture conditions to increase C0 enzyme productivity (cl) This strain (B-6-4J) was cultured under various conditions to study culture conditions to increase soybean protein coagulating enzyme productivity. In such cases, the basic medium having the composition shown in Table 2 above was used. This medium composition contains carbon sources, nitrogen sources, nutrient sources, etc. that can be assimilated (the bacterial strain can inoculate the medium as nutrients and grow in the medium), and secretes soybean protein coagulase. Any medium may be used as long as it can be used. As a result of the above experiment, we learned the following regarding the culture conditions for the strain that increases the production of soybean protein coagulase. For convenience of explanation, a medium having the composition shown in Table 2 above will be used as an example. ■Inorganic salts ((Nl14hsOa, KI12PO4,
Mg5Oa.7+120), sodium citrate, glucose, yeast extract, and casamino acids are used to proliferate bacterial cells, and are not very relevant to increasing the productivity of soybean protein coagulase. In other words, these compounds have little to do with bringing out the soybean protein coagulation activity. ■Whether or not to add soy milk (protein concentration = 10%) has a large effect on the ability to produce soy protein coagulase. Figure 1 shows the relationship between the amount of soymilk added to the production medium shown in Table 2 and soybean protein coagulation activity.
These are the results obtained when shaking culture was carried out for 4 hours, and the coagulation activity was calculated based on the definition described below. According to Figure 1, adding about 2.5 to 7.5% of soy milk (10% soy protein) to the medium can effectively bring out the soybean protein coagulation activity of bacterial cells, and that adding soy milk (10% soy protein) to the medium at 5% It can be seen that the soybean protein coagulation activity of the bacterial cells can be most effectively brought out by adding the soybean protein at a certain level. Furthermore, in this case, it is thought that soymilk acts as an inducer for this strain to increase its ability to produce soybean protein coagulase. ■Figure 2 shows the number of bacteria (colony formiB
The relationship between unit/+j) and soybean protein coagulation activity is shown. According to this result, the culture time is required to be 20 hours or more, and it can be seen that the coagulation activity remains until 50 hours. In addition, as a result of performing shaking culture under the above culture conditions by changing the temperature at the optimum time and changing the pH at the optimum time and temperature, it was found that the appropriate culture temperature is around 45°C, and the culture medium The pH was stable at 6-7. (C2) Definition of soybean protein coagulation activity SCA The reference time for adding a culture solution to soybean milk (protein concentration: 10%) and forming a curd at 65°C is set to 1 hour, and it is calculated using the following formula. S CA = Soymilk Clotting
Activity (unit) = (S/E) x (
3600/l) S: ffi of substrate (soy milk) (m)) E: Volume of supernatant after centrifuging the culture solution and removing bacterial cells (m)
) 2 Time for card formation (seconds) Improvement of bacterial cells to increase the amount of d1-secreting enzyme (obtaining mutant strains) Increasing the amount of extracellular enzyme secreted by the strain (B-6-4J) For this purpose, mutant strains were obtained using the following method. After culturing this strain with shaking at 45°C and pH 6.0 using a commercially available nutrient growth medium shown in Table 3, only the bacterial cells were collected by centrifugation, and in order to keep the collected bacterial cells alive for a long time, they were placed in a bottle. The same bacterial cells were suspended in phosphate buffer and used in the following experiment. 3゜Antibiotic Meat extract Yeast extract Peptone dextrose Sodium chloride Dipotassium hydrogen phosphate Potassium dihydrogen phosphate 1 2 (Product name manufactured by Difco) 0615% 0.15% 0.5% 0.1% 0.35% 0.388% 0.132% Mediuen (dl) Ultraviolet (UV) treatment The suspended bacterial cells obtained by the above treatment were diluted 100 times, and vegetative growth was carried out using the composition shown in Table 3 as a medium. It was smeared onto a flat plate and irradiated with ultraviolet light under various conditions. After such irradiation, the cells were cultured on the plate at 37° C. for 1 day and night. After the culture, mutant strains with low spore-forming ability were extracted, and nine mutant strains were obtained. The obtained mutant strain was examined for soybean protein coagulation activity, but no strain was found that had soybean protein coagulation activity. (d2) γ-ray irradiation treatment The same strain diluted 100 times above was irradiated with γ-rays to 20%, then the bacterial cells were plated on a vegetative growth plate using a medium with the composition shown in Table 3, and kept at 45°C for 3 days. Cultured. We searched for strains with lower spore-forming ability than the strains grown on the plates, but none were found. Furthermore, no strain was found that had soybean protein coagulation activity. (d3) Nitrosoguanidine (NTG) treatment NTG5m
z is phosphoric acid II! It was dissolved in 4.5 d of IWJ solution, 0.5 mt of the 100-fold diluted bacterial cell solution was added to this solution, and the mixture was stirred at 37°C for 60 minutes. Next, the cells were washed three times with phosphate buffer, then spread on the above-mentioned vegetative growth plate, and cultured at 45° C. for 1 day. As a result, 22 strains that seemed to have low spore-forming ability were obtained. Among these 22 strains, 3 strains having soybean protein coagulation activity were found. Among these, the strain with the highest coagulation activity was designated intermediate mutant strain 26D, and was used for subsequent experiments. The properties of this intermediate mutant strain 26D relative to the wild strain B-6-4J are described below. ■ Spore formation frequency 1/1000 to 1/10000 times that of wild strain B-6-4J ■ Comparison of soybean protein coagulation activity Approximately twice that of wild strain These properties are higher than when culturing wild strain B-4-6J. , observed under culture conditions with low aeration. Note that other culture conditions are the same as those for strains B-6 and -4J described in (cl) above. In addition, the spore formation frequency was calculated by treating and measuring the bacterial strain using the method described below. a: Transfer the colonies of the bacterial strain one by one to the plate. Make two of these same plates. b: A petri dish with a full drop of chloroform at the bottom.
Place one of the plates above on the lid, and place the other plate on the lid of the petri dish to which chloroform has not been added (
control), the strains on these plates at 45°C,
Incubate for 16 hours. Strains with weak spore-forming ability or strains that form few spores will not grow due to the influence of chloroform. C: The coagulation activity of the control strain corresponding to the non-growing strain (chloroform side) was examined, and the strain with coagulation activity was grown in the nutrient growth medium shown in Table 3. d: Heat-treat the bacterial cells at 80°C for 15 minutes, measure the number of bacteria before and after the heat treatment, and calculate the spore formation frequency using the following formula. Spore formation frequency = (Number of bacteria after heat treatment) / (Number of bacteria before heat treatment) When 100% of the proliferated bacteria form spores, the spore formation frequency is 1. (d4) NTG treatment of intermediate mutant strain 26D intermediate mutant strain 26
In order to further obtain mutant strains from D., the following treatments were performed. (2) Intermediate mutant strain 26D was cultured overnight at 45°C in 3 m of the nutrient growth medium shown in Table 3. ■ Add 0.1 mJ2 of the culture solution from ■ above to 3 m of the above nutrient growth medium.
g and cultured with shaking at 45°C until log phase. The reason for culturing until the logarithmic growth phase is that strains in this growth phase have the strongest tendency to mutate. ■ Dispense the culture solution from ■ above into 5 test tubes at 0.5n+/each, and add 11g/af of NTG to each tube at 0.0.
2.5. 5.0°10.0. Add 25.0 μl each. As a result, the NTGm degree in each test tube is 0. 5. 10. It becomes 20.50μg/mノ. (2) Incubate each test tube in (1) above at 45°C for 30 minutes. (2) After the treatment in (2) above, the bacterial cells in each test tube are washed three times with 1+ne of the above nutrient growth medium. ■After the treatment in (■) above, 0.5 ml of the above nutrient growth medium was added to each bacterial cell and Jl! TI becomes cloudy. (2) Add 30μ of each of the suspensions in (2) to 3111 of the above nutrient growth medium, and culture with shaking at 45°C overnight. After the treatment in (2) above, each culture solution was stored at -80°C and used for subsequent experiments. Next, although bacteria are normally sensitive to kanamycin (antibiotic 'Ii') (the intermediate mutant strain 26D obtained this time is also sensitive to kanamycin), the bacteria obtained by mutation are sensitive to kanamycin. In view of the fact that the strain may become resistant to
NoIII/! The cells were plated on vegetative growth plates containing kanamycin, and the NTG 1 group with a high frequency of mutations was selected. As a result, when the NTG21 degree was 20 Pg/m, the mute frequency was the highest, and the frequency was 3.52 x 10-3. NTG concentration 20
μg/ml group was added to the medium shown in Table 1 above with 0.5 μg/ml of protease activity measuring reagent (Hyde Powder brand name manufactured by Sigma).
% and agar to form a plate medium, and collect the strains that form a halo. The number of bacteria was 1.3xlO5, and one of the target bacterial strains (the strain with the highest protein coagulation activity) was obtained. This strain was mutated into strain 26.
It was named D=7 and internationally deposited with the Institute of Microbial Technology, Agency of Industrial Science and Technology. The deposit number is FE-KENJO deposit No. 1778 (FE
RM BP-1778). Table 4 below shows a comparison of the sporulation frequency and soybean protein coagulation activity of the wild strain (B-6-4J), intermediate mutant strain (26D), and mutant strain 26D-7. (Left below) Table 4 Mycological properties of soybean e, B-6-4J, and 26D-7 Both strains B-6-4 were tested using the B-2 medium shown in Table 5 above.
J, 26D-7 was cultured and rThe Genu
sBacillus J and rBergey's Man
ual of Determinat. Their mycological properties were investigated based on ive Bact, eriologyJ. (Leaving space below) Table 5゜゜゜Two-fork゜L-fun゜゜In addition, when using a medium with the above composition as a plate, 1.5%
Add agar powder. Table 5 below shows the mycological properties of B-6-4J and 26D-7. (Leaving space below) Table 6゜Seedling 1 Grape 1 Quality Based on the mycological properties shown in Table 6, both wild strain B-6-4J and mutant strain 26D-7 are considered to belong to the genus Bacillus, and furthermore, Within the genus, both images are related to Bacillus liceniformis because it forms colonies that adhere tightly to agar, has a high growth temperature, and grows under anaerobic conditions.
heniformis) species. Table 4 shows the soybean protein coagulase production ability and sporulation frequency of Kokura's wild strain B = 6-4 J, intermediate mutant 26D, and mutant 26D-7. Furthermore, in the process of the NTG treatment, wild strain B-6-
It was also confirmed that 4J and intermediate mutant strain 26D are sensitive to kanamycin as an antibiotic, but mutant strain 26D-7 is resistant to kanamycin. f. Isolation and Purification of Soybean Protein Coagulase 2 was sterilized by putting 1.51 volume of medium (medium of formula 2 above) into a jar fermenter with a capacity of 2, and then the mutant strain 26D was sterilized.
-7 was planted and cultured with aeration at 45°C for 48 hours. The culture solution was filtered through diatom ± (SSC) to remove bacterial cells, and then subjected to ammonium sulfate fractionation using 55% saturated ammonium sulfate.
adexG-100 (trade name) was used to desalt. The culture solution after 1'l Ii; The elution pattern of the culture solution in this case (absorbance at a wavelength of 280I measured by a spectrophotometric needle) is shown in broken lines in Figure 3, and
The solid line indicates the coagulation activity of soybean protein coagulase. Among these fractions, soybean protein coagulation activity was observed in the enzyme corresponding to beak ■ and the enzyme corresponding to beak H shown by the solid line in FIG. Furthermore, Beak 2, in which a large amount of enzyme was eluted, was purified into a single substance using the column of the gel filtration applicable packing material. FIG. 4 shows the elution pattern of this purified product by the above-mentioned sodium chloride linear concentration gradient method, but in this case as well, in the elution pattern like the broken line, the enzyme shown by the solid line has soybean protein. Coagulation activation ability was observed. As a result, the desired soybean protein coagulase is isolated and purified. g. Properties of soybean protein 111-binding enzyme The physicochemical properties of the enzymes corresponding to peaks I and II (hereinafter simply referred to as enzyme peaks I and II) were confirmed as follows as a result of various experiments. ■Both Enzyme Beak I and II coagulate soy protein when they act on soy milk. ■ Enzyme peaks I and ■ both have no bitterness and are not toxic and are suitable for food processing. ■Enzyme peak ■ is a single band in 5DSt aerophoresis, and the molecular weight is around 30,000. Since the production amount of enzyme beak (■) is small, the above measurement is not possible. ■The graph in Figure 5 shows the relationship between soybean protein coagulation activity of the enzyme and temperature measured under the following conditions (1), and the graph in Figure 6
F is the thermostability of the enzyme measured under the following conditions (II),
The graph in FIG. 7 shows the relationship between coagulation activity of the enzyme and pH measured under the following condition (III), and the graph in FIG. 8 shows the pH stability of the enzyme measured under the following condition (rV). From the results of these graphs, the optimal temperature that shows coagulation activity is the enzyme peak! The temperature is about 80℃ for the enzyme peak, and about 65℃ for the enzyme peak
It is stable for 1 hour at ℃. Furthermore, both of these enzymes show high coagulation activity on the acidic side, and almost lose their coagulation activity at pH > 7, but at 4°C, both enzymes are almost stable at pH 4 to 9, with at least 70% activity remains. Conditions (■): 200 μm each of enzyme peaks ■ and ■ at 180 μm
Add each to 0 μl of soy milk, adjust the pH to 6.5, and measure coagulation activity at each temperature. Condition (■): After holding the enzyme peaks r and rr at each temperature for 1 hour, the enzyme peak ■ is at 80°C and the enzyme peak ■ is at 65°C, and other conditions are the same as condition (1). Measures coagulation activity. Condition (■): The coagulation activity was measured in the same manner as in condition (1) except that the soymilk was adjusted to each pH and the coagulation activity measurement temperature was 80°C to 65°C. Condition (■): Enzyme peak! , ■ were adjusted to each pH and refrigerated at 4°C for 161 I4J, and coagulation activity was measured in the same manner as in condition (1) except that the coagulation activity measurement temperature was 80°C and 65°C. ■Table 7 shows the influence of each compound on the soybean protein coagulation activity of the enzyme measured under the following conditions.As shown in the table, the enzyme peak! In both cases, no influence by metal ions was observed. Enzyme peak ■ is PMSF (phenylmethylsulfonyl fluoride) and TSF ()
The enzyme peak (■) was 100% inhibited by EDTA (ethylenediaminetetra-acid). With these,
The enzyme peak ■ is considered to be a type of serine protease.
The enzyme peak ■ is considered to be a type of metalloenzyme. Table 7: Influence of each compound on soybean protein coagulase and usefulness of the enzyme By coagulating soymilk using the enzyme corresponding to the above peak I, processed soybean food can be produced. For example, soy milk, lactose,
A solid substance is obtained by adding lactic acid bacteria and the enzyme to a mixture of fats and oils and an emulsifier, fermenting the mixture, removing whey from the fermented product, and releasing water by pressing. In such cases, lactic acid bacteria are added to eliminate the odor and taste peculiar to soybeans. When this solid material is sterilized by adding water, a stabilizer, a taste for cheese, a flavor for cheese, etc., a dairy product similar to cheese is produced. In this case, hard type cheese, cream type cheese, etc. can be produced by varying the amounts of water and stabilizer added. Moreover, by adding a taste and flavor suitable for other foods in place of the taste and flavor for cheese, processed soybean foods different from cheese can also be produced. Foods produced in this way are low in cholesterol and are excellent as health foods. In addition, soybeans are abundant as raw materials, and processed soybean foods similar to dairy products can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はバチルス・ケニホルミスの野生株が生産する酵
素の大豆蛋白凝固活性と豆乳添加量の関係を示すグラフ
、第2図は培養時間と菌数及び同凝固活性の関係を示す
グラフ、第3図は本発明に係るバチルス・リケニホルミ
スが生産する酵素の溶出パターン図、第4図は第3図の
ピークIに対応する酵素の再溶出パターン図、第5図は
第3図のピークI、  IIに対応する酵素の大豆蛋白
凝固活性と温度の関係を示すグラフ、第6図は同酵素の
温度に対する安定性を示すグラフ、第7図は同酵素の同
凝固活性とPHの関係を示すグラフ、第8図は同酵素の
p Hに対する安定性を示すグラフである。
Figure 1 is a graph showing the relationship between the soybean protein coagulation activity of the enzyme produced by the wild strain of Bacillus keniformis and the amount of soymilk added. Figure 2 is a graph showing the relationship between culture time, number of bacteria, and coagulation activity. The figure shows the elution pattern of the enzyme produced by Bacillus licheniformis according to the present invention, Figure 4 shows the re-elution pattern of the enzyme corresponding to peak I in Figure 3, and Figure 5 shows the peaks I and II in Figure 3. A graph showing the relationship between the soybean protein coagulation activity and temperature of the enzyme corresponding to , FIG. 6 is a graph showing the stability of the same enzyme with respect to temperature, and FIG. 7 is a graph showing the relationship between the coagulation activity of the same enzyme and PH. FIG. 8 is a graph showing the stability of the same enzyme against pH.

Claims (2)

【特許請求の範囲】[Claims] (1)胞子形成能が低くかつ大豆蛋白凝固酵素の生産能
が高いバチルス・リケニホルミス。
(1) Bacillus licheniformis has low spore-forming ability and high soybean protein coagulase production ability.
(2)大豆蛋白凝固酵素の生産能が高いバチルス・リケ
ニホルミス微工研条寄第1778号。
(2) Bacillus licheniformis Microtechnical Research Institute No. 1778, which has a high production capacity for soybean protein coagulase.
JP25161089A 1989-09-27 1989-09-27 Bacillus licheniformis Pending JPH03112483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25161089A JPH03112483A (en) 1989-09-27 1989-09-27 Bacillus licheniformis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25161089A JPH03112483A (en) 1989-09-27 1989-09-27 Bacillus licheniformis

Publications (1)

Publication Number Publication Date
JPH03112483A true JPH03112483A (en) 1991-05-14

Family

ID=17225379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25161089A Pending JPH03112483A (en) 1989-09-27 1989-09-27 Bacillus licheniformis

Country Status (1)

Country Link
JP (1) JPH03112483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077048U (en) * 1993-06-28 1995-01-31 コーア株式会社 Circuit breaking element
JPH077047U (en) * 1993-06-28 1995-01-31 コーア株式会社 Circuit breaking element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077048U (en) * 1993-06-28 1995-01-31 コーア株式会社 Circuit breaking element
JPH077047U (en) * 1993-06-28 1995-01-31 コーア株式会社 Circuit breaking element

Similar Documents

Publication Publication Date Title
CN108587983B (en) Lactobacillus plantarum and application thereof in preparation of Sichuan sausage through fermentation
CN109536406B (en) Weak post-acidification streptococcus thermophilus JMCC16, separation and purification method and application
CN109294940B (en) Lactobacillus zeae mutant strain and application thereof in high yield of lactic acid
CN104911134A (en) Leuconostoc mesenteroides and application thereof in cheese production
CN114774301B (en) Endophytic bacillus subtilis JL-B16 for antagonizing pathogenic fungi of edible fungi and application thereof
JP6800950B2 (en) Bacillus subtilis strain with high production of thrombolytic enzyme
CN110396485B (en) Brevibacillus brevis for producing auxin and application thereof
CN109337833B (en) Biological preparation of mutagenic leuconostoc mesenteroides and application thereof
JPH08505056A (en) Method for treating germinated seed material
US4210672A (en) Preparation of yogurt
RU2069229C1 (en) Method of $$$-iron preparing
JPH03112483A (en) Bacillus licheniformis
JPH08154616A (en) Quality-improved natto and novel mutant strain
EP1535999B1 (en) Milk-coagulating enzyme originating in bacterium and process for producing cheese using the same
JP3822773B2 (en) Natto strain producing thrombolytic enzyme and mucilage in large quantities and method for obtaining the same
CN112458003A (en) Diacetyl-producing lactobacillus plantarum and application thereof in pickled vegetables
EP1386539B1 (en) Cheese-like dairy products and process for producing the same
CN108330082A (en) One plant of Lactobacillus paracasei and its application
DE1642640A1 (en) Enzyme complex obtained by bacteria and process for its production
JP2001245656A (en) New bacterium and method for preventing scab of potato using the same
RU2695871C1 (en) Method of producing gellan gum
KR900004641B1 (en) Processo for making beverage from rice by fermenting lactobacillus
RU2126835C1 (en) Method of protein biomass producing
JPH08140697A (en) Selective culture medium for detecting thermotolerant acid-fast bacillus and its detection
JP2003093092A (en) Agar medium for isolating and identifying highly ethanol-productive and mainly soy sauce-fermentative yeast strain, method for isolating the yeast strain and method for producing salt-containing fermented food by using the yeast strain