JPH03111614A - Exhaust heat recovering device for engine - Google Patents

Exhaust heat recovering device for engine

Info

Publication number
JPH03111614A
JPH03111614A JP1251349A JP25134989A JPH03111614A JP H03111614 A JPH03111614 A JP H03111614A JP 1251349 A JP1251349 A JP 1251349A JP 25134989 A JP25134989 A JP 25134989A JP H03111614 A JPH03111614 A JP H03111614A
Authority
JP
Japan
Prior art keywords
heat
exhaust heat
temperature
heat recovery
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1251349A
Other languages
Japanese (ja)
Other versions
JP2582301B2 (en
Inventor
Isamu Kubomoto
久保元 勇
Kazuhiko Ogura
小倉 和彦
Tomoaki Imamura
友昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP1251349A priority Critical patent/JP2582301B2/en
Publication of JPH03111614A publication Critical patent/JPH03111614A/en
Application granted granted Critical
Publication of JP2582301B2 publication Critical patent/JP2582301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To prevent heat receiving fluid from lowering temperature even if a load on an engine is reduced, by reducing a liquid circulation amount through a controller when the temperature of exhaust heat recovering liquid is lowered, while reducing the flow rate of the heat receiving fluid. CONSTITUTION:When a load on an engine 2 is reduced under an exhaust heat recovering condition in which an exhaust heat amount generated by the engine 2 is balanced with a radiant heat amount of a radiating heat exchanger 22, the exhaust heat amount generated by the engine 2 is reduced so that the temperature of exhaust heat recovering liquid in an exhaust heat recovering liquid circulating path 20 is lowered. When the temparature of the exhaust heat recovering liquid is lowered to lower than a reference temperature region, the temperature reduction is detected by an exhaust heat recovering liquid temperature detecting means 34 to controllably operate a circulating liquid amount regulator A and heat receiving fluid amount regulator B through a controller C. Thus, a circulating amount V of the exhaust heat recovering liquid is reduced to hold the temperature of the exhaust heat recovering liquid within the reference temperature region, while the flow W of the heat receiving fluid is reduced by the reduction amount of the generated exhaust heat. Thus, the heat receiving fluid can avoid the reduction of the heat receiving temperature.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エンジンの排熱を回収する装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a device for recovering engine exhaust heat.

(従来の技術) エンジンの排熱回収装置には、従来では、次のようにな
っているものがある。
(Prior Art) Some conventional exhaust heat recovery devices for engines are as follows.

エンジンの排熱発生部に排熱回収用熱交換器の放熱路を
循環状に連通し、排熱回収用熱交換器の受熱路に排熱回
収液循環路を循環状に連通し、この排熱回収液循環路に
排熱回収液の循環ポンプと放熱用熱交換器の放熱路とを
直列状に介在させたものである(例えば、米国特許No
、 4.226.214)。
The heat radiation path of the heat exchanger for exhaust heat recovery is connected in a circular manner to the exhaust heat generation part of the engine, and the heat recovery liquid circulation path is connected in a circular manner to the heat receiving path of the heat exchanger for exhaust heat recovery. A heat recovery liquid circulation path has a circulation pump for an exhaust heat recovery liquid and a heat radiation path of a heat radiation heat exchanger interposed in series (for example, as disclosed in U.S. Patent No.
, 4.226.214).

(発明が解決しようとする課題) 上記の従来構造では次の問題がある。(Problem to be solved by the invention) The above conventional structure has the following problems.

エンジン負荷を一定にして排熱回収している状態では、
エンジンの排熱発生量と放熱用熱交換器の放熱量がバラ
ンスし、放熱用熱交換器の放熱路から受熱した受熱流体
の温度がほぼ−・定になっている。
When the engine load is kept constant and exhaust heat is recovered,
The amount of exhaust heat generated by the engine and the amount of heat radiated by the heat radiating heat exchanger are balanced, and the temperature of the heat receiving fluid that receives heat from the heat radiating path of the heat radiating heat exchanger is approximately constant.

しかし、排熱回収中にエンジンの負荷が急激に低下した
場合には、エンジンの排熱発生量が低下するので、排熱
回収用熱交換器の受熱路内を流れる排熱回収液の温度が
低下して、受熱流体の温度が急激に低下する。このため
、例えば、受熱流体を暖房に利用する場合に、その急激
な温度低下で不快感が起きる。また、受熱流体を給湯に
利用する場合には、給湯温度が低く過ぎて使用できない
However, if the engine load suddenly decreases during exhaust heat recovery, the amount of exhaust heat generated by the engine will decrease, and the temperature of the exhaust heat recovery liquid flowing in the heat receiving path of the exhaust heat recovery heat exchanger will decrease. As a result, the temperature of the heat-receiving fluid drops rapidly. For this reason, for example, when the heat-receiving fluid is used for heating, the sudden temperature drop causes discomfort. Furthermore, when the heat-receiving fluid is used for hot water supply, the hot water supply temperature is too low to be used.

本発明は、エンジンの負荷が低下しても受熱流体の温度
低下を防止することを目的とする。
An object of the present invention is to prevent the temperature of the heat-receiving fluid from decreasing even when the engine load decreases.

(課題を解決するための手段) 本発明は、上記目的を達成するために、エンジンの排熱
回収装置を次のように構成したことを特徴としている。
(Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that an engine exhaust heat recovery device is configured as follows.

例えば、第1図から第3図に示すように、エンジン2の
排熱発生部9に排熱回収用熱交換器13の放熱路13a
を循環状に連通17、排熱回収用熱交換器13の受熱路
13bに排熱回収液循環路20を循環状に連通し、この
排熱回収液循環路20に排熱回収液の循環ポンプ21と
放熱用熱交換器22の放熱路22aとを直列状に介在さ
せて構成した、エンジンの排熱回収装置において、 排熱回収液循環路20に排熱回収液の循環液量調節装置
Aを介装するとともに、放熱用熱交換器22に受熱流体
の受熱流体量調節装置Bを設け、循環液量調節装置Aと
受熱流体量調節装置Bとを制御装置Cを介して排熱回収
液温度検出手段34に連携し、 上記の排熱回収液温度検出手段34は、放熱用熱交換器
22の放熱路228入口側における排熱回収液の温度T
を検出するものであり、上記の制御装置cは、排熱回収
液温度検出手段34の温度検出信号に基づいて、循環液
量調節装置A及び受熱流体量調節装置Bを制御作動させ
るものであって、その検出温度が標準温度領域Sよりも
低い場合には、排熱回収液の循環量V及び受熱流体の流
量Wを各標準流量v+ o ” W 1 (1よりも減
少させるように構成したものである。
For example, as shown in FIGS. 1 to 3, the heat radiation path 13a of the heat exchanger 13 for exhaust heat recovery is connected to the exhaust heat generation section 9 of the engine 2.
17, an exhaust heat recovery liquid circulation path 20 is connected in a circulation manner to the heat receiving path 13b of the heat exchanger 13 for exhaust heat recovery, and a circulation pump for the exhaust heat recovery liquid is connected to the exhaust heat recovery liquid circulation path 20. 21 and a heat radiation path 22a of a heat radiation heat exchanger 22 are interposed in series. At the same time, the heat exchanger 22 for heat dissipation is provided with a heat-receiving fluid amount adjustment device B for the heat-receiving fluid, and the circulating fluid amount adjustment device A and the heat-receiving fluid amount adjustment device B are connected to the exhaust heat recovery liquid through the control device C. In cooperation with the temperature detection means 34, the waste heat recovery liquid temperature detection means 34 detects the temperature T of the waste heat recovery liquid at the inlet side of the heat radiation path 228 of the heat radiation heat exchanger 22.
The above-mentioned control device c controls and operates the circulating fluid amount adjusting device A and the heat-receiving fluid amount adjusting device B based on the temperature detection signal of the exhaust heat recovery liquid temperature detecting means 34. When the detected temperature is lower than the standard temperature range S, the circulation amount V of the exhaust heat recovery liquid and the flow rate W of the heat receiving fluid are adjusted to each standard flow rate v+ It is something.

(作用) 本発明は次のように作用する。(effect) The invention works as follows.

エンジン2の排熱発生量と放熱用熱交換器22の放熱量
がバランスしている排熱回収状態で、エンジン2の負荷
が低下した場合には、エンジン2の排熱発生量が低下す
るので、排熱回収液循環路り自由のtlFIpIL量r
1ワン方ぬ汎布h(肝玉1丁いビーその温度が標準温度
領域Sよりも低下すると、その温度低下を排熱回収液温
度検出手段34が検出し、制御装置Cを介して、排熱回
収液の循環fiVを減少させて排熱回収液の温度を標準
温度領域S内に保持するとともに、排熱発生量が減少し
た分だけ受熱流体の流1wをも減少させる。これにより
、受熱流体は、受熱温度の低下が回避され、標準温度領
域内に保たれる。
In the exhaust heat recovery state where the amount of exhaust heat generated by the engine 2 and the amount of heat radiated by the heat exchanger 22 for heat radiation are balanced, if the load of the engine 2 decreases, the amount of exhaust heat generated by the engine 2 will decrease. , tlFIpIL amount r of exhaust heat recovery liquid circulation path free
1. When the temperature of the universal cloth h (liver beads 1 bee) falls below the standard temperature range S, the exhaust heat recovery liquid temperature detection means 34 detects the temperature drop, and the exhaust heat recovery liquid temperature detecting means 34 detects the temperature drop and The circulation fiV of the heat recovery liquid is reduced to maintain the temperature of the waste heat recovery liquid within the standard temperature range S, and the flow 1w of the heat receiving fluid is also reduced by the amount of reduction in the amount of waste heat generated. The fluid is kept within a standard temperature range, avoiding a drop in heat receiving temperature.

(実施例) 以下、本発明の実施例を図面で説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図から第3図は、一実施例を示している。1 to 3 show one embodiment.

第1図は、熱伴給発電装置1のフローシートを示してい
る。
FIG. 1 shows a flow sheet of the heat-accompanied power generation device 1.

これは、ガスエンジン2で発電機3を駆動して電力供給
端子4からミツ7を供給すると同時に、ガスエンジン2
の排熱を暖房用の温風として回収するもので、次のよう
になっている。なお、符号6は燃料ガス供給路である。
This is done by driving the generator 3 with the gas engine 2 and supplying the honey 7 from the power supply terminal 4, and at the same time, the gas engine 2
The exhaust heat is recovered as hot air for heating, and the process is as follows. In addition, the code|symbol 6 is a fuel gas supply path.

また、符号7は電気制御盤で、これには、商用電源から
制御電源が入力上記の熱伴給発電装置1は、通常の排熱
回収状態では、次のように作動する。
Further, reference numeral 7 denotes an electric control panel, into which control power is input from a commercial power source.The heat-accompanied power generation device 1 described above operates as follows in a normal exhaust heat recovery state.

ガスエンジン2の排熱発生部9は、エンジン冷却水の保
有熱を吸収するウォータジャケット10と、排気ガス保
有熱を吸収する排気熱吸収用熱交換′a11とを備えて
いる。ガスエンジン2の運転に伴って、ウォータジャケ
ット10で吸熱したエンジン冷却水は、排気熱吸収用熱
交換器11で加熱されて温度上昇した後5.そのほとん
ど大部分が排熱回収側に切換えられた可変分流弁12を
通って(実線矢印)排熱回収用熱交換器13の放熱路1
3aへ供給され、ここで放熱して、エンジン冷却水循環
ポンプ14でウォータジャケット10の入口に戻される
。なお、排気ガスは、排気熱吸収用熱交換器11で冷却
された後、マフラ15から外部へ排出される。また、エ
ンジンの低温始動時には、エンジン冷却水をサーモスフ
・ノド式ノイルブ17からバイパス路18を経て循環ポ
ンプ14の人口に戻すことにより、暖機時間を短縮でき
るようになっている。
The exhaust heat generation section 9 of the gas engine 2 includes a water jacket 10 that absorbs heat retained in engine cooling water, and an exhaust heat absorption heat exchange 'a11 that absorbs heat retained in exhaust gas. As the gas engine 2 operates, the engine cooling water absorbs heat in the water jacket 10 and is heated in the exhaust heat absorption heat exchanger 11 to increase its temperature. Almost the majority of it passes through the variable flow dividing valve 12 switched to the exhaust heat recovery side (solid arrow), and then passes through the heat radiation path 1 of the heat exchanger 13 for exhaust heat recovery.
3a, where it radiates heat and is returned to the inlet of the water jacket 10 by the engine cooling water circulation pump 14. Note that the exhaust gas is cooled by the exhaust heat absorption heat exchanger 11 and then discharged from the muffler 15 to the outside. Furthermore, when the engine is started at a low temperature, warm-up time can be shortened by returning the engine cooling water from the thermosulfur valve 17 to the circulation pump 14 via the bypass path 18.

上記の排熱回収用熱交換器13の受熱路13bには排熱
回収液循環路20が循環状に連通されている。この排熱
回収液循環路20に排熱回収液の循環ポンプ21と放熱
用熱交換器22の放熱路22aとが直列状に介在される
。この放熱路22aに放熱ファン23で起こした受熱風
(受熱流体)が流通される。そして、排熱回収用熱交換
器13の受熱路13bで加熱された排熱回収液循環路2
0内の循環液は、放熱用熱交換器22の放熱路22aで
放熱して受熱風を加熱する。この受熱風が暖房に利用さ
れる。
An exhaust heat recovery liquid circulation path 20 is cyclically connected to the heat receiving path 13b of the heat exchanger 13 for exhaust heat recovery. A circulation pump 21 for the exhaust heat recovery liquid and a heat radiation path 22a of the heat radiation heat exchanger 22 are interposed in series in the exhaust heat recovery liquid circulation path 20. Heat-receiving air (heat-receiving fluid) generated by the heat-radiating fan 23 flows through the heat-radiating path 22a. Then, the exhaust heat recovery liquid circulation path 2 heated by the heat receiving path 13b of the heat exchanger 13 for exhaust heat recovery
The circulating fluid in the air radiates heat through the heat radiation path 22a of the heat radiation heat exchanger 22 to heat the heated air. This heated air is used for heating.

一方、上記の排熱回収状態において、放熱用熱交換器2
2の放熱路22aでの放熱量の減少等により、排熱回収
量が少なくなって、エンジン冷却水の温度が所定の温度
以上に上昇すると、可変分流弁12が次のように切換え
られる。即ち、排気熱吸収用熱交換器11からのエンジ
ン冷却水は、その少な(とも一部分が、放熱側に切換え
られた可変分流弁12を通って(破線矢印)ラジェータ
26・27へも供給され、ここでラジェータファン28
・29の冷却風で冷却された後、循環ポンプ14からウ
ォータジャケット10へ戻されるのである。
On the other hand, in the above exhaust heat recovery state, the heat radiation heat exchanger 2
When the amount of exhaust heat recovered decreases due to a decrease in the amount of heat radiated from the heat radiation path 22a of No. 2, and the temperature of the engine cooling water rises to a predetermined temperature or higher, the variable flow dividing valve 12 is switched as follows. That is, a small portion of the engine cooling water from the exhaust heat absorption heat exchanger 11 is also supplied to the radiators 26 and 27 through the variable flow dividing valve 12 (dashed line arrow) switched to the heat radiation side. Here radiator fan 28
- After being cooled by the cooling air 29, it is returned to the water jacket 10 from the circulation pump 14.

上記の構成において、排熱回収液循環路20に、電磁弁
31と流量調節弁32とからなる循環液量調節装置Aが
介装される。また、放熱用熱交換器22に受熱風の受熱
流体量調節装置Bが設けられる。この受熱流体量調節装
置Bは、放熱ファン23のモータ23aの回転数制御用
のインバータ33で構成されている。さらに、循環液量
調節装置Aと受熱流体量調節装置Bとが制御装置Cを介
して排熱回収液温度検出手段34に連携される。この排
熱回収液温度検出手段34は、放熱用熱交換器22の放
熱路22aの入口側における排熱回収液の温度Tを検出
するものである。また、上記の制御装置Cは、排熱回収
液温度検出手段34の温度検出信号に基づき、循環液量
調節装置Aの電磁弁31と、受熱流体量調節装置Bであ
るインノサータ33とを制御作動させるようになってい
る。
In the above configuration, a circulating fluid amount regulating device A consisting of a solenoid valve 31 and a flow regulating valve 32 is interposed in the exhaust heat recovery fluid circulating path 20 . Further, the heat exchanger 22 for heat radiation is provided with a heat receiving fluid amount adjusting device B for the heated air. The heat-receiving fluid amount adjusting device B includes an inverter 33 for controlling the rotation speed of the motor 23a of the heat dissipation fan 23. Further, the circulating fluid amount adjusting device A and the heat receiving fluid amount adjusting device B are linked to the exhaust heat recovery liquid temperature detecting means 34 via the control device C. This exhaust heat recovery liquid temperature detection means 34 detects the temperature T of the exhaust heat recovery liquid on the inlet side of the heat radiation path 22a of the heat radiation heat exchanger 22. Further, the above-mentioned control device C controls and operates the solenoid valve 31 of the circulating fluid amount adjusting device A and the innocerta 33 which is the heat receiving fluid amount adjusting device B based on the temperature detection signal of the exhaust heat recovery liquid temperature detecting means 34. It is designed to let you do so.

まず、排熱回収液の温度制御について説明すると、第2
図に示すように、その温度Tは、次のようにして標準温
度領域S内に保たれる。
First, to explain the temperature control of the waste heat recovery liquid, the second
As shown in the figure, the temperature T is maintained within the standard temperature range S in the following manner.

エンジン2が全負荷で定常運転している状態では、第2
図(b)に示すように、電磁弁31が開弁されて排熱回
収液の循環量■が標準流量V+o(ここでは120 Q
 /win程度)に保持され、第2図(a)に示すよう
に、排熱回収液の温度TがT、(ここでは85℃程度)
に保持されるている。
When engine 2 is operating steadily at full load,
As shown in FIG.
/win), and as shown in Figure 2(a), the temperature T of the waste heat recovery liquid is T, (here approximately 85°C).
is maintained.

この状態で、エンジン2の負荷が低下すると(時刻tJ
、第2図(a)に示すように、排熱回収液の温度Tが低
下していく。その温度Th(T、(ここでは80℃程度
)にまで低下すると、電磁弁31が閉弁され、第2図(
b)に示すように、排熱回収液の循環mvがV、、(、
::コt’は4012 /ll1in程度)に低下する
。これにより、第2図(a)に示すように、排熱回収液
の温度Tが上昇していく。これを繰り返すことにより、
その温度Tが標準温度領域S内に保たれる。
In this state, when the load on the engine 2 decreases (time tJ
, as shown in FIG. 2(a), the temperature T of the exhaust heat recovery liquid decreases. When the temperature drops to Th(T, here about 80°C), the solenoid valve 31 is closed, and as shown in FIG.
As shown in b), the circulation mv of the exhaust heat recovery liquid is V, , (,
::Cot' decreases to about 4012/ll1in). As a result, the temperature T of the exhaust heat recovery liquid increases as shown in FIG. 2(a). By repeating this,
The temperature T is maintained within the standard temperature range S.

なお、上記の電磁弁31の開閉制御は、排熱回収液の温
度差で行うことに代えて、タイマーで制御することも可
能である。
Note that the opening/closing control of the electromagnetic valve 31 described above may be controlled by a timer instead of being controlled by the temperature difference of the exhaust heat recovery liquid.

上記の排熱回収液の温度制御と同時に、インバータ33
を介して放熱ファン23の回転数を低くすることにより
、受熱風の流量Wが標準流量よりも減少される。これに
より、受熱風の温度が一定に保たれる。
At the same time as controlling the temperature of the waste heat recovery liquid described above, the inverter 33
By lowering the rotational speed of the heat dissipation fan 23 via the fan 23, the flow rate W of the heated air is reduced compared to the standard flow rate. This keeps the temperature of the heated air constant.

これを第3図でさらに具体的に説明する。This will be explained in more detail with reference to FIG.

第3図(a)に示すように、エンジン排熱発生量Q、が
標準のQ 1Gの状態では、排熱回収液の循環量Vが標
準流量■、。であり、排熱回収用熱交換器13の出入口
における排熱回収液の温度差ΔT。
As shown in FIG. 3(a), when the engine exhaust heat generation amount Q is the standard Q1G, the circulation amount V of the exhaust heat recovery liquid is the standard flow rate ■. and the temperature difference ΔT of the exhaust heat recovery liquid at the entrance and exit of the heat exchanger 13 for exhaust heat recovery.

がΔT1oとなっている。この状態で、エンジン排熱発
生量がQ 10からQ、に低下すると、排熱回収液の温
度差ΔT、がΔT、。からΔT4.に低下してしまう。
is ΔT1o. In this state, when the amount of engine exhaust heat generation decreases from Q10 to Q, the temperature difference ΔT of the exhaust heat recovery liquid becomes ΔT. From ΔT4. It will drop to .

そこで、排熱回収液の循環量Vをvloからvllに低
下させることにより、排熱回収液の温度差ΔT、をΔT
、。に保つのである。
Therefore, by reducing the circulation amount V of the exhaust heat recovery liquid from vlo to vll, the temperature difference ΔT of the exhaust heat recovery liquid can be reduced by ΔT
,. It is kept to

また、第3図(b)に示すように、放熱用熱交換器22
での放熱量Q t(” Q 、)が標準のQ、。の状態
では、受熱流体の流量Wが標準流量W10で、受熱流体
の温度差ΔT、がΔT、。となっている。この状態で、
前記第3図(a)に示すように、エンジン排熱発生量が
Q 10からQ、に低下すると、放熱用熱交換器22の
放熱ff1Q、がQ、。からQ、1に低下するので、こ
のままでは受熱流体の温度差ΔT3がΔT、。からΔT
31に低下してしまう。そこで、受熱流体の流filW
をW、。からWllに低下させることにより、受熱流体
の温度差ΔT、をΔT、。に保つのである。
In addition, as shown in FIG. 3(b), a heat exchanger 22 for heat radiation
In a state where the heat radiation amount Q t ("Q,) is the standard Q,., the flow rate W of the heat receiving fluid is the standard flow rate W10, and the temperature difference ΔT, of the heat receiving fluid is ΔT,. In this state in,
As shown in FIG. 3(a), when the amount of engine exhaust heat generation decreases from Q10 to Q, the heat radiation ff1Q of the heat radiation heat exchanger 22 becomes Q. Since Q, decreases from 1 to 1, the temperature difference ΔT3 of the heat-receiving fluid becomes ΔT. from ΔT
It drops to 31. Therefore, the heat receiving fluid flow filW
W. By decreasing the temperature difference ΔT, of the heat-receiving fluid from Wll to ΔT,. It is kept to

第4図から第6図は、それぞれ変形例を示し、排熱回収
液循環路20の部分図である。
4 to 6 each show a modification and are partial views of the exhaust heat recovery liquid circulation path 20. FIG.

第4図は第1変形例を示している。FIG. 4 shows a first modification.

これは、排熱回収液の循環量調節装置Aを電動弁37で
構成したものである。これにより、排熱回収液の循環量
の調節幅が広くとれるので、排熱回収液の温度変化が少
なくてすむ。
In this example, the exhaust heat recovery liquid circulation amount adjusting device A is configured with an electric valve 37. As a result, the circulating amount of the exhaust heat recovery liquid can be adjusted over a wide range, so that the temperature change of the exhaust heat recovery liquid can be reduced.

第5図は第2変形例を示している。FIG. 5 shows a second modification.

これは、排熱回収液の循環ポンプ21のモータにインバ
ータ39を付設し、このインバータ39で排熱回収液の
循環量調節装置Aを構成したちのである。これにより、
排熱回収液の循環量の調節幅が広(とれるので、排熱回
収液の温度変化が少なくてすむ。
This is because an inverter 39 is attached to the motor of the exhaust heat recovery liquid circulation pump 21, and this inverter 39 constitutes the exhaust heat recovery liquid circulation amount adjusting device A. This results in
The circulation amount of the waste heat recovery liquid can be adjusted over a wide range, so there are fewer temperature changes in the waste heat recovery liquid.

第6図は第3変形例を示している。FIG. 6 shows a third modification.

これは、第4図の変形例をさらに次のように変形したも
のである。放熱用熱交換器22が液−液用熱交換器に構
成され、その受熱路22bに受熱i&(受熱流体)の循
環路41が連通される。この受熱液循環路41に循環ポ
ンプ42と電動弁43とが直列状に介装される。この電
動弁43で受熱流体量調節装置Bが構成される。そして
、制御装置Cは、排熱回収液温度検出手段34の温度検
出信号に基づき、排熱回収液循環路20の電動弁37と
、受熱液循環路41の電動弁43とを制御作動させるよ
うになっている。
This is a further modification of the modification shown in FIG. 4 as follows. The heat exchanger 22 for heat radiation is configured as a liquid-liquid heat exchanger, and a circulation path 41 for heat receiving i& (heat receiving fluid) is communicated with the heat receiving path 22b. A circulation pump 42 and an electric valve 43 are installed in series in this heat-receiving liquid circulation path 41 . This electric valve 43 constitutes a heat-receiving fluid amount adjusting device B. Then, the control device C controls and operates the electric valve 37 of the exhaust heat recovery liquid circulation path 20 and the electric valve 43 of the heat receiving liquid circulation path 41 based on the temperature detection signal of the exhaust heat recovery liquid temperature detection means 34. It has become.

なお、上記実施例では、熱伴給発電装置1にラジェータ
26・27等の放熱回路を設けたが、エンジン2の排熱
発生量と排熱回収用熱交換器13の放熱量とを制御装置
Cによる放熱用熱交換器22の放熱制御でバランスさせ
てエンジン冷却水の温度上昇を防止することにより、ラ
ジェータ26・27等の放熱回路を省略することも可能
である。
In the above embodiment, the heat-accompanied power generation device 1 is provided with heat radiation circuits such as the radiators 26 and 27, but the amount of waste heat generated by the engine 2 and the amount of heat released by the heat exchanger 13 for waste heat recovery are controlled by the control device. It is also possible to omit heat radiation circuits such as the radiators 26 and 27 by balancing the heat radiation control of the heat radiation heat exchanger 22 by C and preventing the temperature of the engine cooling water from rising.

(発明の効果) 本発明は、上記のように構成され作用することから次の
効果を奏する。
(Effects of the Invention) The present invention has the following effects because it is configured and operates as described above.

エンジンの負荷が低下した場合には、エンジンの排熱発
生量が低下するので、排熱回収液循環路内の排熱回収液
の温度が低下してい(が、制御装置を介して循環液量調
節装置で排熱回収液の温度を標準温度領域内に保持する
とともに受熱流体m調節装置で受熱流体を標準温度領域
内に保持する。
When the engine load decreases, the amount of exhaust heat generated by the engine decreases, so the temperature of the exhaust heat recovery fluid in the exhaust heat recovery fluid circulation path decreases (but the amount of circulating fluid is controlled via the control device). The temperature of the waste heat recovery liquid is maintained within the standard temperature range by the regulating device, and the heat receiving fluid is maintained within the standard temperature range by the heat receiving fluid m regulating device.

このため、例えば受熱流体を暖房に利用する場合に、エ
ンジンの負荷低下による受熱流体の温度低下で不快感を
覚えることを回避できる。また、受熱流体を給湯に利用
する場合に、エンジンの負荷低下による給湯温度の異常
低下を防止できる。
Therefore, when the heat-receiving fluid is used for heating, for example, it is possible to avoid feeling uncomfortable due to a decrease in the temperature of the heat-receiving fluid due to a decrease in engine load. Furthermore, when the heat-receiving fluid is used for hot water supply, it is possible to prevent an abnormal drop in the hot water supply temperature due to a decrease in engine load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図は本発明の実施例を示している。 第1図から第3図は一実施例を示し、第1図はエンジン
の排熱回収装置である熱伴給発電装置のフローシート、
第2図は排熱回収液の循環量を調節する装置の作動説明
図、第3図は制御装置の作動説明図である。 第4図から第6図は、それぞれ、変形例を示し、フロー
シートの部分図である。 2・・・エンジン、9・・・排熱発生部、13・・・排
熱回収用熱交換器、13a・・・放熱路、13b・・・
受熱路、20・・・排熱回収液循環路、21・・・循環
ポンプ、22・・・放熱用熱交換器、22a・・・放熱
路、34・・・排熱回収液温度検出手段、 A・・・排熱回収液の循環液量調節装置、B・・・受熱
流体の受熱流体量調節装置、C・・・制御装置、S・・
・標準温度領域、T・・・排熱回収液の温度、■・・・
排熱回収液の循環量、vlo・・・標準流量、W・・・
受熱流体の流量、Wl。・・・標準流量。 W++ W+0 金色績 −ワタ九−!1
1 to 6 show embodiments of the invention. FIGS. 1 to 3 show an example, and FIG. 1 is a flow sheet of a heat-accompanied power generation device that is an exhaust heat recovery device for an engine;
FIG. 2 is an explanatory diagram of the operation of the device for adjusting the circulation amount of the exhaust heat recovery liquid, and FIG. 3 is an explanatory diagram of the operation of the control device. FIGS. 4 to 6 each show a modification and are partial views of a flow sheet. 2... Engine, 9... Exhaust heat generating section, 13... Heat exchanger for exhaust heat recovery, 13a... Heat radiation path, 13b...
Heat receiving path, 20... Exhaust heat recovery liquid circulation path, 21... Circulation pump, 22... Heat radiation heat exchanger, 22a... Heat radiation path, 34... Exhaust heat recovery liquid temperature detection means, A... Circulating fluid amount adjustment device for exhaust heat recovery liquid, B... Heat receiving fluid amount adjustment device for heat receiving fluid, C... Control device, S...
・Standard temperature range, T...Temperature of waste heat recovery liquid, ■...
Circulation amount of exhaust heat recovery liquid, vlo... standard flow rate, W...
Heat-receiving fluid flow rate, Wl. ...Standard flow rate. W++ W+0 Golden result - Wata 9 -! 1

Claims (1)

【特許請求の範囲】 1、エンジン(2)の排熱発生部(9)に排熱回収用熱
交換器(13)の放熱路(13a)を循環状に連通し、 排熱回収用熱交換器(13)の受熱路(13b)に排熱
回収液循環路(20)を循環状に連通し、この排熱回収
液循環路(20)に排熱回収液の循環ポンプ(21)と
放熱用熱交換器(22)の放熱路(22a)とを直列状
に介在させて構成した、エンジンの排熱回収装置におい
て、 排熱回収液循環路(20)に排熱回収液の循環液量調節
装置(A)を介装するとともに、放熱用熱交換器(22
)に受熱流体の受熱流体量調節装置(B)を設け、循環
液量調節装置(A)と受熱流体量調節装置(B)とを制
御装置(C)を介して排熱回収液温度検出手段(34)
に連携し、 上記の排熱回収液温度検出手段(34)は、放熱用熱交
換器(22)の放熱路(22a)入口側における排熱回
収液の温度(T)を検出するものであり、 上記の制御装置(C)は、排熱回収液温度検出手段(3
4)の温度検出信号に基づいて、循環液量調節装置(A
)及び受熱流体量調節装置(B)を制御作動させるもの
であって、その検出温度が標準温度領域(S)よりも低
い場合には、排熱回収液の循環量(V)及び受熱流体の
流量(W)を各標準流量(V_1_0)(W_1_0)
よりも減少させるように構成した、ことを特徴とするエ
ンジンの排熱回収装置。
[Claims] 1. A heat radiation path (13a) of a heat exchanger for exhaust heat recovery (13) is connected in a circular manner to the exhaust heat generation part (9) of the engine (2), and heat exchange for exhaust heat recovery is performed. An exhaust heat recovery liquid circulation path (20) is connected in a circular manner to the heat receiving path (13b) of the vessel (13), and a circulation pump (21) for the exhaust heat recovery liquid and a heat radiation are connected to the exhaust heat recovery liquid circulation path (20). In an engine exhaust heat recovery device configured by interposing a heat dissipation path (22a) of a heat exchanger (22) in series, A heat exchanger for heat dissipation (22
) is provided with a heat receiving fluid amount adjusting device (B) for the heat receiving fluid, and the circulating fluid amount adjusting device (A) and the heat receiving fluid amount adjusting device (B) are connected to the exhaust heat recovery liquid temperature detecting means via the control device (C). (34)
The waste heat recovery liquid temperature detection means (34) detects the temperature (T) of the waste heat recovery liquid on the inlet side of the heat radiation path (22a) of the heat radiation heat exchanger (22). , The above control device (C) includes an exhaust heat recovery liquid temperature detection means (3
Based on the temperature detection signal of 4), the circulating fluid amount adjustment device (A
) and the heat-receiving fluid amount adjusting device (B), and when the detected temperature is lower than the standard temperature range (S), the circulation amount (V) of the exhaust heat recovery liquid and the heat-receiving fluid volume control device (B) are controlled. Flow rate (W) for each standard flow rate (V_1_0) (W_1_0)
An exhaust heat recovery device for an engine, characterized in that the exhaust heat recovery device is configured to reduce the heat by more than
JP1251349A 1989-09-26 1989-09-26 Engine exhaust heat recovery device Expired - Lifetime JP2582301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251349A JP2582301B2 (en) 1989-09-26 1989-09-26 Engine exhaust heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251349A JP2582301B2 (en) 1989-09-26 1989-09-26 Engine exhaust heat recovery device

Publications (2)

Publication Number Publication Date
JPH03111614A true JPH03111614A (en) 1991-05-13
JP2582301B2 JP2582301B2 (en) 1997-02-19

Family

ID=17221507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251349A Expired - Lifetime JP2582301B2 (en) 1989-09-26 1989-09-26 Engine exhaust heat recovery device

Country Status (1)

Country Link
JP (1) JP2582301B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290569A (en) * 2007-05-24 2008-12-04 West Japan Railway Co Light emission type fascia for railway
CN114673582A (en) * 2022-04-29 2022-06-28 中国科学技术大学 Waste heat recovery system for double-split flow type vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155116U (en) * 1984-09-14 1986-04-14
JPS61118913U (en) * 1985-01-14 1986-07-26
JPS62206260A (en) * 1986-03-06 1987-09-10 Meidensha Electric Mfg Co Ltd Dual-purpose electricity and steam generation device
JPS643020U (en) * 1987-06-23 1989-01-10
JPS6460760A (en) * 1987-08-28 1989-03-07 Kubota Ltd Waste heat recovering device for water cooled engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155116U (en) * 1984-09-14 1986-04-14
JPS61118913U (en) * 1985-01-14 1986-07-26
JPS62206260A (en) * 1986-03-06 1987-09-10 Meidensha Electric Mfg Co Ltd Dual-purpose electricity and steam generation device
JPS643020U (en) * 1987-06-23 1989-01-10
JPS6460760A (en) * 1987-08-28 1989-03-07 Kubota Ltd Waste heat recovering device for water cooled engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008290569A (en) * 2007-05-24 2008-12-04 West Japan Railway Co Light emission type fascia for railway
CN114673582A (en) * 2022-04-29 2022-06-28 中国科学技术大学 Waste heat recovery system for double-split flow type vehicle

Also Published As

Publication number Publication date
JP2582301B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
KR940010453A (en) Electric motor cooling system and electric motor used for this
JPH03111614A (en) Exhaust heat recovering device for engine
JP2000108645A (en) Heating system for water-cooled engine vehicle
JPS6229245B2 (en)
JPH05157006A (en) Engine exhaust heat recovery device
JPH06257770A (en) Hot water supplier and heater
JPS63120814A (en) Engine cooling system
JPH10114215A (en) Air conditioning controller for automobile
JPH01155020A (en) Exhaust heat recovering device for engine
JPH01155021A (en) Exhaust heat recovering device for water cooled engine
JPH03111615A (en) Exhaust heat recovering device for engine
JP2691372B2 (en) Engine exhaust heat recovery device for engine work equipment
JPS601020A (en) Bus heater
JPH045925Y2 (en)
JP2683945B2 (en) Power and heat output devices for cogeneration equipment
JP2691373B2 (en) Engine exhaust heat recovery device for engine work equipment
JPS5854570Y2 (en) Hot water heat dissipation device
JP2822081B2 (en) Power and heat output devices for cogeneration equipment
JPS6232087Y2 (en)
JPH0738654Y2 (en) Waste heat recovery device for water-cooled engine
JPS6080035A (en) Hot water heating device
JPH06147633A (en) Additional heating device
JPH0426820Y2 (en)
JPH08233396A (en) Engine-driven type heat pump air compressor with hot water feed function
JPS58106336A (en) Engine-driven hot water supplying heater