JPH03111525A - Refractory metal matrix composite and its manufacture - Google Patents

Refractory metal matrix composite and its manufacture

Info

Publication number
JPH03111525A
JPH03111525A JP24815189A JP24815189A JPH03111525A JP H03111525 A JPH03111525 A JP H03111525A JP 24815189 A JP24815189 A JP 24815189A JP 24815189 A JP24815189 A JP 24815189A JP H03111525 A JPH03111525 A JP H03111525A
Authority
JP
Japan
Prior art keywords
short fibers
metal matrix
matrix composite
melting point
extruding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24815189A
Other languages
Japanese (ja)
Inventor
Noboru Kitamori
昇 北森
Shigeru Ueda
茂 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24815189A priority Critical patent/JPH03111525A/en
Publication of JPH03111525A publication Critical patent/JPH03111525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To easily and efficiently manufacture the refractory metal matrix composite having high strength in an axial direction by adding short fibers and a bond to refractory metallic powder, kneading the above, extruding the obtd. extruding stock from a nozzle of an extruding machine and executing sintering. CONSTITUTION:Extruding stock 3 prepd. by adding reinforcing short fibers 2, a bond, a solvent or the like to refractory metallic powder and kneading the above is housed in the body 1a of an extruding machine 1. As the above refractory metals, W, Mo, Ta, Nb or their alloys are used, and the above short fibers are also formed from the above metals, alloys or the like. Furthermore, as the above bond, methyl cellulose or the like are used in the addition amt. of about 1 to 6% together with a solvent such as water. The above extruding stock 3 is pressurized to about 20 to 200kg/cm<2> by a pressurizer 5 and is extruded from an injection hole 6 of a nozzle 4 to mold a molded product 7. After that, the molded body 7 is sintered after the removal of the bond or the like therefrom by volatilization. In this way, the refractory metal matrix composite constituted of a sintered body in which short fibers are fibrously arranged in an axial direction and are dispersed into a metallic matrix can be obtd.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は電子機器材料、 耐熱構造部品等に使 用される高融点金属基複合材料およびその製造方法に係
り、特に製品の軸方向の強度が大きく、また成形操作が
容易であり、効率的に成形することが可能な高融点金属
基複合材料およびその製造方法に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Field of Application) The present invention relates to a high melting point metal matrix composite material used for electronic equipment materials, heat-resistant structural parts, etc., and a method for producing the same. The present invention relates to a high melting point metal matrix composite material that has high strength in the axial direction, is easy to mold, and can be molded efficiently, and a method for manufacturing the same.

(従来の技術) タングステン(W)、モリブデン(Mo)、タンタル(
Ta)、ニオブ(Nb)などをマトリックスとし、高強
度の短繊維をマトリックス中に分散させた高融点金属基
複合材料は、一般に金属粉末またはその合金粉末と短繊
維とを所定形状に積層または成形した後に焼結する粉末
冶金法によって製造される。この場合、金属粉末等の原
材料の成形は、高融点金属粉末を押型に充填して一軸方
向に加圧する機械プレス(油圧プレス)成形を行なうか
、あるいはゴム製の型を用い、型内に充填した原料に静
水圧を一様に加えるラバープレス法によって実施してい
る。
(Conventional technology) Tungsten (W), molybdenum (Mo), tantalum (
High-melting point metal matrix composite materials, which have a matrix of Ta), niobium (Nb), etc. and high-strength short fibers dispersed in the matrix, are generally made by laminating or molding metal powder or its alloy powder and short fibers into a predetermined shape. It is manufactured using a powder metallurgy method in which it is then sintered. In this case, raw materials such as metal powder are molded by mechanical press (hydraulic press) in which high-melting point metal powder is filled into a mold and pressurized in a uniaxial direction, or by using a rubber mold and filling the powder into the mold. This is done using the rubber press method, which applies hydrostatic pressure uniformly to the raw material.

(発明が解決しようとする課題) しかしながら従来の機械プレス法およびラバ−プレス法
によって形成された成形体では、分散された補強用の短
繊維の配列方向が相互にランダムになっているため、成
形品およびそれを焼結して得られる製品の軸方向の強度
が低いという問題点があった。
(Problems to be Solved by the Invention) However, in molded bodies formed by conventional mechanical press methods and rubber press methods, the arrangement direction of the dispersed reinforcing short fibers is mutually random, so the molding There was a problem in that the axial strength of the product and the product obtained by sintering it were low.

また上記従来の製造方法のうち、機械プレス法は比較的
平板状の成形体を形成する方法としては優れているが、
他の複雑な形状を有するものについては、原料の積層法
や型を工夫する必要があり、成形体の形状寸法に制約が
あった。特に丸棒状または円筒状の成形体および長尺な
成形体を得ることが困難であるという欠点があった。
Furthermore, among the conventional manufacturing methods mentioned above, the mechanical press method is relatively excellent as a method for forming a flat plate-shaped molded product, but
For products with other complicated shapes, it is necessary to devise a method of laminating raw materials and a mold, and there are restrictions on the shape and dimensions of the molded product. In particular, there was a drawback that it was difficult to obtain round rod-shaped or cylindrical shaped bodies and long shaped bodies.

一方、ラバープレス法では、丸棒状の成形体は容易に得
ることが可能であるが、原料粉末の充填操作およびプレ
ス操作が回分式であり、かなりの手数がかかり、作業効
率が低い上に、製品の歩留りおよび寸法精度が低下し易
い欠点があり、いずれにしても多大な労力と加工時間を
費す欠点があり、量産には向かない傾向があった。
On the other hand, with the rubber press method, it is possible to easily obtain a round bar-shaped compact, but the filling operation of the raw material powder and the pressing operation are batch-type, which requires a considerable amount of labor and has low work efficiency. It has the disadvantage that the yield and dimensional accuracy of the product tend to decrease, and in any case, it has the disadvantage that it requires a lot of labor and processing time, so it tends not to be suitable for mass production.

本発明は上記の問題点を解決するためになされたもので
あり、製品の軸方向の強度が特に高く、成形操作が容易
であり、効率的に成形することが可能な高融点金属基複
合材料およびその製造方法を提供することを目的とする
。、 〔発明の構成〕 (課題を解決するための手段と作用) 本願発明者等は、従来の機械プレス法またはラバープレ
ス法によって製造される製品と較べて軸方向の強度が大
きい製品が得られ、製造効率が高くなる製造方法を種々
検討した結果、高融点金属粉末に対して短繊維および結
合剤を添加混練して押出素地を調製し、上記押出素地を
押出成形機のノズルより押出して所定形状の成形品を形
成し、しかる後に焼結したときに、高融点金属またはそ
の合金基地中に短繊維が軸方向に繊維状に配列し、従来
法と比較して、軸方向の強度が高く、また製造効率を飛
躍的に向上させることができるという知見を得て、本願
発明を完成したものである。
The present invention has been made to solve the above problems, and provides a high melting point metal matrix composite material that has particularly high strength in the axial direction of the product, is easy to mold, and can be molded efficiently. The purpose is to provide a method for producing the same. , [Structure of the Invention] (Means and Effects for Solving the Problems) The inventors of the present application have discovered that a product with greater axial strength can be obtained compared to products manufactured by conventional mechanical press methods or rubber press methods. As a result of examining various manufacturing methods that would increase manufacturing efficiency, they prepared an extruded base by adding and kneading short fibers and a binder to high-melting point metal powder, and extruded the extruded base through the nozzle of an extrusion molding machine to form a predetermined shape. When a shaped article is formed and then sintered, short fibers are arranged in the axial direction in the high melting point metal or its alloy matrix, resulting in higher axial strength than conventional methods. Furthermore, the present invention was completed based on the knowledge that manufacturing efficiency could be dramatically improved.

すなわち本願発明に係る高融点金属基複合材料は、高融
点金属またはその合金と短繊維との混合物の焼結体から
成り、上記焼結体の金属基地中に分散する短繊維を焼結
体の軸方向に繊維状に配列して構成される。
That is, the high melting point metal matrix composite material according to the present invention consists of a sintered body of a mixture of a high melting point metal or its alloy and short fibers, and the short fibers dispersed in the metal matrix of the sintered body are It is arranged in a fibrous shape in the axial direction.

本発明の対象となる高融点金属基複合材料に使用する粉
末としては、タングステン(W)、モリブデン(Mo)
、タンタル(Ta)、ニオブ(Nb)の金属粉末、また
はそれらの金属を含む合金粉末が使用される。
Powders used in the high melting point metal matrix composite material that is the object of the present invention include tungsten (W) and molybdenum (Mo).
, tantalum (Ta), niobium (Nb), or an alloy powder containing these metals.

また短繊維としては、マトリックス金属と同様に高温強
度に優れたタングステン(W)、モリブデン(MO)、
タンタル(Ta)、=オブ(Nb)から選択された1種
または2種以上の金属またはその合金材で形成された繊
維などが使用される。
In addition, short fibers include tungsten (W), molybdenum (MO), which have excellent high-temperature strength like matrix metals,
Fibers made of one or more metals selected from tantalum (Ta) and of (Nb) or alloys thereof are used.

また金属粉末に添加する結合剤としては、メチルセルロ
ースやPVP (ポリビニルピロリドン)などの有機結
合剤が単独または混合して使用することができ、その添
加量は粉末重量の1〜6%とすることが望ましい。この
結合剤は一般に水などの溶媒に希釈されて金属粉末に添
加される。結合剤の添加量は金属粉末相互の結合強度や
成形品の仕上り形状に太き(影響を及ぼし、添加量が1
%未満では充分な結合強度が得られず、成形品の保形性
が悪く、押出成形体にクラックが生じたり、あるいは乾
燥中にクラックが生じるおそれが高くなる。
As a binder to be added to the metal powder, organic binders such as methyl cellulose and PVP (polyvinylpyrrolidone) can be used alone or in combination, and the amount added can be 1 to 6% of the powder weight. desirable. This binder is generally diluted in a solvent such as water and added to the metal powder. The amount of binder added has a large effect on the bonding strength between metal powders and the finished shape of the molded product, and the amount added is 1
If it is less than %, sufficient bonding strength will not be obtained, the shape retention of the molded product will be poor, and there is a high possibility that cracks will occur in the extruded product or cracks will occur during drying.

一方添加量が6%を超えると、押出成形後に変形が起こ
り易く、所定の形状精度が得にくくなる上に、焼結体の
比重が上がりにくく、所定の強度が得られない場合が多
い。
On the other hand, if the amount added exceeds 6%, deformation tends to occur after extrusion molding, making it difficult to obtain the desired shape accuracy, and also making it difficult to increase the specific gravity of the sintered body, making it difficult to obtain the desired strength in many cases.

また溶剤は有機結合剤の分散を良好にするために添加さ
れるものであり、例えば水や低級アルコールなどが使用
される。溶剤の添加量も上記有機結合剤と同様な理由か
ら、金属粉末重量の3%以上7%未満とすることが望ま
しい。
Further, the solvent is added to improve the dispersion of the organic binder, and for example, water, lower alcohol, etc. are used. For the same reason as the organic binder, the amount of the solvent added is preferably 3% or more and less than 7% of the weight of the metal powder.

得られた金属粉末混線物(押出素地)は、公知の押出成
形機を使用して押出成形される。この押出成形操作によ
り押出素地中に分散されていた短繊維は押し出し方向に
並び、相互に絡み合って繊維状に配列する。
The obtained metal powder mixture (extrusion base) is extruded using a known extrusion molding machine. By this extrusion molding operation, the short fibers dispersed in the extruded base are aligned in the extrusion direction, intertwined with each other, and arranged in the form of fibers.

この場合、成形時の押し出し圧力は20〜200 kg
 / cゴであることが望ましく、20kg/cイ未満
では充分なグリーン密度が得られない。一方、200k
g/cJlを超えると、押出成形機内での摩擦抵抗が大
きくなり、局部的な温度上昇が発生し、その結果、有機
結合剤が部分的に変質し、良好な成形体が得られない場
合がある。
In this case, the extrusion pressure during molding is 20 to 200 kg
/c is desirable; if it is less than 20 kg/c, sufficient green density cannot be obtained. On the other hand, 200k
If it exceeds g/cJl, the frictional resistance within the extrusion molding machine will increase, causing a local temperature rise, and as a result, the organic binder may partially change in quality and a good molded product may not be obtained. be.

本発明方法によって得られる成形体の形状は丸棒、角棒
、板状、多角形断面を有する長尺材など多岐にわたる。
The shape of the molded product obtained by the method of the present invention is wide-ranging, such as a round bar, a square bar, a plate shape, and a long material having a polygonal cross section.

所定形状に成形された成形体は、常温ないし1−00℃
程度の温度に一定時間保持され、含有する溶剤を徐々に
蒸発させて乾燥した後に、さらに還元性雰囲気で除熱さ
れて有機結合剤および溶剤を揮散除去された後に、予備
焼結に供される。予備焼結を行なった成形体は、所定の
高温度で本焼結に供され、高融点金属基複合材料とされ
る。
The molded product molded into a predetermined shape is kept at room temperature to 1-00°C.
After being held at a certain temperature for a certain period of time to gradually evaporate the contained solvent and dry it, it is further heat-removed in a reducing atmosphere to volatilize and remove the organic binder and solvent, and then it is subjected to preliminary sintering. . The pre-sintered compact is subjected to main sintering at a predetermined high temperature to produce a high melting point metal matrix composite material.

本発明方法によれば、押出成形機を使用して長尺の成形
品を連続して効率よく成形することが可能であり、また
補強用短繊維および結合剤の添加により保形性が優れ、
従来の機械プレス法やラバプレス法によって得られる成
形品およびその焼結体と比較して軸方向の強度が優れた
製品を効率的に製造することができる。
According to the method of the present invention, it is possible to continuously and efficiently mold long molded products using an extrusion molding machine, and the addition of reinforcing short fibers and a binder provides excellent shape retention.
It is possible to efficiently produce products with superior axial strength compared to molded products and sintered bodies thereof obtained by conventional mechanical pressing methods or rubber pressing methods.

特に本発明方法によれば、押出素地中にランダムに分散
された補強用短繊維の向きが、押出成形時に軸方向に繊
維状に整列するため、得られた成形品およびそれを焼成
して得た焼結体の軸方向の引張強度、圧縮強度、座屈強
度および短繊維と直角方向の剪断強度が極めて大きくな
る。
In particular, according to the method of the present invention, the orientation of the reinforcing short fibers randomly dispersed in the extruded base material is aligned in the axial direction during extrusion molding, so that the molded product obtained and the product obtained by firing the same are The tensile strength, compressive strength, buckling strength in the axial direction, and shear strength in the direction perpendicular to the short fibers of the sintered body become extremely large.

(実施例) 以下に本発明の一実施例について添付図面を参照して説
明する。第1図は本発明方法を実施するための押出成形
機の構成を示す部分断面図である。この押出成形機」−
自体は成形技術分野において周知の形態および構造を有
するものであり、金属粉末に補強用短繊維2、結合剤お
よび溶剤を添加混練して調製した押出素地3を収容する
成形機本体1aと、成形機本体1a下部に取付けられた
ノズル4と、押出素地3をノズル4より押出す加圧力を
付与するスクリュー形の加圧機5とから構成されている
(Example) An example of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a partial sectional view showing the configuration of an extrusion molding machine for carrying out the method of the present invention. This extrusion molding machine
The molding machine itself has a form and structure well known in the field of molding technology, and includes a molding machine main body 1a that houses an extrusion base material 3 prepared by adding and kneading reinforcing short fibers 2, a binder and a solvent to metal powder, and It consists of a nozzle 4 attached to the lower part of the machine body 1a, and a screw-shaped pressurizer 5 that applies pressure to extrude the extruded base material 3 from the nozzle 4.

所定の組成に調製された押出素地3は加圧機5によって
、ノズル4の底部中心に穿設された射出孔6より押出さ
れ、柱状の成形品7となる。成形品7は所要寸法毎に切
断され、さらに乾燥、予備焼結、本焼結工程に送られ、
高融点金属基複合材料となる。
The extruded base material 3 prepared to have a predetermined composition is extruded by a pressurizer 5 through an injection hole 6 formed at the center of the bottom of the nozzle 4 to form a columnar molded product 7. The molded product 7 is cut into required dimensions, and then sent to drying, preliminary sintering, and main sintering steps.
It becomes a high melting point metal matrix composite material.

次に上記押出成形機を使用して高融点金属基複合材料を
製造した場合の効果についてより具体的に説明する。
Next, the effects of producing a high melting point metal matrix composite material using the above extrusion molding machine will be explained in more detail.

実施例】、〜2および比較例1〜2 実施例1〜2として、それぞれ平均粒径が2゜1μmの
タングステン粉末、2.5μmのモリブデン粉末を用意
し、各粉末重量に対して結合剤として3%のメチルセル
ロースと、溶剤としての水を6%添加し、さらに直径1
3μm1長さが1200μmのタングステン線を重量比
で5%添加して充分に混練して2種類の押出素地を調製
し、各押出素地を、押出成形機に充填して80kg/c
arの成形圧力を加えながら縦’J、mm、横60+n
+++の射出孔を有する押出成形機のノズルから押出し
た。
Examples 2 and Comparative Examples 1 and 2 As Examples 1 and 2, tungsten powder with an average particle size of 2.1 μm and molybdenum powder with an average particle size of 2.5 μm were prepared, and the weight of each powder was adjusted as a binder. Add 3% methylcellulose and 6% water as a solvent, and
Two types of extruded bases were prepared by adding 5% by weight of tungsten wire with a length of 3 μm and 1200 μm and thoroughly kneading, and each extruded base was filled into an extrusion molding machine to produce 80 kg/c.
While applying a molding pressure of ar, length 'J, mm, width 60+n
It was extruded from the nozzle of an extruder having +++ injection holes.

押出された各成形品は120mm毎に切断された後に、
温度100℃の乾燥室内に5時間静置され、さらに水素
雰囲気中で徐々に昇温し、最高温度1600℃で2時間
の予備焼結を行なった。予備焼結後、さらに水素雰囲気
中で1850’Cで2時間の本焼結を行なった。そして
得られた焼結体の弓張強さ、3点曲げ強度を測定すると
ともに、押出素地の調製から成形操作までを含めて10
0個の成形体を製造するに必要な時間を測定し、成形体
1個当りの平均製造時間を算出した。
After each extruded molded product is cut into 120mm sections,
The material was left standing in a drying chamber at a temperature of 100° C. for 5 hours, and then the temperature was gradually raised in a hydrogen atmosphere, and preliminary sintering was performed at a maximum temperature of 1600° C. for 2 hours. After preliminary sintering, main sintering was further performed at 1850'C for 2 hours in a hydrogen atmosphere. Then, the bow tensile strength and three-point bending strength of the obtained sintered body were measured.
The time required to produce 0 molded objects was measured, and the average manufacturing time per molded object was calculated.

一方比較例1〜2として、実施例1〜2におけるマトリ
ックス用金属粉末と補強用短繊維と同一形状、寸法およ
び組成を有する原材料を使用し、ラバープレス法によっ
て同一成形圧力のもとて100個の成形品を形成し、得
られた成形品を実施例1〜2と同様な条件で乾燥、予備
焼結、本焼結を行なって得られた焼結体の強度特性値お
よび製品1個当りの平均製造時間を測定し、下記第1表
に示す結果を得た。
On the other hand, as Comparative Examples 1 and 2, raw materials having the same shape, size, and composition as the matrix metal powder and reinforcing short fibers in Examples 1 and 2 were used, and 100 pieces were manufactured using the rubber press method under the same molding pressure. The obtained molded product was dried, pre-sintered, and main sintered under the same conditions as in Examples 1 and 2. The average production time was measured, and the results shown in Table 1 below were obtained.

第 1 表 第1表の結果から明らかなように本実施例によれば、従
来のラバープレス法による場合と比較して、焼結後の強
度特性が大幅に改善されるとともに、極めて高効率で成
形操作が可能であり、高融点金属基複合材料の製造効率
を飛躍的に高めることができる。
Table 1 As is clear from the results in Table 1, according to this example, the strength characteristics after sintering were significantly improved compared to the conventional rubber press method, and the efficiency was extremely high. Molding operations are possible, and the manufacturing efficiency of high-melting point metal matrix composite materials can be dramatically increased.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明に係る高融点金属基複合材料およ
びその製造方法によれば、押出成形機を使用して長尺の
成形品を連続して効率よく容易に成形することが可能で
あり、また補強用短繊維および結合剤の添加により保形
性が優れ、従来の機械プレス法やラバープレス法によっ
て得られる成形品およびその焼結体と比較して強度が優
れた製品を効率的に製造することが可能となる。
As explained above, according to the high melting point metal matrix composite material and the manufacturing method thereof according to the present invention, it is possible to continuously, efficiently and easily mold a long molded product using an extrusion molding machine, In addition, the addition of reinforcing short fibers and a binder provides excellent shape retention, allowing us to efficiently produce products with superior strength compared to molded products and sintered bodies obtained by conventional mechanical press methods or rubber press methods. It becomes possible to do so.

特に本発明方法によれば押出素地中にランダムに分散さ
れていた補強用短繊維の向きが押出成形時に軸方向に繊
維状に整列するため、得られる成形品および成形品を焼
成して得た焼結体の軸方向の強度特性値が極めて高くな
り、高強度の高融点金属基複合材料を提供することがで
きる。
In particular, according to the method of the present invention, the orientation of reinforcing short fibers that were randomly dispersed in the extruded base material is aligned in the axial direction in a fibrous manner during extrusion molding. The axial strength characteristic value of the sintered body becomes extremely high, and a high-strength, high-melting-point metal matrix composite material can be provided.

【図面の簡単な説明】 第1図は本発明方法を実施するための押出成形機の一実
施例を示す部分断面図である。 1・・・押出成形機、1a・・・成形機本体、2・・・
補強用短繊維、3・・・押出素地、4・・・ノズル、5
・・・加圧機、6・・・射出孔、7・・・成形品。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial sectional view showing an embodiment of an extrusion molding machine for carrying out the method of the present invention. 1... Extrusion molding machine, 1a... Molding machine main body, 2...
Reinforcing short fiber, 3... Extruded base material, 4... Nozzle, 5
... Pressure machine, 6 ... Injection hole, 7 ... Molded product.

Claims (1)

【特許請求の範囲】 1、高融点金属またはその合金と短繊維との混合物の焼
結体から成り、上記焼結体の金属基地中に分散する短繊
維を焼結体の軸方向に繊維状に配列したことを特徴とす
る高融点金属基複合材料。 2、高融点金属粉末に対して短繊維および結合剤を添加
混練して押出素地を調製し、上記押出素地を押出成形機
のノズルより押出して所定形状の成形品を形成し、しか
る後に成形品を焼結することを特徴とする高融点金属基
複合材料の製造方法。
[Claims] 1. Consisting of a sintered body of a mixture of a high-melting point metal or its alloy and short fibers, the short fibers dispersed in the metal matrix of the sintered body are arranged in the axial direction of the sintered body in the form of fibers. A high melting point metal matrix composite material characterized by being arranged in the following manner. 2. Add and knead short fibers and a binder to high-melting point metal powder to prepare an extrusion base, extrude the extrusion base from the nozzle of an extrusion molding machine to form a molded product of a predetermined shape, and then mold the molded product. A method for producing a high melting point metal matrix composite material, the method comprising: sintering a high melting point metal matrix composite material.
JP24815189A 1989-09-26 1989-09-26 Refractory metal matrix composite and its manufacture Pending JPH03111525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24815189A JPH03111525A (en) 1989-09-26 1989-09-26 Refractory metal matrix composite and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24815189A JPH03111525A (en) 1989-09-26 1989-09-26 Refractory metal matrix composite and its manufacture

Publications (1)

Publication Number Publication Date
JPH03111525A true JPH03111525A (en) 1991-05-13

Family

ID=17173980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24815189A Pending JPH03111525A (en) 1989-09-26 1989-09-26 Refractory metal matrix composite and its manufacture

Country Status (1)

Country Link
JP (1) JPH03111525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044433A1 (en) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Production of a refractory metal component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014044433A1 (en) * 2012-09-24 2014-03-27 Siemens Aktiengesellschaft Production of a refractory metal component

Similar Documents

Publication Publication Date Title
US7232473B2 (en) Composite material containing tungsten and bronze
EP2552630A1 (en) Method for producing shaped bodies from aluminium alloys
JP2003535980A (en) Aqueous injection molding binder composition and molding process
CN116140625B (en) Preparation method of wedge-shaped riving knife material
WO2007112727A2 (en) Method for production of a honeycomb seal
DE3788900T2 (en) Process for producing an elongated sintered farm body.
CH675089A5 (en)
US6569381B2 (en) Process for manufacturing thin tin/tungsten composite elements
JPH03111525A (en) Refractory metal matrix composite and its manufacture
JP2001504077A (en) Multi-channel structure and manufacturing method thereof
CN1311724A (en) Aqueous molding compositions for powders of stainless steel, intermetallic compound and/or metal matrix composites
JP2007113107A (en) Metal formed body and its production method
JPH03111502A (en) Method for compacting high melting point metal material
DE102008014355A1 (en) Composite based on transition metal diborides, process for its preparation and its use
KR100904646B1 (en) The manufacturing method of a Tungsten Heavy Alloy
JP2007113106A (en) Metal formed body and method for producing the same
JPS6342307A (en) Method for forming metallic powder having high melting point
JP3104411B2 (en) Method of manufacturing metal buttons
JPH01110907A (en) Method for forming ceramic coil spring
JP2977841B2 (en) Manufacturing method of metal-ceramic composite material
RU2170159C2 (en) Method for making elongated rods
JPH03215604A (en) Manufacture of hollow bar material using powder as raw material
JPS63255333A (en) Aluminum alloy/potassium titanate whisker composite material by powder metallurgical method
JPS63130733A (en) Manufacture of copper-base composite material
JPH0499801A (en) Method for compacting powder