JPH03111524A - Production of heat radiative substrate - Google Patents

Production of heat radiative substrate

Info

Publication number
JPH03111524A
JPH03111524A JP25119289A JP25119289A JPH03111524A JP H03111524 A JPH03111524 A JP H03111524A JP 25119289 A JP25119289 A JP 25119289A JP 25119289 A JP25119289 A JP 25119289A JP H03111524 A JPH03111524 A JP H03111524A
Authority
JP
Japan
Prior art keywords
fibers
base material
metallic material
copper
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25119289A
Other languages
Japanese (ja)
Inventor
Tadashi Hamada
糾 濱田
Shuji Yamada
修司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP25119289A priority Critical patent/JPH03111524A/en
Publication of JPH03111524A publication Critical patent/JPH03111524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce the heat radiative substrate which has low thermal expandability and exhibits high heat radiatability by heating a press molding consisting of a low thermally expandable metallic material fiber and a high heat radiative metallic material and injecting a separately melted high heat radiative metallic material thereto. CONSTITUTION:The fibers of the low thermally expandable metallic fibrous material, such as 'Imvar(R)', and the metallic material having good heat radiatability, such as copper, are mixed and the mixture is disposed in a metallic mold 5. The mixture is press molded by a moving mold 4 to obtain a base material 1. The mixing ratio of the above-mentioned fibers is preferably 50 to 80vol.%. The base material 1 is then allowed to keep the temperature by a heater 2 at the temp. below the m.p. of the metallic material having the good heat radiatability, for example, within a range from 50 deg.C lower than the m.p. of copper till the m.p. of copper in the case of, for example, copper. The separately melted metal 3 of the above-mentioned metallic material having the good heat radiatability, such as copper, is poured and is press injected via the mold 4 to the base material 1. The high heat radiative metallic material is impregnated at a high packing rate into the base material and the heat radiative substrate having both of the low coefft. of thermal expansion and the high heat radiatability is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、放熱性基板の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing a heat dissipating substrate.

〔従来の技術〕[Conventional technology]

半導体装置においては、素子の容量が増大・パワー化し
、集積度が高密度化するに伴い、素子から発生する熱の
放出をいかにうまく行なうか、ということが重要な課題
となっている。
In semiconductor devices, as the capacitance and power of elements increase and the degree of integration becomes higher, it has become an important issue to effectively dissipate heat generated from the elements.

そのため、半導体素子を放熱性基板に直接取付けること
が行なわれているが、この場合、放熱性基板と半導体素
子の熱膨張差が問題となる。熱膨張率の差が大きいと、
半導体素子のシリコン基板が過大な応力を受け、同基板
にクラックを生じたり、動作の異常を生じたりするので
ある。それゆえ、低熱膨張性と高放熱性とを兼ね備えた
放熱性基板を得る方法については、産業上の要求度が大
きい。
For this reason, semiconductor elements are mounted directly on a heat dissipating substrate, but in this case, a problem arises due to the difference in thermal expansion between the heat dissipating substrate and the semiconductor element. If the difference in coefficient of thermal expansion is large,
The silicon substrate of a semiconductor device is subjected to excessive stress, which can cause cracks in the substrate or abnormal operation. Therefore, there is a great demand in industry for a method of obtaining a heat dissipating substrate that has both low thermal expansion and high heat dissipation.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来、粉末状のW(タングステン)やMo (モリブデ
ン)を焼結させた焼結基板に、Cu(銅)を含浸させて
放熱性基板を得る方法が実施されていた。しかしながら
、この製造工程は煩雑であり、Cuの充分な含浸も困難
である。すなわち、W、MOの粉末成形工程においては
、難加工性ゆえに個々の基板形状毎に1つ1つ成形する
必要があるため、コスト高になっていた。さらに、その
焼結体においては、粉末同志が融着し空隙が少ないため
、WやMoのCuとのヌレ性は良好であるにもかかわら
ず、Cuを焼結体内部へ充分に含浸させることができな
い。そのため、熱伝導性が悪くて放熱性を充分に得るこ
とが困難であった。
Conventionally, a method of obtaining a heat dissipating substrate has been carried out by impregnating Cu (copper) into a sintered substrate obtained by sintering powdered W (tungsten) or Mo (molybdenum). However, this manufacturing process is complicated and it is difficult to sufficiently impregnate Cu. That is, in the powder molding process of W and MO, it is necessary to mold each individual substrate shape one by one due to the difficulty of processing, resulting in high costs. Furthermore, in the sintered body, the powders are fused together and there are few voids, so although the wettability of W and Mo with Cu is good, it is difficult to sufficiently impregnate Cu into the inside of the sintered body. I can't. Therefore, it has poor thermal conductivity, making it difficult to obtain sufficient heat dissipation.

他に実施されている放熱性基板の製造方法として、Cu
板とインバー板(たとえば、Feが約64重量%でNi
が36重量%の合金板)とによりクラッド基板を得るよ
うにするものがある。このクラッド基板は、Cu板で放
熱させインバー板で膨張を抑える構造になっている。し
かし、前記インバー板は、膨張抑制のために一定以上の
厚さを有していなければならないため、インバー板に要
求される同板面に垂直な方向への放熱性が充分に得られ
ないという問題があった。
Another method of manufacturing heat dissipating substrates that has been implemented is Cu
plate and Invar plate (for example, about 64% by weight Fe and Ni
36% by weight) to obtain a clad substrate. This clad board has a structure in which heat is radiated by a Cu plate and expansion is suppressed by an Invar plate. However, since the Invar plate must have a thickness above a certain level in order to suppress expansion, it is said that the heat dissipation required for the Invar plate in the direction perpendicular to the plate surface cannot be achieved sufficiently. There was a problem.

一方、セラミックス材料などの低熱膨張性金属材料の繊
維からなる基材に、放熱性の良い金属材料を含浸させる
ことで放熱性基板を得る方法は、特願昭6l−2662
f37号出願に記載されている。この方法によると、前
記繊維を圧力成形して基材とするが、このようにすると
、繊維が基材の全体に均一に配分されにり<、繊維は基
材の外周において高密度になりやすい。これは、繊維の
体積率が多い程、前記高密度化して含浸材料は基材内部
にまで充分に入りにくくなり、その結果、繊維が不均一
で内部に空隙の多い放熱性基板となる。たとえば、低熱
膨張性金属材料として、低熱伝導性インバーを用いた場
合、圧延後においても放熱性基板の場所によっては外周
に繊維が偏在しており、また、基板内部に多くの空隙が
存在するため、熱の通りが遮断された形になって熱伝導
が極端に阻害される。その結果、基板に高い放熱性をも
たせることができなかった。
On the other hand, a method of obtaining a heat dissipating substrate by impregnating a base material made of fibers of a low thermal expansion metal material such as a ceramic material with a metal material with good heat dissipation is disclosed in Japanese Patent Application No. 6l-2662.
It is described in the F37 application. According to this method, the fibers are pressure-molded to form a base material, but in this way, the fibers are distributed uniformly throughout the base material, and the fibers tend to be denser at the outer periphery of the base material. . This is because the higher the volume fraction of fibers, the higher the density and the more difficult it is for the impregnating material to fully penetrate into the interior of the base material, resulting in a heat-dissipating substrate with non-uniform fibers and many voids inside. For example, when low thermal conductivity Invar is used as a low thermal expansion metal material, even after rolling, fibers are unevenly distributed on the outer periphery depending on the location of the heat dissipating substrate, and there are many voids inside the substrate. , the passage of heat is blocked and heat conduction is extremely inhibited. As a result, it was not possible to provide the substrate with high heat dissipation.

この発明は、前記事情に鑑みてなされたものであり、そ
の課題とするところは、低熱膨張性でありながら高放熱
性を発揮する放熱性基板を得るようにすることにある。
This invention has been made in view of the above circumstances, and its object is to obtain a heat dissipating substrate that exhibits high heat dissipation properties while having low thermal expansion.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、請求項1記載の発明にかかる
放熱性基板の製造方法は、低熱膨張性金属材料の繊維と
放熱性の良い金属材料とを混合したものを加圧成形し、
同加圧成形体を、前記放熱性の良い金属材料の融点直下
の温度に加熱しておいて、別途溶融した放熱性の良い金
属材料を前記加圧成形体に注入するようにする。
In order to solve the above problem, a method for manufacturing a heat dissipating substrate according to the invention as set forth in claim 1 includes press-molding a mixture of fibers of a low thermal expansion metal material and a metal material with good heat dissipation.
The press-molded body is heated to a temperature just below the melting point of the metal material with good heat dissipation, and a separately molten metal material with good heat dissipation is injected into the press-formed body.

請求項2記載の発明にかかる放熱性基板の製造方法は、
低熱膨張性金属材料の繊維の混合割合が50〜80体積
%であり、放熱性の良い金属材料がCuであり、融点直
下の温度が、Cuの融点温度より50℃低い温度から前
記Cuの融点温度までの範囲内とされる。
The method for manufacturing a heat dissipating substrate according to the invention according to claim 2 includes:
The mixing ratio of the fibers of the low thermal expansion metal material is 50 to 80% by volume, the metal material with good heat dissipation is Cu, and the temperature just below the melting point is 50 ° C lower than the melting point of Cu. It is considered to be within the range of up to the temperature.

〔作   用〕[For production]

低熱膨張性金属材料の繊維と放熱性の良い金属材料とを
混合すると、低熱膨張性金属繊維が放熱性の良い金属材
料の中に均一に分散する。これらの加圧成形体を、前記
放熱性の良い金属材料の融点直下の温度に加熱しておい
て、別途溶融した放熱性の良い金属材料を前記加圧成形
体に注入するようにすると、前記成形体の時点で放熱性
の良い金属材料につながりが足りなくても前記注入によ
り放熱性の良い金属材料が連続的につながるようになる
When fibers of a low thermal expansion metal material and a metal material with good heat dissipation are mixed, the low thermal expansion metal fibers are uniformly dispersed in the metal material with good heat dissipation. These press-molded bodies are heated to a temperature just below the melting point of the metal material with good heat dissipation properties, and a separately molten metal material with good heat dissipation properties is injected into the press-formed bodies. Even if the metal materials with good heat dissipation properties are not sufficiently connected at the time of molding, the metal materials with good heat dissipation properties can be continuously connected by the injection.

〔実 施 例〕〔Example〕

以下に、この発明の詳細な説明する。 The present invention will be explained in detail below.

放熱性基板は、次のようにして製造される。The heat dissipating substrate is manufactured as follows.

まず、低熱膨張性金属材料(セラミックス材料を含む)
としては、インバー、W、、Mo、C,Sicなどが挙
げられる。
First, low thermal expansion metal materials (including ceramic materials)
Examples include Invar, W, Mo, C, and Sic.

繊維の態様としては、ウィスカのようなもの、長繊維や
短繊維のようなもの、あるいは、単繊維や撚線のカーボ
ン繊維を用いて織った織布状のようなものなどがある。
The fibers may be in the form of whiskers, long fibers or short fibers, or woven fabrics made from single fibers or twisted carbon fibers.

たとえば、インバーをビビリ切削することにより、径が
100μl、長さが2nの繊維をつくることができる。
For example, by chattering Invar, fibers with a diameter of 100 μl and a length of 2n can be made.

放熱性の良い金属材料としてCuが挙げられる、この放
熱性の良い金属材料も前記低熱膨張性金属材料と同様に
繊維にすることができる。
An example of a metal material with good heat dissipation properties is Cu. This metal material with good heat dissipation properties can also be made into fibers in the same manner as the low thermal expansion metal material.

これら2種類の繊維を充分に混合し、第1図にみる金型
5に入れて所望形状の基材に成形する。
These two types of fibers are thoroughly mixed, placed in a mold 5 shown in FIG. 1, and molded into a base material of a desired shape.

繊維同志の成形体1において、成形圧力の大きいところ
は繊維同志の隙間は詰まるようになるが、内部には未だ
隙間が残っている。次に、この基材1をヒーター2でも
って放熱性の良い金属材料の融点直下50℃以内の温度
範囲に加熱し、この状態の基材1に対して、放熱性の良
い金属材料、たとえば、前記Cuの溶湯3を、金型5の
可動型4により圧力を加えつつ注入させるようにする。
In the molded article 1 made of fibers, the gaps between the fibers close up in areas where the molding pressure is high, but gaps still remain inside. Next, this base material 1 is heated with a heater 2 to a temperature range of 50° C. or less just below the melting point of a metal material with good heat dissipation. The molten Cu metal 3 is injected while applying pressure by the movable mold 4 of the mold 5.

従来のような粉末焼結体ではなく、また、基材中の放熱
性の良い金属材料も既に融点近くにあるので、溶融Cu
の侵入する道筋ができ、Cuは基材lの内部へ充分に侵
入するようになる。
It is not a powder sintered body like the conventional one, and the metal material with good heat dissipation in the base material is already close to its melting point, so it is not a powder sintered body.
A path is created for Cu to penetrate into the base material 1, and Cu can sufficiently penetrate into the interior of the base material 1.

基材における低熱膨張性金属繊維の占有率(含有率)は
、成形時の圧力、繊維の態様などによって調整すること
ができるが、放熱性基板としては、通常、50〜80体
積%とされる。占有率が50体積%を下回ると、Cuの
膨張を抑える効果が得にく(なる。占有率が80体積%
を上回ると、充分な放熱効果を得る上で好ましくない。
The occupancy (content) of low thermal expansion metal fibers in the base material can be adjusted by the pressure during molding, the form of the fibers, etc., but as a heat dissipating substrate, it is usually 50 to 80% by volume. . When the occupancy rate is less than 50% by volume, it becomes difficult to obtain the effect of suppressing the expansion of Cu.
If it exceeds , it is not preferable to obtain a sufficient heat dissipation effect.

これにより得られた基板は、圧延により適宜必要な厚み
にしたり、所望の形状に切断することもでき、加工性が
良い。圧延を行なう場合、圧延前の基板の厚みが、たと
えば、30〜50mの時、圧延後の厚みを1鶴程度とす
ることもできる。
The substrate thus obtained can be rolled to a desired thickness or cut into a desired shape, and has good workability. When rolling is performed, when the thickness of the substrate before rolling is, for example, 30 to 50 m, the thickness after rolling can be about 1 crane.

このように、この発明にかかる放熱性基板の基材は、高
密度に放熱性の良い金属材料の含浸が容易で、含浸後の
加工性も良いため、放熱性基板の製造が簡単になる。
As described above, the base material of the heat dissipating substrate according to the present invention can be easily impregnated with a metal material having good heat dissipation properties at a high density, and the processability after impregnation is also good, so that the production of the heat dissipating substrate is facilitated.

このように作成された放熱性基板は、半導体素子を直接
取付けたり、あるは、その上にセラミックス絶縁層を形
成してから素子を取付けたりするほか、絶縁層上に配線
パターン形成や部品搭載するような使い方もできる。
The heat dissipating board created in this way can be used to directly attach semiconductor elements, or to form a ceramic insulating layer on it and then attach the element, or to form wiring patterns and mount components on the insulating layer. You can also use it like this.

次により具体的実施例の説明を行なう。Next, a more specific example will be explained.

(実施例1) 直径1100A1、長さ211のインバーの短繊維と、
直径1100u、長さ2NのCuの短繊維を80体積%
と20体積%の割合で混合したのち金型に入れ、1to
n/cJの圧力で成形して基材を得る。次に、金型温度
を1050〜1070℃に設定し、Cuの溶湯を0.5
ton/−の圧力でもって含浸させた。Cuの酸化を防
ぐため、この含浸処理は、Arガス雰囲気中で行なった
。含浸後の厚さ30鶴の基材を厚さ11になるように圧
延して放熱性基板を完成した。このときインバーの含有
量は50体積%であった。
(Example 1) Invar short fibers with a diameter of 1100 A1 and a length of 211 mm,
80% by volume of Cu short fibers with a diameter of 1100u and a length of 2N.
After mixing at a ratio of 20 volume% with
A base material is obtained by molding at a pressure of n/cJ. Next, the mold temperature was set to 1050-1070℃, and the molten Cu was heated to 0.5℃.
It was impregnated with a pressure of ton/-. In order to prevent Cu from oxidizing, this impregnation treatment was performed in an Ar gas atmosphere. The base material having a thickness of 30 mm after impregnation was rolled to a thickness of 11 mm to complete a heat dissipating substrate. At this time, the content of Invar was 50% by volume.

(実施例2) 直径10〜20μで2〜511のカーボン繊維とCuの
繊維を70体積%と30体積%になるようにして充分に
混合した後、金型に入れ、1ton/−の圧力で成形し
て基材を得た。次に、金型温度は1050〜1070℃
に設定し、Cuの溶湯をQ、5ton/calの圧力で
もって含浸させた。CUの酸化を防ぐため、この含浸処
理は、Arガス雰囲気中で行なった。含浸後の厚さ30
uの基材を厚さ11になるように圧延して放熱性基板を
完成した。このときカーボンの含有量は45体積%であ
った。
(Example 2) Carbon fibers with diameters of 10 to 20μ and 2 to 511 carbon fibers and Cu fibers were thoroughly mixed at 70% by volume and 30% by volume, and then placed in a mold and heated at a pressure of 1 ton/-. A base material was obtained by molding. Next, the mold temperature is 1050-1070℃
molten Cu was impregnated with a pressure of Q, 5 ton/cal. In order to prevent oxidation of CU, this impregnation treatment was performed in an Ar gas atmosphere. Thickness after impregnation: 30
A heat dissipating substrate was completed by rolling the base material u to a thickness of 11 mm. At this time, the carbon content was 45% by volume.

(実施例3) 直径100m、長さ3〜4RのWとCuの各繊維を、8
0体積%と20体積%の割合にして混合したのち金型に
入れ、1ton/cfflの圧力で成形して基材を得た
。次に、金型温度は1050〜1070℃に設定し、C
uの溶湯を0.5ton/cJの圧力でもって含浸させ
た。Cuの酸化を防ぐため、この含浸処理は、Arガス
雰囲気中で行なった。含浸後の厚さ30mの基材を厚さ
1fiになるように圧延して放熱性基板を完成した。こ
のときWの含有量は40体積%であった。
(Example 3) Each fiber of W and Cu with a diameter of 100 m and a length of 3 to 4 R was
After mixing at a ratio of 0% by volume and 20% by volume, the mixture was placed in a mold and molded at a pressure of 1 ton/cffl to obtain a base material. Next, the mold temperature is set to 1050-1070℃, and
It was impregnated with molten metal u at a pressure of 0.5 ton/cJ. In order to prevent Cu from oxidizing, this impregnation treatment was performed in an Ar gas atmosphere. After impregnation, the 30 m thick base material was rolled to a thickness of 1 fi to complete a heat dissipating substrate. At this time, the content of W was 40% by volume.

実施例1〜3の放熱性基板の密度を測定し、同密度と理
想密度との比たる充填率を求めた。併せて、つぎのよう
な比較例1〜3の充填率も求めた(比較例1) 実施例1において成形する繊維をインバーのみで製造し
た放熱性基板。
The densities of the heat dissipating substrates of Examples 1 to 3 were measured, and the filling ratio was determined as a ratio between the same density and the ideal density. In addition, the following filling rates of Comparative Examples 1 to 3 were also determined (Comparative Example 1) A heat dissipating substrate in which the fibers to be molded in Example 1 were manufactured using only Invar.

(比較例2) 実施例2において成形する繊維をカーボンのみで製造し
た放熱性基板。
(Comparative Example 2) A heat dissipating substrate in which the fibers molded in Example 2 were made only of carbon.

(比較例3) 実施例3において成形する繊維をWのみで製造した放熱
性基板。
(Comparative Example 3) A heat dissipating substrate in which the fibers to be molded in Example 3 were manufactured using only W.

測定結果は、第1表のとおりである。The measurement results are shown in Table 1.

第1表 第1表にみるように、実施例1〜3の放熱性基板は、比
較例1〜3の放熱性基板と比べて、高密度に充填されて
いることが分かる。
Table 1 As shown in Table 1, it can be seen that the heat dissipating substrates of Examples 1 to 3 are packed more densely than the heat dissipating substrates of Comparative Examples 1 to 3.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明にかかる放熱性基板の製造
方法は、低熱膨張性でありながら高放熱性が発揮される
放熱性基板を得ることができるようになった。
As described above, the method for manufacturing a heat-dissipating substrate according to the present invention makes it possible to obtain a heat-dissipating substrate that exhibits high heat dissipation while having low thermal expansion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明にかかる放熱性基板の製造方法の一
実施例にかかり成形体に別途放熱性の良い金属材料の溶
湯を注入する様子をあられす側断面図である。 1・・・基材 2・・・ヒーター 3・・・Cuの溶湯
 4・・・可動金型 5・・・金型
FIG. 1 is a side sectional view showing a state in which a molten metal material having good heat dissipation is separately injected into a molded body according to an embodiment of the method for manufacturing a heat dissipating substrate according to the present invention. 1... Base material 2... Heater 3... Molten Cu 4... Movable mold 5... Mold

Claims (1)

【特許請求の範囲】 1 低熱膨張性金属材料の繊維と放熱性の良い金属材料
とを混合したものを加圧成形し、同加圧成形体を、前記
放熱性の良い金属材料の融点直下の温度に加熱しておい
て、別途溶融した放熱性の良い金属材料を前記加圧成形
体に注入するようにする放熱性基板の製造方法。 2低熱膨張性金属材料の繊維の混合割合が50〜80体
積%であり、放熱性の良い金属材料がCuであり、融点
直下の温度が、Cuの融点温度より50℃低い温度から
前記Cuの融点温度までの範囲内とされる請求項1記載
の放熱性基板の製造方法。
[Claims] 1. A mixture of fibers of a low thermal expansion metal material and a metal material with good heat dissipation is pressure-molded, and the press-molded product is heated to a temperature just below the melting point of the metal material with good heat dissipation. A method for manufacturing a heat dissipating substrate, which comprises heating the material to a temperature and injecting a separately melted metal material with good heat dissipation into the press-molded body. 2. The mixing ratio of the fibers of the low thermal expansion metal material is 50 to 80% by volume, the metal material with good heat dissipation is Cu, and the temperature just below the melting point of the Cu is 50°C lower than the melting point of Cu. The method for manufacturing a heat dissipating substrate according to claim 1, wherein the temperature is within a range up to the melting point temperature.
JP25119289A 1989-09-26 1989-09-26 Production of heat radiative substrate Pending JPH03111524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25119289A JPH03111524A (en) 1989-09-26 1989-09-26 Production of heat radiative substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25119289A JPH03111524A (en) 1989-09-26 1989-09-26 Production of heat radiative substrate

Publications (1)

Publication Number Publication Date
JPH03111524A true JPH03111524A (en) 1991-05-13

Family

ID=17219056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25119289A Pending JPH03111524A (en) 1989-09-26 1989-09-26 Production of heat radiative substrate

Country Status (1)

Country Link
JP (1) JPH03111524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001187A1 (en) * 1995-06-23 1997-01-09 Toho Kinzoku Co., Ltd. Method of manufacture of material for semiconductor substrate, material for semiconductor substrate, and package for semiconductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942504A (en) * 1972-08-30 1974-04-22
JPS52120205A (en) * 1976-04-03 1977-10-08 Setsuo Yamamoto Process for production of whiskerrreinforced composite material
JPS5834148A (en) * 1981-08-24 1983-02-28 Mitsubishi Heavy Ind Ltd Production of composite material of fiber reinforced light metal matrix
JPS63120448A (en) * 1986-11-08 1988-05-24 Matsushita Electric Works Ltd Substrate for heat dissipation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4942504A (en) * 1972-08-30 1974-04-22
JPS52120205A (en) * 1976-04-03 1977-10-08 Setsuo Yamamoto Process for production of whiskerrreinforced composite material
JPS5834148A (en) * 1981-08-24 1983-02-28 Mitsubishi Heavy Ind Ltd Production of composite material of fiber reinforced light metal matrix
JPS63120448A (en) * 1986-11-08 1988-05-24 Matsushita Electric Works Ltd Substrate for heat dissipation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001187A1 (en) * 1995-06-23 1997-01-09 Toho Kinzoku Co., Ltd. Method of manufacture of material for semiconductor substrate, material for semiconductor substrate, and package for semiconductor
US5905938A (en) * 1995-06-23 1999-05-18 Toho Kinzoku Co., Ltd. Method of manufacturing a semiconductor substrate material

Similar Documents

Publication Publication Date Title
US6403158B1 (en) Porous body infiltrating method
JPH09510950A (en) Microwave sintering method
JP3673436B2 (en) Carbon-based metal composite material and manufacturing method thereof
GB2342926A (en) Metal matrix (MMC) body
KR100217032B1 (en) Fabrication method of w-skelton structure for the infiltration of cu melt and composites thereof
US8048366B2 (en) Process for making copper tungsten and copper molybdenum composite electronic packaging materials
JPH03111524A (en) Production of heat radiative substrate
US4300951A (en) Liquid phase sintered dense composite bodies and method for producing the same
US3863337A (en) Powder metallurgy method for making an electric contact and the resulting contact
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
US6099978A (en) Molybdenum silicide-containing products with high emissivity
US3296021A (en) Heat-resistant and oxidationproof materials
JPS63120448A (en) Substrate for heat dissipation
CA3162026A1 (en) Apparatus and methods for sintering
JPS59143347A (en) Manufacture of material for semiconductor substrate
JPH06316436A (en) Fiber-reinforced glass base material and preparation of composite material article wherein glass/ceramics are base material
KR20200052841A (en) MoCu HEAT DISSIPATION MATERIAL WITH CARBON PARTICLES AND PREPARING METHOD THEREOF
KR20130077494A (en) Ceramic composites and method of fabricating the same
JPH06183860A (en) Multifunctional material
JP2002293673A (en) Metal-ceramic composite material
JPH01115888A (en) Production of jig for producing semiconductor
JPH11302078A (en) Composite material and its production
JP3204566B2 (en) Manufacturing method of heat sink material
JPS63176385A (en) Manufacture of electroconductive ceramic composite body
AU741059B2 (en) Manufacturing particles and articles having engineered properties