JPH03110881A - Wavelength-stabilized laser apparatus - Google Patents
Wavelength-stabilized laser apparatusInfo
- Publication number
- JPH03110881A JPH03110881A JP1249533A JP24953389A JPH03110881A JP H03110881 A JPH03110881 A JP H03110881A JP 1249533 A JP1249533 A JP 1249533A JP 24953389 A JP24953389 A JP 24953389A JP H03110881 A JPH03110881 A JP H03110881A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- laser
- oscillation
- etalon
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 30
- 230000010355 oscillation Effects 0.000 claims abstract description 27
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 abstract description 27
- 238000000034 method Methods 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052743 krypton Inorganic materials 0.000 description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VZPPHXVFMVZRTE-UHFFFAOYSA-N [Kr]F Chemical compound [Kr]F VZPPHXVFMVZRTE-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/081—Construction or shape of optical resonators or components thereof comprising three or more reflectors
- H01S3/0811—Construction or shape of optical resonators or components thereof comprising three or more reflectors incorporating a dispersive element, e.g. a prism for wavelength selection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/106—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は投影露光装置の光源に用いる波長安定化レーザ
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wavelength stabilized laser device used as a light source of a projection exposure apparatus.
(2)
(1)
従来の技術
近年、半導体集積回路の高集積化に伴い、回路パターン
露光用光源としてエキシマレーザが従来の高圧水銀ラン
プに代わるものとして注目されている。エキシマレーザ
はレーザ媒質としてクリプトン、キセノンなどの希ガス
とふっ素、塩素などのハロゲンガスを組み合わせること
により、353nmから193nmの間のい(つかの波
長で発振線を得ることができる紫外レーザの1つである
。(2) (1) Prior Art In recent years, as semiconductor integrated circuits have become more highly integrated, excimer lasers have been attracting attention as a light source for exposing circuit patterns as an alternative to conventional high-pressure mercury lamps. An excimer laser is a type of ultraviolet laser that can produce oscillation lines at a short wavelength between 353 nm and 193 nm by combining a rare gas such as krypton or xenon with a halogen gas such as fluorine or chlorine as a laser medium. It is.
特にふっ化クリプトンエキシマレーザは波長248nm
で発振し、水銀のg線(436nm)あるいはi線(3
65n m )の場合と比べて倍以上集積度の高い、い
わゆる超LSI製造への道を開くものとして期待されて
いる。In particular, krypton fluoride excimer laser has a wavelength of 248 nm.
It oscillates at mercury's g-line (436 nm) or i-line (3
It is expected that this technology will pave the way for the production of so-called ultra-LSIs, which have more than twice the degree of integration compared to the case of 65 nm).
これらエキシマレーザの利得バンド幅は約1nmと広(
、光共振器と組み合わせて発振させた場合、発振線が0
.5nm程度の帯域幅(半値全幅)を持つ。このように
比較的広い帯域幅を持つレーザ光を露光用光源として用
いた場合、ランプ光源の場合と同様、露光光学系に色収
差を補正した結像光学系を採用する必要がある。ところ
が、波長が350nm以下の紫外域では、結像光学系に
用いるレンズの光学材料の選択の幅が限られ、色収差補
正が困難となる。レーザ発振線の帯域幅を0.005n
m程度にまで単色化し、かつ中心波長の変動を防止でき
れば色収差補正しない結像光学系が利用可能となり、エ
キシマレーザを光源とした投影露光装置が実現する。The gain bandwidth of these excimer lasers is as wide as approximately 1 nm (
, when oscillating in combination with an optical resonator, the oscillation line is 0.
.. It has a bandwidth (full width at half maximum) of about 5 nm. When a laser beam having such a relatively wide bandwidth is used as an exposure light source, as in the case of a lamp light source, it is necessary to employ an imaging optical system corrected for chromatic aberration in the exposure optical system. However, in the ultraviolet region where the wavelength is 350 nm or less, the range of selection of optical materials for lenses used in the imaging optical system is limited, making it difficult to correct chromatic aberration. The bandwidth of the laser oscillation line is 0.005n.
If it is possible to make the image monochromatic to the order of m and prevent fluctuations in the center wavelength, it will become possible to use an imaging optical system that does not correct chromatic aberration, and a projection exposure apparatus using an excimer laser as a light source will be realized.
広い帯域幅を持つレーザ光を単色化するには、狭い透過
帯域を持つ波長選択素子をレーザ共振器内に設置する方
法が採用されてきた。第3図はこのような狭帯域の波長
安定化エキシマレーザの従来の構成を示す。第3図にお
いて全反射鏡3および半透過鏡4からなる光共振器内に
放電管1が置かれている。放電管1には希ガスとハロゲ
ンガスを含む媒質ガスが封入されており、放電励起によ
ってレーザ発振する。放電管1と全反射鏡3の間には気
密室6が置かれ、気密室内には波長選択素子であるエア
スペースエタロン5,5゛が設置されている。エアスペ
ースエタロン(以下、単にエタロンと略す)は対向する
平行平板間の光の干渉を利用した波長選択素子であり、
周囲の気圧によって選択波長を変化させることができる
。In order to make laser light with a wide bandwidth monochromatic, a method has been adopted in which a wavelength selection element with a narrow transmission band is installed inside a laser resonator. FIG. 3 shows a conventional configuration of such a narrow band wavelength stabilized excimer laser. In FIG. 3, a discharge tube 1 is placed within an optical resonator consisting of a total reflection mirror 3 and a semi-transmission mirror 4. The discharge tube 1 is filled with a medium gas containing a rare gas and a halogen gas, and generates laser oscillation by discharge excitation. An airtight chamber 6 is placed between the discharge tube 1 and the total reflection mirror 3, and air space etalons 5, 5', which are wavelength selection elements, are installed in the airtight chamber. Air space etalon (hereinafter simply referred to as etalon) is a wavelength selection element that utilizes the interference of light between opposing parallel plates.
The selected wavelength can be changed depending on the surrounding atmospheric pressure.
レーザ出力の一部は波長検出器7に導かれその中心波長
が測定される。圧力制御器8は波長検出器7によって測
定されたレーザ光の中心波長が一定になるよう気密室6
内の圧力を調整し、中心波長の変動を防止している。A portion of the laser output is guided to a wavelength detector 7 and its center wavelength is measured. The pressure controller 8 controls the airtight chamber 6 so that the center wavelength of the laser beam measured by the wavelength detector 7 is constant.
The internal pressure is adjusted to prevent fluctuations in the center wavelength.
エタロンを2個用いるのは以下の理由による。The reason for using two etalons is as follows.
エタロンは干渉素子であるため、ある透過帯に隣合って
必ず異なる次数の透過帯が存在する。透過帯域幅に対す
る隣合う透過帯までの距離の比をフィネスと呼ぶ。エキ
シマレーザの波長域で製作可能なエタロンのフィネスは
せいぜい20程度である。したがって、1個のエタロン
で0.005nm以下の対域幅を実現しようとすると隣
合う透過帯の間隔は0.1nm以下となり、第4図(a
)に示すように媒質の利得バンド幅内に複数の発振線力
(現われる。このように複数の発振線が生じると、微細
なパターンを結像するという当初の目的を達成できない
ので、第2のエタロンを配属してこのうち1本の発振線
だけを選択してやる。その様子を第4図(b)に示す。Since the etalon is an interference element, there are always transmission bands of different orders adjacent to a certain transmission band. The ratio of the distance between adjacent transmission bands to the transmission band width is called finesse. The finesse of an etalon that can be manufactured in the excimer laser wavelength range is about 20 at most. Therefore, if one attempts to achieve a band width of 0.005 nm or less with one etalon, the interval between adjacent transmission bands will be 0.1 nm or less, as shown in Figure 4 (a).
), multiple oscillation line forces (appear) within the gain bandwidth of the medium. If multiple oscillation lines occur in this way, the original purpose of imaging a fine pattern cannot be achieved, so the second An etalon is assigned to select only one of the oscillation lines.The situation is shown in FIG. 4(b).
第2のエタロンの透過帯域幅は第1のエタロンの透過帯
の間隔程度とすれば発振線の単色化が実現し、投影露光
用に適したエキシマレーザが得られることになる。なお
、それぞれエタロンの透過波長はエタロンを傾はレーザ
光の入射角を変化させることによって独立に選択可能で
あり、容易に第11図(b)に示すような状態に調整す
ることができる。If the transmission band width of the second etalon is set to be approximately the interval between the transmission bands of the first etalon, monochromatic oscillation lines can be realized, and an excimer laser suitable for projection exposure can be obtained. Note that the transmission wavelength of each etalon can be independently selected by changing the inclination of the etalon and the incident angle of the laser beam, and can be easily adjusted to the state shown in FIG. 11(b).
発明が解決しようとする課題
しかし、このような従来の波長安定化レーデでは、レー
ザ出力を増大するにつれエタロンの変形が生じ複数の発
振線が現われるという欠点があった。すなわち、2個の
エタロンはその透過帯域幅を達えるため、平行平板間の
ギャップ間隔が異なるように設計しである。このため、
レーザ光を収集した場合、熱的変形によってそれぞれ異
なる量の選択波長の変動を示す。その結果、レーザ運転
中に第11図(C)に示すように第2のエタロンの透過
帯が第1図のエタロンの2本の透過帯にまたがるような
状態を生じ、複数の発振線が現われることがある。この
ような状態下で露光用光源として用いると、中心波長検
出が困難で波長の安定化が不可能になるばかりか、単色
レンズで投影されたパターンにボケを生じ、製品の不良
につながる。Problems to be Solved by the Invention However, such conventional wavelength-stabilized radars have the drawback that as the laser output is increased, the etalon deforms and a plurality of oscillation lines appear. That is, in order to reach the transmission band width of the two etalons, the gap distances between the parallel plates are designed to be different. For this reason,
When laser light is collected, it exhibits different amounts of variation in the selected wavelength due to thermal deformation. As a result, during laser operation, as shown in FIG. 11(C), a state occurs in which the transmission band of the second etalon straddles the two transmission bands of the etalon in FIG. 1, and multiple oscillation lines appear. Sometimes. If used as an exposure light source under such conditions, not only will it be difficult to detect the center wavelength and it will be impossible to stabilize the wavelength, but the pattern projected by the monochromatic lens will become blurred, leading to product defects.
本発明はこのような課題を解決するためなされたもので
、常に1本の発振線で発振することのできる波長安定化
レーザ装置を提供するものである。The present invention was made to solve these problems, and provides a wavelength-stabilized laser device that can always oscillate with one oscillation line.
課題を解決するための手段
この課題を解決するため本発明の波長安定化レーザ装置
は、レーザ媒質と第1の全反射鏡からなる光増幅器と、
気密室内に複数個設置した波長選択素子と第2の全反射
鏡からなる波長選択器とを互いの光軸が交叉するように
半透過鏡で結合して光共振器を構成し、レーザ光の発振
波長を検出する手段と圧力制御手段とを設け、前記気密
室内の圧力を変化させるようにしたものである。Means for Solving the Problem In order to solve this problem, the wavelength stabilized laser device of the present invention includes an optical amplifier comprising a laser medium and a first total reflection mirror;
A plurality of wavelength selection elements installed in an airtight chamber and a wavelength selector consisting of a second total reflection mirror are coupled by a semi-transmissive mirror so that their optical axes intersect, forming an optical resonator. Means for detecting the oscillation wavelength and pressure control means are provided to change the pressure within the airtight chamber.
作用
この構成により、エタロンを通過するレーザ光のエネル
ギーは従来例の場合のそれに半透過鏡の反射率を乗じた
程度に低下するので、エタロンの受ける熱的負荷は著し
く低減し、複数の発振線が生じるようなエタロンの変形
を防止することができる。Effect: With this configuration, the energy of the laser light passing through the etalon is reduced to the extent that it is multiplied by the reflectance of the semi-transmissive mirror in the conventional case, so the thermal load on the etalon is significantly reduced, and multiple oscillation lines Deformation of the etalon that would otherwise occur can be prevented.
実施例
第1図は本発明の一実施例であるエキシマレーザの構成
図である。第1図において本発明実施例のレーザ装置で
は、半透過鏡4と全反射鏡2との間の光軸上にエタロン
5,5′を設置して、特定の狭い帯域の波長だけを選択
する波長選択器22を具備している。一方、半透過鏡4
と全反射鏡3を結ぶ光軸上には希ガスとハロゲンガスの
混合気体をレーザ媒質とする放電管1を設置し、光増幅
器21を構成している。光増幅器21と波長選択器22
は半透過鏡4によってほぼ直交するように結合されてい
る。波長選択器22で選択された単色光は光増幅器21
で増幅され、レーザ光として半透過鏡4から光増幅器2
1の光軸方向に取り出される。ここで、エタロン5,5
゛は内部の気圧を調整可能な気密室内に設置しである。Embodiment FIG. 1 is a block diagram of an excimer laser which is an embodiment of the present invention. In the laser device according to the embodiment of the present invention shown in FIG. 1, etalons 5 and 5' are installed on the optical axis between the semi-transmitting mirror 4 and the total reflecting mirror 2 to select only wavelengths in a specific narrow band. A wavelength selector 22 is provided. On the other hand, semi-transparent mirror 4
A discharge tube 1 whose laser medium is a mixture of rare gas and halogen gas is installed on the optical axis connecting the total reflection mirror 3 and the total reflection mirror 3, and an optical amplifier 21 is configured. Optical amplifier 21 and wavelength selector 22
are coupled by a semi-transmissive mirror 4 so as to be substantially perpendicular to each other. The monochromatic light selected by the wavelength selector 22 is transmitted to the optical amplifier 21
and is amplified as a laser beam from the semi-transparent mirror 4 to the optical amplifier 2.
1 in the direction of the optical axis. Here, etalon 5,5
It is installed in an airtight room where the internal air pressure can be adjusted.
一方、全反射鏡2と半透過鏡4を結ぶ軸上にはビームス
プリッタ10を置き、出力光の一部を波長検出器7に導
いている。波長検出器7はレーザ光の中心波長を基準値
と比較し、誤差信号を圧力制御器8へ送る。圧力制御器
8は誤差信号が零になるように気密室6内の圧力を調整
する結果、レーザ光の中心波長は常に一定に保たれるこ
とになる。On the other hand, a beam splitter 10 is placed on the axis connecting the total reflection mirror 2 and the semi-transmission mirror 4, and a part of the output light is guided to the wavelength detector 7. The wavelength detector 7 compares the center wavelength of the laser beam with a reference value and sends an error signal to the pressure controller 8. The pressure controller 8 adjusts the pressure within the airtight chamber 6 so that the error signal becomes zero, so that the center wavelength of the laser beam is always kept constant.
ここで、放電管1を含む全反射鏡3と半透過鏡4の間の
光共振器内には、従来のレーザ装置の場合と同様、大き
な光エネルギーが定在する。Here, in the optical resonator between the total reflection mirror 3 and the semi-transmission mirror 4 including the discharge tube 1, large optical energy is present, as in the case of the conventional laser device.
方、半一透過鏡4と全反射鏡2の間の空間では、放電管
方向から来た光の大半が半透過鏡によって光共振器外へ
放射されるため、定在する光エルルギーはわずかである
。したがって、半透過鏡4の反射率がたとえば20%で
あるとすると、エタロン5.5°を通過する光エネルギ
ーは、第3図に示した従来例の約115となる。この結
果、エタロン5,5°は熱的変形を受けにくり、発振線
を1本に保てることになる。On the other hand, in the space between the semi-transmitting mirror 4 and the total reflecting mirror 2, most of the light coming from the direction of the discharge tube is radiated outside the optical resonator by the semi-transmitting mirror, so there is only a small amount of standing optical energy. be. Therefore, assuming that the reflectance of the semi-transmissive mirror 4 is, for example, 20%, the light energy passing through the etalon at 5.5 degrees is about 115 in the conventional example shown in FIG. As a result, the etalon 5.5° is not subject to thermal deformation, and the oscillation line can be kept at one line.
本発明者らの実験によれば、第3図に示したような従来
のエキシマレーザで出力を2W以上取り出そうとすると
、当初発振線が一本になるようにエタロンを調整してお
いても、発振開始後、数分以内に隣合う発振線が現われ
複数発振となる場合があった。しかし、本発明による波
長安定化レーザ装置では、出力を5Wとしても発振線が
複数になることはなかった。また、1つの気密室で2つ
のエタロンのギャップ間の気圧を同時に制御することで
中心波長を一定に保つことができた。According to experiments conducted by the present inventors, when trying to obtain an output of 2 W or more using a conventional excimer laser as shown in Fig. 3, even if the etalon is initially adjusted so that there is only one oscillation line, After the oscillation started, adjacent oscillation lines appeared within several minutes, resulting in multiple oscillations. However, in the wavelength stabilized laser device according to the present invention, even when the output was 5 W, the number of oscillation lines did not become plural. Furthermore, by simultaneously controlling the air pressure between the gaps between the two etalons in one airtight chamber, the center wavelength could be kept constant.
エキシマレーザは媒質の利得が高いため、光共振器のカ
ップリング、すなわち本発明における半透過鏡の反射率
は10〜20%と低(取ることができる。したがって、
本発明は特にエキシマレーザにおいてその効果を発揮す
るものと言える。発明者らは、本実施例による波長安定
化レーザ装置の出力について実験、検討を加えた。実験
はレーザ媒質としてクリプトン、ふっ素を、希釈ガスと
してヘリウムを用いたKrFエキシマレーザにっいて行
なった。第7図は半透過鏡4の反射率に対するレーザ出
力の測定結果、およびレーザ出力から見積もったエタロ
ン吸収パワーの関係を示す。Since the excimer laser has a high medium gain, the coupling of the optical resonator, that is, the reflectance of the semi-transmissive mirror in the present invention can be as low as 10 to 20%.
It can be said that the present invention is particularly effective in excimer lasers. The inventors conducted experiments and studies regarding the output of the wavelength stabilized laser device according to this example. The experiment was conducted using a KrF excimer laser using krypton and fluorine as the laser medium and helium as the diluent gas. FIG. 7 shows the relationship between the measurement results of the laser output and the reflectance of the semi-transmissive mirror 4, and the etalon absorption power estimated from the laser output.
本発明による構成では、半透過鏡の反射率を4%以上と
すればレーザ発振する。また、半透過鏡の反射率は40
%以下とすれば、エタロンの吸収パワーを従来例の場合
より低く保つことができ、複数発振を避けられた。In the configuration according to the present invention, laser oscillation occurs if the reflectance of the semi-transmissive mirror is set to 4% or more. Also, the reflectance of the semi-transparent mirror is 40
% or less, the absorption power of the etalon could be kept lower than in the conventional example, and multiple oscillations could be avoided.
以上のような構成を有するので、本発明の波長安定化レ
ーザ装置はエタロンの熱的変形による発振線の複数化を
避けられ、一定波長の単色光を安定に放射できるものと
なる。With the above configuration, the wavelength stabilized laser device of the present invention can avoid multiple oscillation lines due to thermal deformation of the etalon, and can stably emit monochromatic light of a constant wavelength.
発明の詳細
な説明したように、本発明は半透過鏡によってエタロン
へ入射するレーザパワーの低減を図っているので、発振
波長の単色性が安定に保たれ、露光用光源として最適な
波長安定化レーザを提供できるものである。As described in detail, the present invention uses a semi-transmissive mirror to reduce the laser power incident on the etalon, so the monochromaticity of the oscillation wavelength is maintained stably, resulting in wavelength stabilization that is optimal for an exposure light source. It can provide lasers.
第1図は本発明の一実施例である狭帯域化レーザ装置の
構成を説明する図、第4図はレーザ波長選択の原理を説
明する図、第2図は半透過鏡の反射率に対するレーザ出
力およびエタロンが吸収するパワーの関係を示す図、第
3図は従来の波長安定化レーザの構成を示す図である。
1・・・・・・放電管、2,3・・・・・・全反射鏡、
4・・・・・・半透過鏡、5,5゛・・・・・・ファブ
リペローエタロン、6・・・・・・気密室、7・・・・
・・波長検出器、8・・・・・・圧力制御器、10・・
・・・・ビームスプリッタ、21・・・・・・光増幅器
、22・・・・・・波長選択器。Fig. 1 is a diagram illustrating the configuration of a band-narrowing laser device that is an embodiment of the present invention, Fig. 4 is a diagram illustrating the principle of laser wavelength selection, and Fig. 2 is a diagram illustrating the reflectance of the semi-transmissive mirror. A diagram showing the relationship between output and power absorbed by an etalon, and FIG. 3 is a diagram showing the configuration of a conventional wavelength-stabilized laser. 1... Discharge tube, 2, 3... Total reflection mirror,
4...Semi-transparent mirror, 5,5゛...Fabry-Perot etalon, 6...Airtight chamber, 7...
...Wavelength detector, 8...Pressure controller, 10...
... Beam splitter, 21 ... Optical amplifier, 22 ... Wavelength selector.
Claims (2)
、気密室内に複数個設置した波長選択素子と第2の全反
射鏡からなる波長選択器とを互いの光軸が交叉するよう
に半透過鏡で結合して光共振器を構成し、レーザ光の発
振波長を検出する手段と圧力制御手段とを設け、前記気
密室内の圧力を変化させることを特徴とする波長安定化
レーザ装置。(1) An optical amplifier consisting of a laser medium and a first total reflection mirror, and a wavelength selector consisting of a plurality of wavelength selection elements and a second total reflection mirror installed in an airtight chamber are arranged so that their optical axes intersect with each other. A wavelength-stabilized laser device, characterized in that the laser beam is coupled with a semi-transparent mirror to form an optical resonator, and is provided with means for detecting the oscillation wavelength of the laser beam and pressure control means to change the pressure within the airtight chamber. .
に対して4%から40%の範囲にあることを特徴とする
請求項1記載の波長安定化レーザ装置。(2) The wavelength stabilized laser device according to claim 1, wherein the reflectance of the semi-transmissive mirror is in the range of 4% to 40% with respect to the incident light in the optical axis direction of the optical resonator.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1249533A JP2586655B2 (en) | 1989-09-26 | 1989-09-26 | Wavelength stabilized laser device |
CA002010084A CA2010084C (en) | 1989-02-14 | 1990-02-14 | Laser device |
US07/480,152 US5050174A (en) | 1989-02-14 | 1990-02-14 | Laser device |
DE69012369T DE69012369T2 (en) | 1989-02-14 | 1990-02-14 | Laser device. |
EP90301598A EP0383586B1 (en) | 1989-02-14 | 1990-02-14 | Laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1249533A JP2586655B2 (en) | 1989-09-26 | 1989-09-26 | Wavelength stabilized laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03110881A true JPH03110881A (en) | 1991-05-10 |
JP2586655B2 JP2586655B2 (en) | 1997-03-05 |
Family
ID=17194400
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1249533A Expired - Fee Related JP2586655B2 (en) | 1989-02-14 | 1989-09-26 | Wavelength stabilized laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2586655B2 (en) |
-
1989
- 1989-09-26 JP JP1249533A patent/JP2586655B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2586655B2 (en) | 1997-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6560254B2 (en) | Line-narrowing module for high power laser | |
US4829536A (en) | Multi-mode narrow-band oscillation excimer laser | |
US6856638B2 (en) | Resonator arrangement for bandwidth control | |
US7245420B2 (en) | Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime | |
JP3888673B2 (en) | Fluorine molecular laser system for exposure | |
US11217962B2 (en) | Laser system | |
US20070091968A1 (en) | Two-stage laser system for aligners | |
JPH04211108A (en) | Exposing method and apparatus | |
US6603788B1 (en) | Resonator for single line selection | |
US6542243B2 (en) | Resonator optics monitoring method | |
EP0383586B1 (en) | Laser device | |
JP2586656B2 (en) | Wavelength stabilized laser device | |
JPH03110881A (en) | Wavelength-stabilized laser apparatus | |
JPH02152288A (en) | Method of controlling laser light wavelength, and excimer laser device and exposure device using the same | |
CN114072977A (en) | Optical pulse stretcher, laser device, and method for manufacturing electronic device | |
JPH03157917A (en) | Laser exposure apparatus | |
WO2023095219A1 (en) | Pulse expander and method for manufacturing electronic device | |
JPH02273981A (en) | Narrow-band laser device | |
JPH10284778A (en) | Laser oscillator | |
JP2600364B2 (en) | Narrow band laser device | |
JP2715610B2 (en) | Narrow band laser device | |
JPH01239923A (en) | Aligner | |
JPH02273980A (en) | Narrow-band laser device | |
JP2715608B2 (en) | Narrow band laser device | |
JPH03142979A (en) | Narrow-band laser equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |