JPH03110437A - Load testing device - Google Patents

Load testing device

Info

Publication number
JPH03110437A
JPH03110437A JP1246301A JP24630189A JPH03110437A JP H03110437 A JPH03110437 A JP H03110437A JP 1246301 A JP1246301 A JP 1246301A JP 24630189 A JP24630189 A JP 24630189A JP H03110437 A JPH03110437 A JP H03110437A
Authority
JP
Japan
Prior art keywords
load
vibrator
exciter
amount
test specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1246301A
Other languages
Japanese (ja)
Other versions
JP2810146B2 (en
Inventor
Takao Konno
隆雄 今野
Yuji Tadano
有司 多田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1246301A priority Critical patent/JP2810146B2/en
Publication of JPH03110437A publication Critical patent/JPH03110437A/en
Application granted granted Critical
Publication of JP2810146B2 publication Critical patent/JP2810146B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To measure a load applied to a testing body in the axial direction and shearing direction by providing a guiding device of table motion applying the load to the testing body and an arithmetic device of command value applying to an exciter. CONSTITUTION:The testing body 1 is fixed to a jig 2 and the table 3. When a pressure is applied by the exciter 6, the table motion according to a deformation is made along a rod 93 by a static pressure bearing 91b of the guiding device 9. When a tension is applied by an exciter 5, the table motion is made along a rod 92 by a static pressure bearing 91a. At this time, the upper surface 1a of testing body 1 is maintained in the horizontal position by a moment M0. Each exciter is incorporated with a load detector 7 detecting the loaded amount and a displacing amount detector 8 respectively, and inclined angles to table coordinates of each exciter are calculated from a length between joints and the displaced amount at the processing center of each exciter, then the objective loads applied to the testing body 1 in the axial direction and shearing direction are converted to components in the axial direction of each exciter according to he inclined direction to issue commands to each of them. With this constitution, a rotational motion of the testing body 1 is restrained, thereby the object load can be accurately measured while keeping the upper end horizontal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、建築構造物を地震から守るための免震要素や
各種構造物の材料試験、疲労試験に好適な載荷試験装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a load testing device suitable for material testing and fatigue testing of seismic isolation elements and various structures for protecting building structures from earthquakes.

〔従来の技術〕[Conventional technology]

従来の装置は、例えば三菱重工技報23巻、3号(19
87−5)に記載のように、試験体に軸方向およびせん
断方向荷重を加える加圧盤を水平移動可能な夏型平行四
辺形リングで支持し、試験体が受ける軸方向の変形とせ
ん断方向の変形とを同時に許容して、かつ試験体端面の
水平を保持する機構となっていた。さらに、日本機械学
会論文集((Jl)54巻、 507号(昭63−11
) P。
The conventional device is described, for example, in Mitsubishi Heavy Industries Technical Report Vol. 23, No. 3 (19
87-5), a pressure plate that applies axial and shear loads to the specimen is supported by a horizontally movable summer parallelogram ring, and the axial deformation and shear direction of the specimen are The mechanism was designed to simultaneously allow deformation and maintain the horizontality of the end surface of the specimen. Furthermore, the Transactions of the Japan Society of Mechanical Engineers ((Jl) Vol. 54, No. 507 (Sho 63-11)
) P.

2618記載のものは、2個の試験体を同時に加力する
もので、リンク式の治具により試験体端面の水平を保持
して軸方向およびせん断方向の載荷を同時に行える機構
となっている。
The test piece described in No. 2618 applies force to two specimens at the same time, and has a mechanism that allows simultaneous loading in the axial and shear directions while maintaining the horizontality of the end face of the specimen using a link-type jig.

なお、この種の装置として関連するものには例えば特開
昭62−24124が挙げられる。
Note that related devices of this type include, for example, Japanese Patent Application Laid-Open No. 62-24124.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、いずれもリンク機構により試験体端面
の水平を保持して、軸方向およびせん断方向に載荷する
機構となっているが、構造的にリンクの剛性を高くする
ことに限界があり、試験体のせん断方向の変形量が大と
なると試験体上下端部における曲げモーメントによって
端面が水平を保持できず載荷試験の精度が低下する問題
があった。
All of the above-mentioned conventional technologies use a link mechanism to maintain the horizontality of the end surface of the test specimen and load it in the axial direction and shear direction, but there are structural limitations in increasing the rigidity of the link. When the amount of deformation of the test specimen in the shear direction becomes large, the bending moment at the upper and lower ends of the test specimen makes it impossible to keep the end surfaces horizontal, resulting in a problem in which the accuracy of the loading test decreases.

本発明は、上記従来技術の問題点を解決するためになさ
れたもので、試験体のせん断方向の変形量が大となるこ
とにより生ずる試験体上下端部の曲げモーメントによる
端面の回転動を拘束し、かつ加振機がいずれの状態にあ
っても試験体に目標とする軸方向およびせん断方向の荷
重を加えることができる載荷試験装置を提供することを
、その目的とするものである。
The present invention has been made in order to solve the problems of the prior art described above, and restrains the rotational movement of the end face due to the bending moment at the upper and lower ends of the specimen, which is caused by the large amount of deformation of the specimen in the shear direction. The object of the present invention is to provide a loading test device that can apply targeted loads in the axial direction and shear direction to the test specimen regardless of the state of the vibrator.

本発明の他の目的は、加振機がいずれの状態にあっても
試験体に加わっている軸方向およびせん断方向の荷重を
計測できる載荷試験装置を提供することにある。
Another object of the present invention is to provide a loading test device that can measure the loads in the axial direction and shear direction that are applied to a test specimen no matter what state the vibrator is in.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、試験体に軸方向およびせん断方向荷重を加
えるテーブルを静圧軸受で保持して回転動を拘束し、直
交する2方向の動きを許容する案内装置を備え、各加振
機に与えるべき載荷量を、各加振機のストローク中心で
の継手間長さ、変位量、目標軸方向荷重および目標せん
断方向荷重を関数として演算する指令値演算装置を設け
ることにより、達成される。
The above purpose is to hold the table that applies axial and shear loads to the test specimen using static pressure bearings to restrain rotational movement, and to equip each vibrator with a guide device that allows movement in two orthogonal directions. This is achieved by providing a command value calculation device that calculates the required load amount as a function of the length of the joint at the stroke center of each vibrator, the amount of displacement, the target axial load, and the target shear direction load.

上記他の目的は、上述と同様の構成において、試験体に
実際に加わっている2方向の力を、各加振機のストロー
ク中心での継手間長さ、変位量および各加振機の荷重検
出器で検出する載荷量を関数どして演算する状態量演算
装置を設けることにより、達成される。
The other purpose is to calculate the force actually applied to the test specimen in two directions using the length of the joint at the stroke center of each vibrator, the amount of displacement, and the load of each vibrator in the same configuration as above. This is achieved by providing a state quantity calculation device that calculates the load detected by the detector as a function.

〔作用〕[Effect]

上記の技術的手段によれば、試験体のせん断方向の変形
量が大となることにより生ずる試験体上下端部の曲げモ
ーメントによる端面の回転動は、案内装置の静圧軸受で
拘束し、各加振機に与えるべき指令荷重は、各加振機の
ストローク中心での継手間長さとストローク中心からの
変位量とがら各加振機のテーブル座標に対する傾き角を
求め、試験体に加える目標軸方向およびせん断方向の荷
重をこの傾き角により各加振機の軸方向成分に変換する
ことにより求まる。
According to the above technical means, the rotational movement of the end face due to the bending moment at the upper and lower ends of the test piece, which occurs due to the large amount of deformation in the shear direction of the test piece, is restrained by the static pressure bearing of the guide device, and each The command load to be applied to the vibrator is determined by determining the inclination angle of each vibrator with respect to the table coordinates based on the length of the joint at the stroke center of each vibrator and the amount of displacement from the stroke center, and then determining the command load to be applied to the test specimen in the target axial direction. and is determined by converting the load in the shear direction into an axial component of each vibrator using this inclination angle.

また、上記他の技術的手段によれば、試験体に加わって
いる軸方向およびせん断方向の荷重は、上述と同様にし
て求める各加振機のテーブル座標に対する傾き角により
、加振機に取付けた荷重検出器で検出した載荷量をテー
ブル座標に変換することにより求まる。
In addition, according to the other technical means mentioned above, the axial and shear loads applied to the test specimen are determined by the inclination angle of each vibrator with respect to the table coordinates, which is determined in the same manner as described above. It is determined by converting the load detected by a load detector into table coordinates.

〔実施例〕〔Example〕

以下、本発明の各実施例を第1図ないし第5図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず、第1図は、本発明の一実施例に係る載荷試験装置
の全体構造図、第2図は、第1図に示す装置の全体制御
系統図である。各回において同一符号のものは、同一部
分である。
First, FIG. 1 is an overall structural diagram of a loading test apparatus according to an embodiment of the present invention, and FIG. 2 is an overall control system diagram of the apparatus shown in FIG. 1. Items with the same symbols each time are the same parts.

第1図において1は、試験体である免震要素で、下側の
端面が取付治具2に、上側はテーブル3に多数のボルト
により取付けられている。テーブル3は、スイベルジヨ
イント4aを介して、試験体1にせん断方向の荷重を載
荷するX軸加振機5および同様にして軸方向の荷重を載
荷するY軸加振機6と接続している。各加振機は、載荷
量を検出する荷重検出器7および変位量を検出する変位
検出器8とを内蔵し、スイベルジヨイント4bを介して
反力壁16に接続している。
In FIG. 1, reference numeral 1 denotes a seismic isolation element which is a test specimen, and its lower end face is attached to a mounting jig 2, and its upper end is attached to a table 3 with a large number of bolts. The table 3 is connected via a swivel joint 4a to an X-axis vibrator 5 that applies a load in the shear direction to the specimen 1 and a Y-axis vibrator 6 that similarly applies a load in the axial direction. There is. Each vibrator includes a load detector 7 for detecting the amount of load and a displacement detector 8 for detecting the amount of displacement, and is connected to the reaction wall 16 via a swivel joint 4b.

テーブル3を直交する2方向に案内する案内装置9は、
テーブル3を支持する静圧軸受91aとこれをせん断方
向に案内するX軸ガイドロッド92およびこれら全体を
静圧軸受91bで支持して軸方向に案内するY軸ガイド
ロッド93で構成する。
The guide device 9 that guides the table 3 in two orthogonal directions is
It is composed of a static pressure bearing 91a that supports the table 3, an X-axis guide rod 92 that guides it in the shear direction, and a Y-axis guide rod 93 that supports the entire table 3 with a static pressure bearing 91b and guides it in the axial direction.

また、第2図における10は、目標荷重に相当する電圧
信号を発生する信号発生器、11は詳細を後述する指令
値演算装置で、13は加算器、14はサーボ増幅器で、
15は詳細を後述する状態量演算装置で構成する。
In addition, 10 in FIG. 2 is a signal generator that generates a voltage signal corresponding to the target load, 11 is a command value calculation device whose details will be described later, 13 is an adder, and 14 is a servo amplifier.
Reference numeral 15 is constituted by a state quantity calculation device whose details will be described later.

第3図は、第1図に示す装置の座標系の定義を示す図で
、X軸加振機5.Y軸加振機6が共にストローク中心を
零点とし、加振機のピストンが出側を+、引例を−とじ
ている。また、各加振機のストローク中心におけるスイ
ベルジヨイントの中心間長さ(以下、継手間長さと省略
)を各々Lx。
FIG. 3 is a diagram showing the definition of the coordinate system of the apparatus shown in FIG. 1, and shows the X-axis vibrator 5. Both Y-axis vibrators 6 have their stroke centers as zero points, and the pistons of the vibrators have + and - references. In addition, the center-to-center length of the swivel joint at the stroke center of each vibrator (hereinafter abbreviated as length between joints) is Lx.

Lyとし、零点からの変位量ま、xo、yoとして変位
検出器8で検出する。この時の各加振機の載該量は、f
x、fyとして荷重検出器7で検出する。
The amount of displacement from the zero point is detected by the displacement detector 8 as xo and yo. At this time, the loading amount of each vibrator is f
The load detector 7 detects it as x and fy.

第4図は、試験体である免震要素1にせん断方向荷重W
xと軸方向荷重wyとを載荷した時の変形状態を示す、
この時、免震要素1の上部端面1aと下部端面1bとを
平行に保つ為には、機械装置側で下式で示されるモーメ
ントMOを保持する必要がある。
Figure 4 shows the shear direction load W on the test specimen, the seismic isolation element 1.
Showing the deformation state when x and axial load wy are applied,
At this time, in order to keep the upper end surface 1a and lower end surface 1b of the seismic isolation element 1 parallel, it is necessary to maintain a moment MO expressed by the following formula on the mechanical device side.

M o =−(Wx−H+Wy−XI)      −
(1)ここで、Wx:せん断荷重 Wy:軸方向荷重 H:試験体高さ 第5図は、第2図に示す指令値演算装置11および状態
量演算装置15の演算処理の内容をフローで示すもので
ある。指令値演算装置11は、加振機の変位量XO,y
Oを取り込み、これとあらかじめ入力される継手間長さ
Lx、Lyとで加振機が各軸と成す角度θx、Oyを求
め、これにより信号発生器10で与えられる目標せん断
方向荷重Px、軸方向荷重pyを加振機の軸方向におけ
る荷重値Fx、Fyに変換してサーボ系への指令信号と
する。はだ、状態量演算装置15は、前述と同様にして
求める角度θX、θyにより、荷重検出器7で検出する
載荷量fx、fyをX軸、Y軸方向の荷重値に変換して
せん断荷重W x 、軸方向荷重wyを求める。
M o =-(Wx-H+Wy-XI)-
(1) Here, Wx: Shear load Wy: Axial load H: Test specimen height FIG. 5 shows the content of the calculation process of the command value calculation device 11 and state quantity calculation device 15 shown in FIG. 2 in a flowchart. It is something. The command value calculation device 11 calculates the displacement amount XO,y of the vibration exciter.
The angles θx and Oy that the vibration exciter forms with each axis are calculated using this and the joint lengths Lx and Ly input in advance, and from this, the target shear direction load Px given by the signal generator 10 and the axis The directional load py is converted into load values Fx and Fy in the axial direction of the vibrator, which are used as command signals to the servo system. In addition, the state quantity calculation device 15 converts the loads fx and fy detected by the load detector 7 into load values in the X-axis and Y-axis directions using the angles θX and θy obtained in the same manner as described above, and calculates the shear load. Determine W x and axial load wy.

次に、動作について説明する。Next, the operation will be explained.

まず、第1図において、Y軸加振機6が押し出す側に力
を加えるとスイベルジヨイント4a、静圧軸受91aお
よびテーブル3を介して試験体1に伝達される。この時
、Y軸方向の変形量によるテーブルの動きは、案内装置
i!9の静圧軸受91bに支持されてY軸ガイドロッド
93に沿う。次に。
First, in FIG. 1, when the Y-axis vibrator 6 applies force to the pushing side, it is transmitted to the test specimen 1 via the swivel joint 4a, the hydrostatic bearing 91a, and the table 3. At this time, the movement of the table due to the amount of deformation in the Y-axis direction is the guide device i! It is supported by the static pressure bearing 91b of 9 and extends along the Y-axis guide rod 93. next.

X軸加振機5が引張力を加えるとスイベルジヨイント4
aおよびテーブル3を介して試験体1に伝達される。こ
の時のX軸方向の変形量によるテーブルの動きは、静圧
軸受91aに支持されて、X軸ガイドロッド92に沿う
。この時、試験体の1の変形状態は、第4図のように表
わされ、式(1)で示されるモーメントMOはX軸ガイ
ドロッドを支持する静圧軸受91bと反力壁1bに固定
されたY軸ガイドロッド93とで保持し、試験体1の上
部端面1aの水平を保つ。
When the X-axis vibrator 5 applies a tensile force, the swivel joint 4
a and the table 3 to the test specimen 1. The movement of the table due to the amount of deformation in the X-axis direction at this time is supported by the static pressure bearing 91a and follows the X-axis guide rod 92. At this time, the deformation state of test specimen 1 is expressed as shown in Fig. 4, and the moment MO expressed by equation (1) is fixed to the static pressure bearing 91b that supports the X-axis guide rod and the reaction wall 1b. The upper end surface 1a of the specimen 1 is held horizontally by the Y-axis guide rod 93.

また、第3図に示すように、各加振機は、テーブル3の
位置に応じてX軸、Y軸と各々角度Ox。
Further, as shown in FIG. 3, each vibration exciter has an angle Ox with respect to the X axis and the Y axis, respectively, depending on the position of the table 3.

Oyを成し、試験体1に加わっているせん断荷重Wxお
よび軸方向荷重wyは荷重検出器7で検出する各加振機
の載荷量fx、fyと一致しない。
The shear load Wx and the axial load wy that form Oy and are applied to the test specimen 1 do not match the loading amounts fx and fy of each vibrator detected by the load detector 7.

力のつりあい関係は次式で表わされる。The force balance relationship is expressed by the following equation.

Wy=−f x 0sirl x+f x  ′cos
a yまた、テーブル3の位置は、次式で求まる。
Wy=-f x 0sirl x+f x ′cos
a y Furthermore, the position of the table 3 can be found using the following equation.

X=Lx (Lx−xo)(Lx−Lex   Lx’Lex2−
(Lx”+Ly2)(Lex2−Ly2))Lxz+L
y” Lx−叉0 Y= Ly ・・・(3) ここで、 2・(Lx−xo) Lx2+Ly2 1 ・・・(5) 式(2) 次のように書換える。
X=Lx (Lx-xo) (Lx-Lex Lx'Lex2-
(Lx”+Ly2) (Lex2-Ly2))Lxz+L
y” Lx−0 Y=Ly (3) Here, 2・(Lx−xo) Lx2+Ly2 1 (5) Equation (2) is rewritten as follows.

従って、 加振機に与える荷重指令値Fx。Therefore, Load command value Fx given to the vibrator.

y は、 式(6) を逆変換して次式で求まる。y teeth, Formula (6) It can be found by the following formula by inversely transforming.

第5図に示すように指令値演算装置1 1は、 加振 機の変位量xo。As shown in Fig. 5, the command value calculation device 1 1 is Vibration Machine displacement xo.

yoと継手間長さLx。yo and joint length Lx.

Lyとか ら式(4) 、 (5)の演算を行い、目標せん断荷重
Pxと目標軸方向荷重pyに応じて式(7)で変換した
荷重値を加振機への指令値として出力する。
Equations (4) and (5) are calculated from Ly, and the load value converted using Equation (7) according to the target shear load Px and target axial load py is output as a command value to the vibrator.

状態量演算装置15は、同様にして荷重検出器7の出力
fx、fyを取込み、式(6)で変換した荷重値を試験
体1に加わっている荷重として出力する。
The state quantity calculating device 15 similarly takes in the outputs fx and fy of the load detector 7, and outputs the load value converted by equation (6) as the load applied to the test specimen 1.

本実施例の載荷試験装置によれば、試験体のせん断方向
の変形に伴って増大するモーメントによる試験体上端部
の回転動を静圧軸受方式による案内装置で拘束し、かつ
テーブルの位置によって各加振機がXおよびY軸と成す
角度を加振機の変位量と継手間長さとから演算し、これ
により試験体に加える目標荷重を加振機の軸大変換して
与える為、精度の良い載荷試験が可能となり、その効果
は大なるものがある。
According to the loading test device of this example, the rotational movement of the upper end of the test specimen due to the moment that increases with the deformation of the test specimen in the shear direction is restrained by the guide device using a hydrostatic pressure bearing system, and the position of the table is adjusted to The angle that the vibrator makes with the X and Y axes is calculated from the displacement amount of the vibrator and the length of the joint, and the target load to be applied to the test specimen is applied by converting the axis of the vibrator, which improves accuracy. Good loading tests are now possible, and the effects are significant.

また、状態量演算装置は、同様にして各加振機に取付け
た荷重検出器で測定した載荷量を試験体の座標系に変換
して出力することにより、試験体に加っているせん断方
向および軸方向の荷重を精度良く測定することができる
In addition, the state quantity calculation device similarly converts the load measured by the load detector attached to each vibrator to the coordinate system of the specimen and outputs it, thereby calculating the shear direction applied to the specimen. And the load in the axial direction can be measured with high accuracy.

従って、両者を組合せて用いることにより、その効果は
、さらしこ大なるものがある。
Therefore, by using both in combination, the effect can be even greater.

〔発明の効果〕〔Effect of the invention〕

以上のべたように1本発明によれば、試験体に軸方向お
よびせん断方向の荷重を載荷する試験において試験体が
受ける軸方向の変形とせん断方向の変形とを同時に許容
し、かつ回転動を拘束して試験体上端部の水平を保持す
ることができ、さらに加振機が各方向に対してどのよう
な状態にあっても目標とする荷重を正確に載荷すること
ができ、さらにその状態を監視することもできるので高
精度な載荷試験が可能である。
As described above, according to the present invention, it is possible to simultaneously tolerate axial deformation and shear direction deformation of a test specimen in a test in which loads are applied to the test specimen in the axial direction and shear direction, and to prevent rotational motion. The upper end of the specimen can be restrained horizontally, and the target load can be applied accurately no matter what state the vibrator is in in each direction. Since it is also possible to monitor the load, highly accurate loading tests are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係る載荷試験装置の全体
構成を示す構造図、第2図は、第1図に示す装置の制御
系統を示すブロック図、第3図は第1図に示す装置の座
標系を定義する図、第4図は、試験体に加る力と変形状
態を説明する図、第5図は本発明の指令値演算装置と状
態量演算装置の演算処理の内容を示すフロー図である。 1・・・試験体、3・・・テーブル、4a、4b・・・
スイベルジヨイント、5・・・X軸加振機、6・・・Y
軸加振機、7・・・荷重検出器、8・・・変位検出器、
9川案内装匠、91a、91b・・・静圧軸受、11・
・・指令値演算装第 4 因 ■ 図 //
FIG. 1 is a structural diagram showing the overall configuration of a loading test device according to an embodiment of the present invention, FIG. 2 is a block diagram showing the control system of the device shown in FIG. 1, and FIG. 3 is a diagram similar to the one shown in FIG. Figure 4 is a diagram that defines the coordinate system of the device shown in Figure 4 is a diagram that explains the force applied to the test specimen and the deformation state, and Figure 5 is a diagram that explains the calculation processing of the command value calculation device and state quantity calculation device of the present invention. It is a flow diagram showing the contents. 1... Test specimen, 3... Table, 4a, 4b...
Swivel joint, 5...X-axis vibrator, 6...Y
Axial vibrator, 7... Load detector, 8... Displacement detector,
9 River guide design, 91a, 91b...static pressure bearing, 11.
・・Command value calculation unit 4th cause■ Figure//

Claims (1)

【特許請求の範囲】 1、試験体を載荷するテーブルと、このテーブルを介し
て2方向の力を試験体に付加する2軸の加振機と、テー
ブルを直交する2方向に案内し回転動を拘束する案内装
置と、加振機の力を検出する荷重検出器と、加振機の変
位量を検出する変位検出器とからなる載荷試験装置にお
いて、試験体に直交する2方向の力を加えるとき上記の
各加振機に与えるべき載荷量を、各加振機のストローク
中心での継手間長さ、各加振機の変位量、目標せん断荷
重および目標軸方向荷重を関数として演算する指令値演
算装置を設け、その演算結果の各載荷量を前記2軸の加
振機に指令荷重信号として入力するように制御回路を構
成しことを特徴とする載荷試験装置。 2、請求項1記載のものにおいて、試験体に実際に加わ
っている2方向の力を、各加振機のストローク中心での
継手間長さ、各加振機の変位量および各加振機の荷重検
出器で検出する載荷量を関数として演算する状態量演算
装置を設け、その演算結果のせん断荷重および軸方向荷
重を計測信号として出力するように制御回路を構成した
ことを特徴とする載荷試験装置。
[Claims] 1. A table on which a test specimen is loaded, a two-axis vibrator that applies force in two directions to the test specimen via this table, and a rotary motion that guides the table in two orthogonal directions. A loading test device consists of a guide device that restrains the specimen, a load detector that detects the force of the vibrator, and a displacement detector that detects the amount of displacement of the vibrator. The amount of load that should be applied to each of the above vibrators is calculated as a function of the joint length at the stroke center of each vibrator, the amount of displacement of each vibrator, the target shear load, and the target axial load. 1. A load testing device comprising: a command value calculation device; and a control circuit configured to input each load amount resulting from the calculation to the two-axis vibration exciter as a command load signal. 2. In the device described in claim 1, the forces in two directions actually applied to the test specimen are calculated by measuring the length of the joint at the stroke center of each vibrator, the displacement of each vibrator, and the force in two directions actually applied to the test specimen. A loading device characterized in that a state quantity calculation device is provided to calculate the load amount detected by the load detector as a function, and a control circuit is configured to output the shear load and axial load as measurement signals as the calculation results. Test equipment.
JP1246301A 1989-09-25 1989-09-25 Loading test equipment Expired - Fee Related JP2810146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246301A JP2810146B2 (en) 1989-09-25 1989-09-25 Loading test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246301A JP2810146B2 (en) 1989-09-25 1989-09-25 Loading test equipment

Publications (2)

Publication Number Publication Date
JPH03110437A true JPH03110437A (en) 1991-05-10
JP2810146B2 JP2810146B2 (en) 1998-10-15

Family

ID=17146524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246301A Expired - Fee Related JP2810146B2 (en) 1989-09-25 1989-09-25 Loading test equipment

Country Status (1)

Country Link
JP (1) JP2810146B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014570A1 (en) * 1997-09-12 1999-03-25 Hitachi, Ltd. Multiaxial oscillator and method of controlling the same
JP4705420B2 (en) * 2005-06-30 2011-06-22 株式会社サトー Patient recognition system
CN104634527A (en) * 2015-01-27 2015-05-20 天津大学 Dynamic model test loading device
CN107490476A (en) * 2017-09-30 2017-12-19 苏州奔机电有限公司 A kind of walkway steps static test frock
CN113879560A (en) * 2021-11-13 2022-01-04 四川凌峰航空液压机械有限公司 Method for measuring movable clearance of internal lock of airplane actuator cylinder
CN114720099A (en) * 2021-12-02 2022-07-08 中国农业大学 Full-working-condition single-rod loaded electric spindle reliability test device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999014570A1 (en) * 1997-09-12 1999-03-25 Hitachi, Ltd. Multiaxial oscillator and method of controlling the same
JP4705420B2 (en) * 2005-06-30 2011-06-22 株式会社サトー Patient recognition system
CN104634527A (en) * 2015-01-27 2015-05-20 天津大学 Dynamic model test loading device
CN107490476A (en) * 2017-09-30 2017-12-19 苏州奔机电有限公司 A kind of walkway steps static test frock
CN113879560A (en) * 2021-11-13 2022-01-04 四川凌峰航空液压机械有限公司 Method for measuring movable clearance of internal lock of airplane actuator cylinder
CN113879560B (en) * 2021-11-13 2023-09-26 四川凌峰航空液压机械有限公司 Method for measuring movable clearance of inner lock of aircraft actuating cylinder
CN114720099A (en) * 2021-12-02 2022-07-08 中国农业大学 Full-working-condition single-rod loaded electric spindle reliability test device

Also Published As

Publication number Publication date
JP2810146B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US5049797A (en) Device and method for control of flexible link robot manipulators
US3948093A (en) Six degree of freedom force transducer for a manipulator system
US9989973B2 (en) Measurement control system for multi-shaft supported air floatation platform
US6721668B1 (en) Vibration exciting apparatus and vibration testing apparatus for structure using same
Nierenberger et al. Multiaxial testing of materials using a stewart platform: Case study of the nooru-mohamed test
JP3123784B2 (en) 3D shaking table
JPH09131690A (en) 6-shaft load detector
JPH03110437A (en) Load testing device
JP2002129598A (en) Method and apparatus for obtaining weight of pay load
CN103557823A (en) Cloth placing boom vibration displacement detection method and detection system, controller and equipment
JP3342328B2 (en) 6-axis load device
US6575037B2 (en) Multiple degree of freedom vibration exciting apparatus and system
US10551286B2 (en) Testing system and method for applying loads to a test specimen
JP2003279457A (en) Loading test device
JP3002480B2 (en) Vibration isolation test equipment
JPH0626982A (en) Test device for base isolation element
Weck et al. An examination technique to determine static weakpoints of machine tools
JPH08313387A (en) Simulation test device for rolling and pitching of heavy-body-supporting structural member or structural body by earthquake
Shaw et al. Bandwidth enhancement of position measurements using measured acceleration
JPH01282437A (en) Load measuring apparatus
SU1631348A1 (en) Shell construction loading method for testing strength
JP3418667B2 (en) Vibration apparatus and vibration test method using the same
JPH05107146A (en) Two-dimensional vibration testing machine
Öztürk et al. An Analytical and Experimental Study of Time Integration Methods in Pseudo Dynamic Analysis
CN207585866U (en) A kind of removable unloading system for being widely applicable to the calibration of multiple spot dynamic deflection

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees