JPH03110139A - Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric - Google Patents

Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric

Info

Publication number
JPH03110139A
JPH03110139A JP24842389A JP24842389A JPH03110139A JP H03110139 A JPH03110139 A JP H03110139A JP 24842389 A JP24842389 A JP 24842389A JP 24842389 A JP24842389 A JP 24842389A JP H03110139 A JPH03110139 A JP H03110139A
Authority
JP
Japan
Prior art keywords
heat
base material
resistant thermoplastic
laminate
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24842389A
Other languages
Japanese (ja)
Inventor
Atsushi Fujioka
藤岡 厚
Kiyoshi Hirozawa
清 広沢
Ikuo Hoshi
星 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP24842389A priority Critical patent/JPH03110139A/en
Publication of JPH03110139A publication Critical patent/JPH03110139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE:To prevent a base material from cutting when it is coated and to prepare a laminated sheet of a base material made of a heat-resistant thermoplastic fiber with low dielectric constant and high heat resistance by using a mixed woven base material consisting of a specified heat resistant thermoplastic fiber and a glass fiber. CONSTITUTION:A base material prepd. by weaving a fabric using a glass fiber as a part of warps and a heat-resistant thermoplastic fiber with a m.p. of 270 deg.C or higher as remaining part of warps and wefts is coated with a thermosetting resin to prepare a prepreg. Parts of this prepreg contg. no glass fiber are cut in a specified dimension and required sheets of the cut prepregs are put in layers and if necessary, copper foils are placed on both faces or one face of the obtd. laminate and a laminated sheet is prepd. by heat-pressing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、誘電率が低(、しかも耐熱性に優れたプリン
ト配線板用の積層板の製造方法に関し、特に、塗工作業
時に基材が切れない製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for manufacturing a laminate for printed wiring boards that has a low dielectric constant (and excellent heat resistance), and in particular, Concerning a manufacturing method that does not cut.

〔従来の技術〕[Conventional technology]

近年、コンピュータの高速演算処理化に伴い信号伝送速
度の向上のため、低誘電率の積層板が要求されている。
In recent years, in order to improve signal transmission speed as computers have become faster in processing, there has been a demand for laminates with a low dielectric constant.

従来、低誘電率の積層板用の基材としてはEガラス繊維
布、Dガラス繊維布、クォーツガラス繊維布、芳香族ボ
リア槌ド繊維布等が使用されてきた、又、本発明者らは
、誘電率を更に低くするため、耐熱熱可塑性繊維を基材
として用いることを特願昭63−322437で提案し
た。
Conventionally, E glass fiber cloth, D glass fiber cloth, quartz glass fiber cloth, aromatic boria hammered fiber cloth, etc. have been used as base materials for low dielectric constant laminates. In order to further lower the dielectric constant, they proposed the use of heat-resistant thermoplastic fibers as a base material in Japanese Patent Application No. 63-322437.

耐熱熱可塑性繊維としては、ポリエーテルエーテルケト
ン(以下PEEKと略す)繊維、ポリエーテルイミド(
以下PEIと略す)繊維、ポリフェニレンスルフィド(
以下PPSと略す)繊維等があり、これらの繊維の融点
は270°C以上で耐熱性が高いだけでなく、誘電率も
3.1〜3.5と低く、前記の積層板用の基材として好
適である。
Examples of heat-resistant thermoplastic fibers include polyether ether ketone (hereinafter abbreviated as PEEK) fiber and polyetherimide (
(hereinafter abbreviated as PEI) fiber, polyphenylene sulfide (hereinafter abbreviated as PEI), polyphenylene sulfide (
These fibers have a melting point of 270°C or higher and are not only highly heat resistant, but also have a low dielectric constant of 3.1 to 3.5, and are used as base materials for the above-mentioned laminates. It is suitable as

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記耐熱熱可塑性繊維布基材に熱硬化性
樹脂を含浸させ、塗工工程とよばれる溶剤加熱乾燥工程
を経てプリプレグを作製する際、基材を引っ張り移動さ
せる力が大きい場合や塗工温度が高い場合などに基材が
切れてしまうという問題がある。
However, when producing a prepreg by impregnating the above-mentioned heat-resistant thermoplastic fiber fabric base material with a thermosetting resin and passing through a solvent heating and drying process called a coating process, there are cases where the force for pulling and moving the base material is large, or when the coating process There is a problem that the base material breaks when the temperature is high.

本発明はかかる状況に鑑みなされたものであって、塗工
時に基材が切れるのを防いで、誘電率が低く、耐熱性が
高いという特長を有する耐熱熱可塑性繊維布基材積層板
を製造する方法を提供せんとするものである。
The present invention was made in view of the above situation, and produces a heat-resistant thermoplastic fiber cloth base laminate that prevents the base material from being cut during coating, has a low dielectric constant, and has high heat resistance. The aim is to provide a method for doing so.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記問題を解決すべく検討を行った結果
、特定の耐熱熱可塑性繊維とガラス繊維の混繊基材を用
いることにより、前記目的を達成しうることを見出し、
本発明を完成するに至った。
As a result of conducting studies to solve the above problem, the present inventors discovered that the above object could be achieved by using a mixed fiber base material of a specific heat-resistant thermoplastic fiber and glass fiber,
The present invention has now been completed.

すなわち、本発明の耐熱熱可塑性繊維布基材積層板の製
造方法は、縦糸の一部にガラス繊維を使用し、残りの縦
糸及び横糸に融点が270°C以上の耐熱熱可塑性繊維
を使用して布状に製織した基材に、熱硬化樹脂を塗工し
てプリプレグを作製し、このプリプレグのガラス繊維を
含まない部分を所定寸法に裁断し、裁断されたプリプレ
グを必要枚数積層し、必要に応じて得られた積層物の両
面或いは片面に銅箔を載置し、加熱加圧して積層板を製
造することを特徴とする。
That is, the method for producing a heat-resistant thermoplastic fiber cloth base laminate of the present invention uses glass fiber for a portion of the warp threads, and heat-resistant thermoplastic fibers having a melting point of 270°C or higher for the remaining warp threads and weft threads. A prepreg is produced by coating a thermosetting resin on a base material woven into a cloth shape, cutting the part of this prepreg that does not contain glass fibers to a specified size, stacking the required number of cut prepregs, and creating a prepreg as needed. The method is characterized in that copper foil is placed on both sides or one side of the laminate obtained according to the method, and the laminate is manufactured by heating and pressing.

本発明において耐熱熱可塑性繊維とは、融点が270℃
以上の熱可塑性繊維である。融点が270℃未満の汎用
熱可塑性繊維を用いた場合、はんだ耐熱性試験(260
℃のはんだ浴にフロートする)において膨れが生じてし
まう。
In the present invention, heat-resistant thermoplastic fibers have a melting point of 270°C.
These are the above thermoplastic fibers. When using general-purpose thermoplastic fibers with a melting point of less than 270°C, soldering heat resistance test (260°C
(floating in a solder bath at ℃), blistering occurs.

この様な耐熱熱可塑性繊維として、ポリエーテルエーテ
ルケトン繊維、ポリエーテルイミド繊維、ポリフェレン
スルフィド繊維等がある。各々の化学構造式を下記に示
す。
Examples of such heat-resistant thermoplastic fibers include polyetheretherketone fibers, polyetherimide fibers, and polyferene sulfide fibers. The chemical structural formulas of each are shown below.

ポリエーテルエーテルケトン; ポリエーテルイミド; ポリフェニレンスルフィド; ポリエーテルエーテルケトン繊維の融点は334℃であ
り、ガラス転移温度は143℃であり、誘電率は3.2
である。ポリエーテルイミド繊維の融点は約320°C
であり、ガラス転移温度は217°Cであり、誘電率は
3.1である。ポリフェニレンスルフィド繊維の融点は
285°Cであり、ガラス転移温度は約85°Cであり
、誘電率は3.5である。
Polyetheretherketone; Polyetherimide; Polyphenylene sulfide; The melting point of polyetheretherketone fiber is 334°C, the glass transition temperature is 143°C, and the dielectric constant is 3.2
It is. The melting point of polyetherimide fiber is approximately 320°C
, the glass transition temperature is 217°C, and the dielectric constant is 3.1. Polyphenylene sulfide fibers have a melting point of 285°C, a glass transition temperature of about 85°C, and a dielectric constant of 3.5.

これらの耐熱熱可塑性繊維は繊維径が5〜50μmのも
のが用いられ、好ましくは10〜30μmの範囲である
。繊維径か細すぎると糸が切れやすくなり、太すぎると
基材としての厚みが厚くなりすぎ、積層板の用途には適
さなくなる。
These heat-resistant thermoplastic fibers have a fiber diameter of 5 to 50 μm, preferably 10 to 30 μm. If the fiber diameter is too small, the threads will break easily, and if it is too thick, the base material will be too thick, making it unsuitable for use in laminates.

本発明において用いられるガラス繊維としては、Eガラ
ス繊維、Sガラス繊維、Dガラス繊維、クォーツガラス
繊維等がある。ガラス繊維は好ましくは数本を束にした
ヤーンとして基材の縦糸として用いられる。
Examples of the glass fibers used in the present invention include E glass fibers, S glass fibers, D glass fibers, and quartz glass fibers. The glass fibers are preferably used as yarns in bundles as the warp threads of the substrate.

ガラス繊維の縦糸としての使用場所は基材の縦方向の両
端部や中央部が好ましい。プリプレグを裁断する際ガラ
ス繊維を含まないように所定寸法に裁断可能な位置であ
ればよい。ガラス繊維の使用量は塗工時の張力に耐えれ
ばよいので通常2〜10本(ヤーン)で充分である。ま
た、ガラス繊維ヤーンの太さは基材の厚さが厚くならな
い程度の太さが好ましい。
The glass fibers are preferably used as warp yarns at both ends or in the center of the base material in the longitudinal direction. When cutting the prepreg, the position may be any position as long as it can be cut into a predetermined size so as not to contain glass fibers. The amount of glass fiber used is usually 2 to 10 (yarns) sufficient as long as it can withstand the tension during coating. Further, the thickness of the glass fiber yarn is preferably such that the thickness of the base material does not increase.

本発明において用いられる熱硬化性樹脂としては、エポ
キシ樹脂、ビスマレイミド樹脂、或いはフッ素樹脂等の
低誘電率樹脂等がある。
Thermosetting resins used in the present invention include low dielectric constant resins such as epoxy resins, bismaleimide resins, and fluororesins.

これらの熱硬化性樹脂を基材に塗工しプリプレグを作製
する。プリプレグの作製は熱硬化性樹脂を溶媒に溶かし
てフェスとし、上記基材に含浸後、加熱乾燥して溶媒を
除去し、プリプレグを得る方法、或いは熱硬化性樹脂を
無溶媒の状態で加熱溶融させ、上記基材に含浸させる方
法等により行われる。
These thermosetting resins are applied to a base material to produce a prepreg. Prepreg can be produced by dissolving thermosetting resin in a solvent to form a face, impregnating it into the above base material, then heating and drying to remove the solvent to obtain prepreg, or by heating and melting the thermosetting resin without a solvent. This is carried out by a method such as allowing the base material to be impregnated.

この様にして得られたプリプレグのガラス繊維を含まな
い部分を所定寸法に裁断し、裁断されたプリプレグを必
要枚数積層し、必要に応じて得られた積層物の両面或い
は片面に銅箔を載置し、加熱加圧して積層板を製造する
。裁断の際、プリプレグ中にガラス繊維を含む様にする
とその部分の誘電率が高くなるので好ましくない。又、
ガラス繊維と耐熱熱可塑性繊維の熱膨張率差のため、熱
硬化性樹脂にマイクロクランクが入る場合があり、この
点でも好ましくない。
The part of the prepreg obtained in this way that does not contain glass fibers is cut to a predetermined size, the cut prepreg is laminated in the required number of sheets, and copper foil is placed on both or one side of the obtained laminate as necessary. Then, heat and pressure is applied to produce a laminate. When cutting, it is not preferable to include glass fibers in the prepreg because the dielectric constant of that part will increase. or,
Due to the difference in thermal expansion coefficient between the glass fiber and the heat-resistant thermoplastic fiber, microcranks may form in the thermosetting resin, which is also undesirable.

本発明において、上記工程での加熱温度は150℃から
270℃の範囲であり、熱硬化性樹脂の硬化温度と耐熱
熱可塑性繊維の融点を考慮して設定される。又、上記工
程での加圧圧力は、5〜100 kgf/(−dの範囲
であり、樹脂の溶融粘度等を考慮して設定される。
In the present invention, the heating temperature in the above step is in the range of 150°C to 270°C, and is set in consideration of the curing temperature of the thermosetting resin and the melting point of the heat-resistant thermoplastic fiber. Further, the pressurizing pressure in the above step is in the range of 5 to 100 kgf/(-d, and is set in consideration of the melt viscosity of the resin, etc.

〔作用〕[Effect]

本発明により、塗工工程時に基材が切れなくなる理由は
、ガラス繊維の引張り強度が耐熱熱可塑性繊維の引張り
強度に比べ著しく大きいためである0例えば、PEEK
繊維の引張り強度が84kgf/mm”、PEI繊維で
は32 kgf/a+m”、 P P S繊維では61
 kgf/afar”であるのに対し、Eガラス繊維の
引張り強度は350 kgf/m■2と高い値である。
According to the present invention, the reason why the base material cannot be cut during the coating process is that the tensile strength of glass fiber is significantly higher than that of heat-resistant thermoplastic fiber.
The tensile strength of the fiber is 84 kgf/mm”, 32 kgf/a+m” for PEI fiber, and 61 kgf/a+m” for PPS fiber.
kgf/afar", whereas the tensile strength of E glass fiber is as high as 350 kgf/m2.

又、本発明によって得られる積層板の誘電率が低くなる
のは、基材として誘電率の低い耐熱熱可塑性繊維のみを
用いているからであり、使用する熱硬化性樹脂の誘電率
を低くすることにより、更に積層板として低誘導率がは
かれる。
Furthermore, the dielectric constant of the laminate obtained by the present invention is low because only heat-resistant thermoplastic fibers with a low dielectric constant are used as the base material, and the dielectric constant of the thermosetting resin used is low. As a result, the laminate can further achieve a low dielectric constant.

〔実施例〕〔Example〕

以下、本発明を実施例によりさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

実施例1 日本工業規格に限定される3Eガラス繊維ECE225
−110 IZ(22,5Tex )と、単糸径21μ
mのPPS (ポリフェニレンスルフイツト)繊維(奇
人■社製、200/48タイプ)を用い、基材の縦方向
の両端部にガラス繊維ヤーンを2本ずつ織り込み残りの
縦糸及び横糸をPPS繊維で織った500閣巾の平織タ
イプの基材を作製した。(第1図参照)この基材のm2
当りの重量は70grであった。この基材にエポキシ樹
脂ワニ、2.VE−67N (FR−4用エポキシ樹脂
、日立化成工業■!!りを含浸させ、加熱温度170°
C1塗工速度3m/++inの条件で溶剤を乾燥除去し
、プリプレグを作製した。この時、基材切れは発生しな
かった。
Example 1 3E glass fiber ECE225 limited to Japanese Industrial Standards
-110 IZ (22,5Tex) and single yarn diameter 21μ
Using PPS (polyphenylene sulfite) fibers (manufactured by Kijin Corporation, 200/48 type), two glass fiber yarns were woven into each end of the base material in the longitudinal direction, and the remaining warp and weft yarns were woven with PPS fibers. A plain weave type base material with a width of 500 woven fabrics was prepared. (See Figure 1) m2 of this base material
The weight per piece was 70 gr. Epoxy resin alligator on this base material, 2. Impregnated with VE-67N (epoxy resin for FR-4, Hitachi Chemical), heated at 170°
The solvent was removed by drying at a C1 coating speed of 3 m/++in to produce a prepreg. At this time, no base material breakage occurred.

このプリプレグのPPS繊維の部分の厚さは約0.17
閣であった。このプリプレグのガラス繊維を含まない部
分を裁断し、得られたプリプレグを8枚積層し、積層物
の両面に電解銅箔TSTO−35(片面粗化電解鋼箔、
厚さ35μm、古河サーキットフォイル■製)を載置し
、更にこれらを2枚の鏡板ではさみ、加熱加圧成形した
。加熱温度は170℃で、加熱時間は90分、圧力は4
0kgf/c■2であった。得られた両面銅張積層板は
板厚が1.6 mで、ボイド、カスレ、ソリ、ネジレの
ない積層板であった。この積層板の主な特性を表1に示
す。
The thickness of the PPS fiber part of this prepreg is approximately 0.17
It was a cabinet. The part of this prepreg that does not contain glass fibers is cut, eight sheets of the resulting prepreg are laminated, and both sides of the laminate are coated with electrolytic copper foil TSTO-35 (one side roughened electrolytic steel foil,
A sheet of Furukawa Circuit Foil (35 μm thick, made by Furukawa Circuit Foil ■) was placed thereon, which was then sandwiched between two end plates and molded under heat and pressure. The heating temperature was 170℃, the heating time was 90 minutes, and the pressure was 4
It was 0 kgf/c■2. The obtained double-sided copper-clad laminate had a thickness of 1.6 m, and was free from voids, scratches, warpage, and twisting. Table 1 shows the main properties of this laminate.

実施例2 実施例1においてPPS繊維のかわりに、単糸径21μ
mのPEEK (ポリエーテルエーテルケトン)繊維(
奇人■社製200/4 Bタイプ)を用いる以外は実施
例1と同様にして平織タイプの基材を作製した。この基
材のl1lz当りの重量は100grであった。この基
材にポリアミノビスマレイミドワニスVI−68N(ポ
リアミノビスマレイミド樹脂、日立化成工業■製)を含
浸させ、加熱温度170℃塗工速度3 m/s+inの
条件で溶剤を乾燥除去し、プリプレグを作製した。この
時、基材切れは発生しなかった。このプリプレグのガラ
ス繊維を含まない部分を裁断し実施例1と同様に加熱加
圧成形し、板厚1.611IIIIの積層板を得た。但
し、加熱温度は200℃で、加熱時間は120分、圧力
は40 kgf/cm”とした、この積層板の主な特性
を表1に示す。
Example 2 Instead of PPS fiber in Example 1, a single yarn diameter of 21μ
m PEEK (polyetheretherketone) fiber (
A plain weave type base material was produced in the same manner as in Example 1 except that 200/4 B type (manufactured by Kijin ■) was used. The weight per l1lz of this base material was 100 gr. This base material was impregnated with polyamino bismaleimide varnish VI-68N (polyamino bismaleimide resin, manufactured by Hitachi Chemical Co., Ltd.), and the solvent was removed by drying at a heating temperature of 170°C and a coating speed of 3 m/s+in to produce a prepreg. did. At this time, no base material breakage occurred. A portion of this prepreg not containing glass fibers was cut and molded under heat and pressure in the same manner as in Example 1 to obtain a laminate having a thickness of 1.611III. However, the heating temperature was 200°C, the heating time was 120 minutes, and the pressure was 40 kgf/cm''. Table 1 shows the main properties of this laminate.

実施例3 実施例2においてPEEK繊維のかわりに、単糸径36
a園のPEI(ポリエーテルイミド)繊維(奇人■社製
 225/18タイプ)を用いる以外は実施例2と同様
にして平織タイプの基材を作製し、この基材にポリアミ
ノマレイミドワニスVl−68Nを含浸させ、プリプレ
グを作製した。この時、基材切れは発生しなかった。こ
のプリプレグ用いて、実施例2と同様にして積層板を作
製した。この積層板の主な特性を表1に示す。
Example 3 Instead of PEEK fiber in Example 2, single yarn diameter 36
A plain weave type base material was prepared in the same manner as in Example 2, except that PEI (polyetherimide) fiber (manufactured by Kijin ■ Co., Ltd., 225/18 type) was used, and polyamino maleimide varnish Vl-68N was applied to this base material. was impregnated to produce prepreg. At this time, no base material breakage occurred. Using this prepreg, a laminate was produced in the same manner as in Example 2. Table 1 shows the main properties of this laminate.

比較例1 実施例1において、ガラス繊維を含まない、すべてPP
S繊維で織った平織タイプの基材を用いる以外は、実施
例1と同様にして溶剤乾燥を行った。この時、基材切れ
が発生し、プリプレグを作製できなかった。
Comparative Example 1 In Example 1, all PP without glass fiber
Solvent drying was carried out in the same manner as in Example 1 except for using a plain weave type base material woven with S fibers. At this time, the base material broke and the prepreg could not be produced.

比較例2 実施例2において、ガラス繊維を含まない、すべてPE
EK繊維で織った平織タイプの基材を用いる以外は、実
施例2と同様にして溶剤乾燥を行った。この時、基材切
れが発生し、プリプレグを作製できなかった。
Comparative Example 2 In Example 2, all PE without glass fiber
Solvent drying was carried out in the same manner as in Example 2, except that a plain weave type base material woven from EK fibers was used. At this time, the base material broke and the prepreg could not be produced.

比較例3 実施例3において、ガラス繊維を含まない、すべてPE
I繊維で織った平織タイプの基材を用いる以外は、実施
例3と同様にして溶剤乾燥を行った。この時、基材切れ
が発生し、プリプレグを作製できなかった。
Comparative Example 3 In Example 3, all PE without glass fiber
Solvent drying was carried out in the same manner as in Example 3, except that a plain weave type base material woven with I fibers was used. At this time, the base material broke and the prepreg could not be produced.

比較例4 基材として、従来のガラスを用いたFR−4グレードの
銅張積層板MCL−E−67(日立化成工業■製)の主
な特性を表1に示す。
Comparative Example 4 Table 1 shows the main characteristics of an FR-4 grade copper clad laminate MCL-E-67 (manufactured by Hitachi Chemical Co., Ltd.) using conventional glass as a base material.

表1 各種銅張積層板の特性 〔発明の効果〕 本発明によれば、塗工工程時に基材切れが発生せず、又
、誘電率が低く、耐熱性に優れ、ドリル加工も良好な耐
熱熱可望性繊維布基材積層板の製造方法を提供すること
ができ、その工業的価値は大である。
Table 1 Characteristics of various copper-clad laminates [Effects of the invention] According to the present invention, the base material does not break during the coating process, has a low dielectric constant, has excellent heat resistance, and has good heat resistance for drilling. A method for producing a thermoplastic fiber cloth substrate laminate can be provided, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に用いられるガラス繊維・P
PS繊維混繊基材(手職タイプ)の一部省略拡大平面図
である。 符号の説明 I Eガラス繊維   2  PPS繊維第 図
Figure 1 shows the glass fiber P used in one embodiment of the present invention.
It is a partially omitted enlarged plan view of a PS fiber mixed fiber base material (handmade type). Explanation of symbols I E glass fiber 2 PPS fiber diagram

Claims (3)

【特許請求の範囲】[Claims] 1.縦糸の一部にガラス繊維を使用し、残りの縦糸及び
横糸に融点が270℃以上の耐熱熱可塑性繊維を使用し
て布状に製織した基材に熱硬化性樹脂を塗工してプリプ
レグを作製し、このプリプレグのガラス繊維を含まない
部分を所定寸法に裁断し、裁断されたプリプレグを必要
枚数積層し、必要に応じて得られた積層物の両面或いは
片面に銅箔を載置し、加熱加圧することを特徴とする耐
熱熱可塑性繊維布基材積層板の製造方法。
1. Prepreg is produced by coating a thermosetting resin on a base material woven into a cloth using glass fiber for some of the warp threads and heat-resistant thermoplastic fibers with a melting point of 270°C or higher for the remaining warp threads and weft threads. produced, cut the part of this prepreg that does not contain glass fiber to a predetermined size, laminate the required number of cut prepregs, place copper foil on both or one side of the obtained laminate as necessary, A method for producing a heat-resistant thermoplastic fiber cloth base laminate, which comprises heating and pressing.
2.基材縦方向の端部の縦糸にガラス繊維を使用する請
求項1記載の耐熱熱可塑性繊維布基材積層板の製造方法
2. 2. The method for producing a heat-resistant thermoplastic fiber cloth substrate laminate according to claim 1, wherein glass fiber is used for the warp threads at the ends in the longitudinal direction of the substrate.
3.耐熱熱可塑性繊維が、ポリエーテルエーテルケトン
、ポリエーテルイミド、ポリフェニレンスルフィドのう
ちのいずれかの繊維である請求項1又は2記載の耐熱熱
可塑性繊維布基材積層板の製造方法。
3. The method for producing a heat-resistant thermoplastic fiber cloth base laminate according to claim 1 or 2, wherein the heat-resistant thermoplastic fiber is any one of polyetheretherketone, polyetherimide, and polyphenylene sulfide.
JP24842389A 1989-09-25 1989-09-25 Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric Pending JPH03110139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24842389A JPH03110139A (en) 1989-09-25 1989-09-25 Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24842389A JPH03110139A (en) 1989-09-25 1989-09-25 Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric

Publications (1)

Publication Number Publication Date
JPH03110139A true JPH03110139A (en) 1991-05-10

Family

ID=17177906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24842389A Pending JPH03110139A (en) 1989-09-25 1989-09-25 Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric

Country Status (1)

Country Link
JP (1) JPH03110139A (en)

Similar Documents

Publication Publication Date Title
JP3324916B2 (en) Glass cloth, prepreg, laminated board and multilayer printed wiring board
JP2578097B2 (en) Dielectric material and method of manufacturing the same
EP0050855B1 (en) Laminates
JP5027335B2 (en) Glass cloth for printed wiring boards
AU694564B2 (en) Foiled UD-prepreg and PWB laminate prepared therefrom
JP4536010B2 (en) Double woven glass cloth, and prepreg and printed wiring board substrate using the glass cloth
US4747897A (en) Dielectric materials
US5807793A (en) Laminates for printed circuits using unidirectional glass fabric
JP4467449B2 (en) Substrate reinforcing fiber fabric, prepreg using the reinforcing fiber fabric, and printed wiring board substrate
JPH03110139A (en) Preparation of laminate of base material made of heat-resistant thermoplastic fiber fabric
JP2001055642A (en) Cloth for reinforcing resin and laminated board by using the same
JPH11315446A (en) Glass cloth and printed circuit board
JP2001329449A (en) Glass cloth for printed circuit board
JP2523649B2 (en) Glass fiber woven reinforced printed wiring board
JP4540186B2 (en) Glass cloth and printed wiring board
JP3475234B2 (en) Aromatic polyamide fiber paper
JP2005132857A (en) Prepreg
JPH09324340A (en) Glass fiber woven fabric for laminate, its production and laminate using the same
JP3272437B2 (en) Glass fiber woven fabric and method for producing the same
JPH02165945A (en) Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate
JPH0564857A (en) Manufacture of laminate
KR940000622B1 (en) Laminated sheet
JPH0818180A (en) Continuously formed glass fiber fabric for printed board
JPH06272135A (en) Woven fabric of glass yarn for multi-layer printed-wiring board and prepreg for multi-layer printed-wiring board
JP2001148550A (en) Laminated board for printed wiring board