JPH02165945A - Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate - Google Patents

Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate

Info

Publication number
JPH02165945A
JPH02165945A JP32243788A JP32243788A JPH02165945A JP H02165945 A JPH02165945 A JP H02165945A JP 32243788 A JP32243788 A JP 32243788A JP 32243788 A JP32243788 A JP 32243788A JP H02165945 A JPH02165945 A JP H02165945A
Authority
JP
Japan
Prior art keywords
resistant thermoplastic
heat
thermoplastic fiber
resin
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32243788A
Other languages
Japanese (ja)
Inventor
Atsushi Fujioka
藤岡 厚
Kiyoshi Hirozawa
清 広沢
Ikuo Hoshi
星 郁夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP32243788A priority Critical patent/JPH02165945A/en
Publication of JPH02165945A publication Critical patent/JPH02165945A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a laminated plate having low permittivity, high heat resistance and satisfactory drilling operability by heating and pressurizing a prepreg using heat resistant thermoplastic fiber as a base material at a specific molding temperature. CONSTITUTION:A necessary number of prepregs each obtained by immersing a base material made by weaving heat resistant thermoplastic fiber having 270 deg.C or higher of melting point in a cloth state with thermally curable resin are laminated, copper foils are placed on both or one side face thereof as required, heated and pressurized to manufacture a laminated plate. In this case, heating temperature is set to a temperature of the glass transition temperature or higher of the heat resistant thermoplastic fiber and a melting point or less of the thermoplastic fiber. The heat resistant thermoplastic fiber includes, for example, polyether ether ketone fiber, polyetherimide fiber, polyphenylenesulfide fiber, etc., and the thermosetting resin includes, for example, epoxy resin, bismaleimide resin or low permittivity resin containing prepolymer, epoxy modified polybutadiene and aromatic maleimide compound of derivatives of (P- hydroxystyrene).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、誘電率が低く、しかも耐熱性に優れたプリン
ト配線板用の積層板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a laminate for printed wiring boards that has a low dielectric constant and excellent heat resistance.

(従来の技術) 従来、プリント配線板用の積N板には、Eガラス、Dガ
ラス、クォーツガラス、芳香族ポリアミド等の繊維を布
状に製織した基材に熱硬化性樹脂を含浸させたプリプレ
グが用いられていた。
(Prior art) Conventionally, laminated boards for printed wiring boards are made by impregnating a thermosetting resin into a base material made of cloth-like fibers such as E glass, D glass, quartz glass, and aromatic polyamide. Prepreg was used.

しかし、近年、高速演算処理化に伴い信号伝送速度の向
上のため、低誘電率の積層板が要求されている、Eガラ
スやDガラスに比べ、クォーツガラス、芳香族ポリアミ
ド繊維は誘電率が約3.7と低く、低誘電率の積層板と
して検討されている。
However, in recent years, quartz glass and aromatic polyamide fibers have a dielectric constant of about 100% compared to E glass and D glass, which require laminates with a low dielectric constant to improve signal transmission speeds due to high-speed calculation processing. It has a low dielectric constant of 3.7, and is being considered as a laminate with a low dielectric constant.

(発明が解決しようとする課題) しかしながら、クォーツガラスを用いた積層板はドリル
加工性に問題があり、ドリル刃が著しく磨耗するという
欠点があった。又、芳香族ポリアミド繊維を用いた積層
板は、はんだ耐熱性の試験において、基材と樹脂の熱膨
張差が大きいため、マイクロクランクが生ずるという問
題点があった。
(Problems to be Solved by the Invention) However, the laminated plate using quartz glass has a problem in drill workability, and has the disadvantage that the drill blade is considerably worn. Furthermore, laminates using aromatic polyamide fibers have a problem in that microcranks occur during soldering heat resistance tests due to the large difference in thermal expansion between the base material and the resin.

更に、これらの誘電率に関してもより低くしたいという
要求があった。
Furthermore, there has been a demand for lower dielectric constants of these materials.

一方、最近、耐熱熱可塑性繊維として、ポリエーテルエ
ーテルケトン(以下PEEKと略す)繊維、ポリエーテ
ルイミド(以下PEIと略す)繊維、ポリフェニレンス
ルフィド(以下PPSと略す)繊維が発表されている(
例えば、繊維学会主催のニューチック・88講演要旨集
等、1988年6月15日)、これらの繊維は融点が2
70℃以上で耐熱性が高いだけでなく、誘電率も3.1
〜3゜5と低く、前記の積層板用の基材としては最適で
あると考えられる。
On the other hand, recently, polyetheretherketone (hereinafter abbreviated as PEEK) fiber, polyetherimide (hereinafter abbreviated as PEI) fiber, and polyphenylene sulfide (hereinafter abbreviated as PPS) fiber have been announced as heat-resistant thermoplastic fibers (
For example, these fibers have a melting point of 2.
Not only has high heat resistance above 70℃, but also has a dielectric constant of 3.1.
It is as low as ~3°5, and is considered to be optimal as a base material for the above-mentioned laminate.

しかしながら、上記基材に熱硬化性樹脂を含浸させ、通
常の方法で積層板を作製した場合、はんだ耐熱性の試験
において膨れが発生するという問題点が生じた。
However, when the base material is impregnated with a thermosetting resin and a laminate is produced by a conventional method, a problem arises in that blistering occurs in a solder heat resistance test.

本発明はかかる状況に鑑みなされたものであって、誘電
率が低く、耐熱性が高く、またドリル加工性も良好な耐
熱熱可塑性繊維布基材積層板の製造方法を提供せんとす
るものである。
The present invention was made in view of this situation, and it is an object of the present invention to provide a method for manufacturing a heat-resistant thermoplastic fiber cloth base laminate that has a low dielectric constant, high heat resistance, and good drill workability. be.

(課題を解決するための手段) 本発明者らは、前記問題を解決すべ(検討を行った結果
、耐熱熱可塑性繊維を基材としたプリプレグを、特定の
成形温度で加熱加圧することにより、前記目的を達成し
うろことを見い出し本発明をに至った。
(Means for Solving the Problem) The present inventors have found that the above problem can be solved by heating and pressing a prepreg made of heat-resistant thermoplastic fiber as a base material at a specific molding temperature. The inventors have found a way to achieve the above object and have come up with the present invention.

すなわち、本発明の耐熱熱可塑性繊維布基材積層板の製
造方法は、融点が270℃以上の耐熱熱可塑性繊維を布
状に製織した基材に、熱硬化性樹脂を含浸させて得られ
るプリプレグを必要枚数積層し、必要に応じてその両面
あるいは片面に銅箔を載置し加熱加圧して積層板を製造
する工程において、加熱温度が、耐熱熱可塑性繊維のガ
ラス転移温度以上で融点以下の温度であることを特長と
する。
That is, the method for producing a heat-resistant thermoplastic fiber cloth base material laminate of the present invention uses a prepreg obtained by impregnating a thermosetting resin into a base material obtained by weaving heat-resistant thermoplastic fibers having a melting point of 270° C. or higher into a cloth shape. In the process of manufacturing a laminate by laminating the required number of sheets, placing copper foil on both sides or one side as necessary, and applying heat and pressure, the heating temperature is higher than the glass transition temperature of the heat-resistant thermoplastic fiber and lower than the melting point. It is characterized by temperature.

本発明において耐熱熱可塑性繊とは、融点が270℃以
上の熱可塑性繊維である。融点が270℃未満の汎用熱
可塑性繊維を用いた場合、はんだ耐熱性試験(260℃
のはんだ浴にフロートする)において膨れが生じてしま
う。
In the present invention, heat-resistant thermoplastic fibers are thermoplastic fibers with a melting point of 270° C. or higher. When using general-purpose thermoplastic fibers with a melting point of less than 270°C, soldering heat resistance test (260°C
(floating in the solder bath) causes blistering.

この様な耐熱熱可塑性繊維として、ポリエーテルエーテ
ルケトン繊維、ポリエーテルイミド繊維ポリフェニレン
スルフィド繊維等がある。各々の化学構造式を下記に示
す。
Examples of such heat-resistant thermoplastic fibers include polyetheretherketone fibers, polyetherimide fibers, and polyphenylene sulfide fibers. The chemical structural formulas of each are shown below.

ポリエーテルエーテルケトン: ポリエーテルイミド; 4℃であり、ガラス転移温度は143℃であり、誘電率
は3.2である。ポリエーテルイミド繊維の融点は約3
20℃であり、ガラス転移温度は217℃であり、誘電
率は3.1である。ポリフェニレンスルフィド繊維の融
点は285℃であり、ガラス転移温度は約85℃であり
、誘電率は3.5である。
Polyetheretherketone: Polyetherimide; 4°C, glass transition temperature is 143°C, and dielectric constant is 3.2. The melting point of polyetherimide fiber is approximately 3
20°C, the glass transition temperature is 217°C, and the dielectric constant is 3.1. The melting point of polyphenylene sulfide fiber is 285°C, the glass transition temperature is about 85°C, and the dielectric constant is 3.5.

これらの耐熱熱可塑性繊維は繊維径が5〜50μのもの
が用いられ、好ましくは10〜30pmの範囲である。
These heat-resistant thermoplastic fibers have a fiber diameter of 5 to 50 μm, preferably in the range of 10 to 30 pm.

繊維径か細すぎると糸が切れやすくなり、大すぎると基
材としての厚みが厚くなりすぎ、積層板の用途には適さ
なくなる。
If the fiber diameter is too small, the threads will break easily, and if it is too large, the thickness of the base material will be too thick, making it unsuitable for use in laminates.

本発明において用いられる熱硬化性樹脂としては、エポ
キシ樹脂、ビスマレイミド樹脂、あるいは後述の特定の
低誘電率樹脂が使用される。エポキシ樹脂としては、ビ
スフェノールA型エポキシ樹脂、ノボラック型エポキシ
樹脂、トリフェニルメタントリグリシジルエーテル型エ
ポキシ樹脂等に硬化剤、硬化促進剤を配合したものが用
いられる。ビスマレイミド樹脂としては、ポリアミノビ
スマレイミド樹脂、ビスマレイミドトリアジン樹脂、ビ
スマレイミド、シロキサン樹脂等が用いられる。
As the thermosetting resin used in the present invention, epoxy resin, bismaleimide resin, or a specific low dielectric constant resin described below is used. As the epoxy resin, a bisphenol A type epoxy resin, a novolac type epoxy resin, a triphenylmethane triglycidyl ether type epoxy resin, etc. mixed with a curing agent and a curing accelerator are used. As the bismaleimide resin, polyaminobismaleimide resin, bismaleimide triazine resin, bismaleimide, siloxane resin, etc. are used.

特定の低誘電率樹脂としては、(a)(P−ヒドロキシ
スチレン)誘導体のプレポリマと(b)エポキシ変性ポ
リブタジェンと(c)芳香族マレイミド化合物とを含む
低誘電率樹脂が用いられる。
As the specific low dielectric constant resin, a low dielectric constant resin containing (a) a prepolymer of a (P-hydroxystyrene) derivative, (b) an epoxy-modified polybutadiene, and (c) an aromatic maleimide compound is used.

更に詳しくは、(a)として、一般式(1)(式中、A
はハロゲン基であり、R,は炭素数2〜4のアルケニル
またはアルケノイルであり、mは1〜4、nは1〜10
0の数を示す)で表されるポリ (P−ヒドロキシスチ
レン)誘導体から成るブリポリマに(b)として下記一
般式(II)(式中、Bはグリシジルエーテル系エポキ
シのコポリマであり、nは4〜1000数を示す)で表
されるエポキシ変性ポリブタジェンと、(c)として下
記一般式(I[[) (式中、R8は少なくともベンゼン環を1ヶ以上含む芳
香族基、nは1〜4)で表わされる芳香族マレイミド化
合物と、必要に応じエポキシ化合物の硬化剤、及びラジ
カル反応開始剤としての有機過酸化物を配合してなる低
誘電率樹脂が用いられる。
More specifically, as (a), general formula (1) (wherein A
is a halogen group, R is alkenyl or alkenoyl having 2 to 4 carbon atoms, m is 1 to 4, and n is 1 to 10
The following general formula (II) (where B is a glycidyl ether-based epoxy copolymer and n is 4 1000), and (c) is an epoxy-modified polybutadiene represented by the following general formula (I A low dielectric constant resin is used, which is made by blending an aromatic maleimide compound represented by () with an epoxy compound curing agent and an organic peroxide as a radical reaction initiator, if necessary.

上記、熱硬化性樹脂を、溶媒に溶かしてフェスとし、耐
熱熱可塑性繊維布に含浸後、加熱乾燥して溶媒を除去し
、プリプレグを得る。あるいは熱硬化性樹脂を無溶媒の
状態で加2!!溶融させ、耐熱熱可塑性繊維布に含浸さ
せても良い。
The above thermosetting resin is dissolved in a solvent to form a face, impregnated into a heat-resistant thermoplastic fiber cloth, and then heated and dried to remove the solvent to obtain a prepreg. Or add thermosetting resin without solvent! ! It may be melted and impregnated into a heat-resistant thermoplastic fiber cloth.

この様にして得られたプリプレグを必要枚数積層し、必
要に応じてその両面あるいは片面に銅箔を′R置し、加
熱加圧して積層板を製造する。
A required number of prepregs thus obtained are laminated, copper foil is placed on both or one side of the prepreg as required, and a laminate is produced by heating and pressing.

本発明において、上記工程での加熱温度は、耐熱熱可塑
性繊維のガラス転移温度以上で融点以下の温度でおこな
う必要がある。更に好ましくはガラス転移温度の50℃
以上で融点の50℃以下の範囲である。加熱温度がガラ
ス転移温度より低いと、はんだ耐熱性試験において膨れ
が生じてしまう。又、加熱温度が融点より高いと、耐熱
熱可塑性繊維も溶融し、積層板にそり、ねじれが発生す
る。
In the present invention, the heating temperature in the above step must be higher than the glass transition temperature and lower than the melting point of the heat-resistant thermoplastic fiber. More preferably, the glass transition temperature is 50°C.
The melting point is within the range of 50° C. or lower. If the heating temperature is lower than the glass transition temperature, swelling will occur in the solder heat resistance test. Furthermore, if the heating temperature is higher than the melting point, the heat-resistant thermoplastic fibers will also melt, causing warpage and twisting in the laminate.

又、上記積層工程での加圧圧力は、5〜100kfr/
cIAの範囲であり、樹脂の溶融粘度等を考慮し設定さ
れる。
In addition, the pressurizing pressure in the above lamination process is 5 to 100 kfr/
It is within the range of cIA, and is set in consideration of the melt viscosity of the resin, etc.

(作用) 本発明によって得られる積層板の誘電率が低くなるのは
、基材として誘電率の低い耐熱熱可塑性繊維を用いてい
るからであり、使用する熱効果性樹脂の低誘電率を低く
することにより、更に積層板として低誘電率化がはかれ
る。また、積層工程での加熱温度を、耐熱熱可塑性繊維
のガラス転移温度以上で融点以下の温度に設定すること
により、はんだ耐熱性試験において膨れが発生しなくな
る理由は明らかではないが、基材と樹脂との密着性が増
すためではないかと考えられる。
(Function) The dielectric constant of the laminate obtained by the present invention is low because heat-resistant thermoplastic fibers with a low dielectric constant are used as the base material, and the low dielectric constant of the heat-effect resin used is reduced. By doing so, the dielectric constant of the laminate can be further reduced. Additionally, it is unclear why blistering does not occur in the solder heat resistance test by setting the heating temperature in the lamination process to a temperature above the glass transition temperature and below the melting point of the heat-resistant thermoplastic fiber, but This is thought to be due to increased adhesion with the resin.

(実施例) 以下、本発明を実施例によりさらに詳細に説明するが、
本発明はこれらの例によってなんら限定されるものでは
ない。
(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited in any way by these examples.

実施例1 単糸径21μ−〇PPS繊維(奇人−社製 20074
8タイプ)を用い、M当り70grになる措な平織タイ
プのPPS繊維布基材に、エポキシ樹脂フェスVE−6
7N (FR−4用エポキシ樹脂、日立化成工業■製)
を含浸させ、170℃で加熱乾燥させて溶媒を除去し、
プリプレグAを作製した。
Example 1 Single yarn diameter 21μ-〇PPS fiber (manufactured by Kijin-sha 20074
8 types), epoxy resin face VE-6 is applied to a plain weave type PPS fiber cloth base material with a weight of 70 gr per M.
7N (Epoxy resin for FR-4, manufactured by Hitachi Chemical)
impregnated with and dried by heating at 170°C to remove the solvent,
Prepreg A was produced.

プリプレグへの1枚の厚さは約0.17 asであった
The thickness of one sheet of prepreg was about 0.17 as.

このプリプレグAを8枚積層し、その両面に電解銅箔T
STO−35(片面粗化電解銅箔、厚さ35趨、古河サ
ーキットフォイル■製)を載置し、更にこれらを2枚の
鏡板ではさみ、加熱加圧成形した。加熱温度は170℃
で、加熱時間は90分。
Eight sheets of this prepreg A are laminated, and electrolytic copper foil T is placed on both sides.
STO-35 (single-sided roughened electrolytic copper foil, thickness 35 mm, manufactured by Furukawa Circuit Foil ■) was placed, which was then sandwiched between two mirror plates and molded under heat and pressure. Heating temperature is 170℃
And the heating time is 90 minutes.

圧力は40 kg f /−であった、得られた両面銅
張積層板は板厚が16mで、ボイド、カスレ、ソリ、ネ
ジレのない積層板であった。この積層板の主な特性を表
1示す。
The pressure was 40 kg f/-. The obtained double-sided copper-clad laminate had a thickness of 16 m, and was free from voids, scratches, warpage, and twisting. Table 1 shows the main properties of this laminate.

実施例2 単糸径21μのPEEK繊維(奇人−社製200/48
タイプ)を用い、M当りloogrになる様な平織タイ
プのPEEK繊維布基材に、ポリアミノビスマレイミド
ワニスVl−68N(ポリアミノビスマレイミド樹脂1
日立化成工業■製)を含浸させ、170℃で加熱乾燥さ
せて溶媒を除去し、プリプレグBを作製した。このプリ
プレグBを用いて実施例1と同様に加熱加圧成形し、板
厚1.6曹1の積層板を得た。但し、加熱温度は200
°Cで、加熱時間は120分、圧力は40kgf/cd
とした。
Example 2 PEEK fiber with a single yarn diameter of 21 μm (manufactured by Kijin-sha 200/48
polyamino bismaleimide varnish Vl-68N (polyamino bismaleimide resin 1
(manufactured by Hitachi Chemical Co., Ltd.) was impregnated, and the solvent was removed by heating and drying at 170° C. to prepare prepreg B. This prepreg B was heated and pressed in the same manner as in Example 1 to obtain a laminate having a thickness of 1.6 mm. However, the heating temperature is 200℃.
°C, heating time 120 minutes, pressure 40kgf/cd
And so.

この積層板の主な特性を表1に示す。Table 1 shows the main properties of this laminate.

実施例3 単糸径36趨のPEI繊維(奇人側社製 225/lB
タイプ)を用い、M当り100grになる様な平織タイ
プのPEI繊維布基材に、実施例2と同様にしてVl−
68Nを含浸させ、プリプレグCを作製した。このプリ
プレグCを用いて実施例1と同様に加熱加圧成形し、板
厚1.5 snの積層板を得た。但し、加熱温度は27
0℃で、加熱時間は120分、圧力は40 kg f 
/ cdとし、雰囲気は1Torrの真空雰囲気下とし
た。この積層板の主な特性を表1に示す。
Example 3 PEI fiber with a single yarn diameter of 36 (225/1B manufactured by Kijin Kaisha)
In the same manner as in Example 2, Vl-
Prepreg C was prepared by impregnating it with 68N. This prepreg C was heated and pressed in the same manner as in Example 1 to obtain a laminate having a thickness of 1.5 sn. However, the heating temperature is 27
At 0℃, heating time is 120 minutes, pressure is 40 kgf
/ cd, and the atmosphere was a vacuum atmosphere of 1 Torr. Table 1 shows the main properties of this laminate.

実施例4 実施例2で用いたものと同じPEEKm維布基材に、臭
素化ポリ (P−ヒドロキシスチレン)のメタクリル酸
エステル(分子量7000〜12000、臭素含有率4
2%)30重量部、クレゾールノボラソクエボキシで変
性したポリブタジェン(エポキシ当1575 gr/e
q) 30重量部、2゜2° −ビス(4−4−(マレ
イミドフェノキシ)フェニル)プロパン40重量部、ジ
シアンジアミド 0.82重量部、2,5−ジメチル−
2,5ジ(t−ブチルパーオキシ)ヘキシン(3)0.
5重量部、メチルイソブチルケトン100重量部、ジメ
チルホルムアミド150重量部からなる低誘電率樹脂ワ
ニスを含浸させ、160℃で加熱乾燥させて溶媒を除去
し、プリプレグDを作製した。
Example 4 A brominated poly (P-hydroxystyrene) methacrylate ester (molecular weight 7000-12000, bromine content 4) was added to the same PEEKm textile substrate as used in Example 2.
2%) 30 parts by weight of polybutadiene modified with cresol noborazoquevoxy (1575 gr/e per epoxy)
q) 30 parts by weight, 40 parts by weight of 2°2°-bis(4-4-(maleimidophenoxy)phenyl)propane, 0.82 parts by weight of dicyandiamide, 2,5-dimethyl-
2,5 di(t-butylperoxy)hexyne (3) 0.
Prepreg D was prepared by impregnating a low dielectric constant resin varnish consisting of 5 parts by weight, 100 parts by weight of methyl isobutyl ketone, and 150 parts by weight of dimethyl formamide, and heating and drying at 160° C. to remove the solvent.

このプリプレグDを用いて実施例2と同様に20θ℃で
加熱加圧成形し、板厚1.6■−の積層板を得た。この
積層板の主な特性を表1に示す。
Using this prepreg D, heating and pressure molding was carried out at 20[theta]C in the same manner as in Example 2 to obtain a laminate having a thickness of 1.6 .mu.m. Table 1 shows the main properties of this laminate.

比較例1 実施例4において、PEEK繊維布基材のかわりに、実
施例3で用いたPEI維布基布基材用する以外は実施例
4と同様にして積層板を作製した。(PEI繊維のガラ
ス転移温度が217℃に対し、加熱温度は200℃と低
い条件)この積層板の主な特性を表1に示す。
Comparative Example 1 A laminate was produced in the same manner as in Example 4, except that the PEI fiber fabric base material used in Example 3 was used instead of the PEEK fiber fabric base material. (The glass transition temperature of PEI fiber is 217°C, whereas the heating temperature is low at 200°C) The main characteristics of this laminate are shown in Table 1.

比較例2 基材として、従来のEガラスを用いたFR4グレードの
銅張積層板MCL−E−67(日立化成工業■製)の主
な特性を表1に示す。
Comparative Example 2 Table 1 shows the main characteristics of an FR4 grade copper-clad laminate MCL-E-67 (manufactured by Hitachi Chemical Co., Ltd.) using conventional E glass as a base material.

(発明の効果) 表1に示す結果からも明らかなように、本発明によれば
誘電率が低く、しかも耐熱性に優れ、ドリル加工性も良
好な耐熱熱可塑性繊維布基材積層板の製造方法を提供す
ることができ、その工業的価値は大である。
(Effects of the Invention) As is clear from the results shown in Table 1, according to the present invention, a heat-resistant thermoplastic fiber cloth base laminate having a low dielectric constant, excellent heat resistance, and good drilling workability can be produced. The method can be provided, and its industrial value is great.

Claims (5)

【特許請求の範囲】[Claims] 1.融点が270℃以上の耐熱熱可塑性繊維を布状に製
織した基材に、熱硬化性樹脂を含浸させて得られるプリ
プレグを必要枚数積層し、必要に応じてその両面あるい
は片面に銅箔を載置し、加熱加圧して積層板を製造する
工程において、加熱温度が耐熱熱可塑性繊維のガラス転
移温度以上で融点以下の温度であることを特徴とする耐
熱熱可塑性繊維布基材積層板の製造方法。
1. A necessary number of prepregs obtained by impregnating a thermosetting resin on a base material made of cloth-like fabric made of heat-resistant thermoplastic fibers with a melting point of 270°C or higher are laminated, and copper foil is placed on both or one side as necessary. Production of a heat-resistant thermoplastic fiber cloth base laminate, characterized in that the heating temperature is above the glass transition temperature of the heat-resistant thermoplastic fiber and below the melting point in the process of producing the laminate by placing the heat-resistant thermoplastic fibers on the glass transition temperature and below the melting point of the heat-resistant thermoplastic fibers. Method.
2.耐熱熱可塑性繊維が、ポリエーテルエーテルケトン
,ポリエーテルイミド,ポリフェニレンスルフィドのう
ちのいずれかの繊維である請求項1に記載の耐熱熱可塑
性繊維布基材積層板の製造方法。
2. 2. The method for producing a heat-resistant thermoplastic fiber cloth base laminate according to claim 1, wherein the heat-resistant thermoplastic fiber is any one of polyetheretherketone, polyetherimide, and polyphenylene sulfide.
3.熱硬化性樹脂が、エポキシ樹脂である請求項1に記
載の耐熱熱可塑性繊維布基材積層板の製造方法。
3. The method for producing a heat-resistant thermoplastic fiber cloth base laminate according to claim 1, wherein the thermosetting resin is an epoxy resin.
4.熱硬化性樹脂が、ビスマレイミド樹脂である請求項
1に記載の耐熱熱可塑性繊維布基材積層板の製造方法。
4. The method for producing a heat-resistant thermoplastic fiber cloth base laminate according to claim 1, wherein the thermosetting resin is a bismaleimide resin.
5.熱硬化性樹脂が、(a)(P−ヒドロキシスチレン
)誘導体のプレポリマと(b)エポキシ変性ポリブタジ
エンと(c)芳香族マレイミド化合物とを含む低誘電率
樹脂である請求項1に記載の耐熱熱可塑性繊維布基材積
層板の製造方法。
5. The thermosetting resin according to claim 1, wherein the thermosetting resin is a low dielectric constant resin containing (a) a prepolymer of a (P-hydroxystyrene) derivative, (b) an epoxy-modified polybutadiene, and (c) an aromatic maleimide compound. A method for producing a plastic fiber cloth base laminate.
JP32243788A 1988-12-21 1988-12-21 Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate Pending JPH02165945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32243788A JPH02165945A (en) 1988-12-21 1988-12-21 Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32243788A JPH02165945A (en) 1988-12-21 1988-12-21 Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate

Publications (1)

Publication Number Publication Date
JPH02165945A true JPH02165945A (en) 1990-06-26

Family

ID=18143664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32243788A Pending JPH02165945A (en) 1988-12-21 1988-12-21 Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate

Country Status (1)

Country Link
JP (1) JPH02165945A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225484A (en) * 2005-02-16 2006-08-31 Murata Mfg Co Ltd Composite dielectric material and electronic component
WO2014036712A1 (en) * 2012-09-07 2014-03-13 广东生益科技股份有限公司 Composite material, high frequency circuit substrate made from the same, and production method thereof
JP2018104828A (en) * 2016-12-22 2018-07-05 株式会社ダイセル Reinforcing fiber, nonwoven fabric and fiber-reinforced resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225484A (en) * 2005-02-16 2006-08-31 Murata Mfg Co Ltd Composite dielectric material and electronic component
WO2014036712A1 (en) * 2012-09-07 2014-03-13 广东生益科技股份有限公司 Composite material, high frequency circuit substrate made from the same, and production method thereof
JP2018104828A (en) * 2016-12-22 2018-07-05 株式会社ダイセル Reinforcing fiber, nonwoven fabric and fiber-reinforced resin

Similar Documents

Publication Publication Date Title
US5529836A (en) Multilayer article comprising a toughened polycyanurate
JP2967555B2 (en) Thermosetting resin composition containing thermoplastic polymer dispersed in thermosetting resin
JPS61243844A (en) Thermosetting resin composition, laminated sheet and production thereof
JP2002528611A (en) Vinyl-terminated polybutadienes containing urethane or ester residues
KR960007765B1 (en) Thermosetting resin composition, and prepreg and laminated sheet which use the same
WO2023183131A1 (en) Materials for printed circuit boards
KR0155542B1 (en) Thermosetting resin composition printed circuit board using the resin composition nd process for producing printed circuit board
JPH02165945A (en) Manufacture of heat resistant thermoplastic fiber cloth base material laminated plate
JP2007245644A (en) Insulating substrate containing glass-cloth
US5250347A (en) Mechanically enhanced, high impact strength triazine resins, and method of preparing same
JP2010199437A (en) Laminated board for printed wiring board
JP2866661B2 (en) Thermosetting resin composition, prepreg and laminate using the same
JP2762544B2 (en) Low dielectric constant printed wiring board materials
JPH02185517A (en) Thermosetting resin composition and prepreg and laminate prepared therefrom
JPH0294697A (en) Manufacture of multilayer print circuit board
JP4390055B2 (en) Method for producing copper clad laminate
JP2000094586A (en) Heat-resistant film laminate and its manufacture
JPH0258390A (en) Resin substrate for high frequency
JPH0258391A (en) Laminate for high frequency
JPH06260734A (en) Laminated board for printed wiring board
JPH05163467A (en) Adhesives on polyimide film and method of producing same
JPH01190448A (en) Thermoset polyphenylene oxide resin multilayered plate
JPH05194816A (en) Laminate and its production
JPH07276565A (en) Production of composite copper-clad laminate sheet
JP2001205740A (en) Laminated sheet