JPH031097B2 - - Google Patents

Info

Publication number
JPH031097B2
JPH031097B2 JP18662982A JP18662982A JPH031097B2 JP H031097 B2 JPH031097 B2 JP H031097B2 JP 18662982 A JP18662982 A JP 18662982A JP 18662982 A JP18662982 A JP 18662982A JP H031097 B2 JPH031097 B2 JP H031097B2
Authority
JP
Japan
Prior art keywords
layer
chromium
mold
nickel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18662982A
Other languages
Japanese (ja)
Other versions
JPS5976645A (en
Inventor
Akira Kubota
Masato Takada
Takahiro Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP18662982A priority Critical patent/JPS5976645A/en
Publication of JPS5976645A publication Critical patent/JPS5976645A/en
Publication of JPH031097B2 publication Critical patent/JPH031097B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐久性に富み、かつブレークアウトを
起こさせない連続鋳造用鋳型の製造方法に関する
ものである。 連続鋳造用鋳型は通常熱伝導性に富む銅若しく
はその合金性鋳型本体に種々の耐熱性、耐摩耗性
材料がコーテイングされた形態のものが用いられ
ているがこれら表面コーテイング層の密着性や凝
固シエルの焼付性の点で尚多くの問題を残してい
る。特に最近では操業中に何らかの原因で成長過
程にある凝固シエルが、潤滑性付与の為に用いら
れているモールドパウダー膜を破り直接鋳型内表
面と接しそこで焼付を起こし、該凝固シエル部分
が破断される結果として起こる所謂拘束性ブレー
クアウトが大きな問題とされて来ている。 この拘束性ブレークアウトはモールドパウダー
の供給不良による凝固シエルの焼付が主原因であ
るので、この原因を解消すると共に耐摩耗性に富
む鋳型の製造方法を提供するのが本発明であり、
その要旨は銅若しくは銅合金製鋳型本体の表面上
に、ニツケル若しくはニツケル合金から成るアン
ダーコート材を装着し、同アンダーコート材上に
ニツケル基自溶性合金溶射層を装着し、同溶射層
の上面に更にクロム層を装着し、次いで浸炭処理
をする事により上記クロム層の表面からは炭素を
拡散浸透させると共に、上記クロム層の上記ニツ
ケル基自溶性合金溶射層との接触側面からは同溶
射層中に含有される炭素とクロムとを反応させる
事により上記クロム層をその両面からクロム炭化
物に変化せしむることを特徴とする連続鋳造用鋳
型の製造方法である。 なおこの様な表面コーテイング層の剥落を防止
する為に、該表面コーテイング層を鋳型本体の内
表面だけでなく側壁面の一部あるいは全部まで巻
き込み延長する場合もある。特に相対する一対の
長辺鋳型内に挟持されて幅可変式の短辺鋳型とし
て使用されるものにあつては、その両側壁面が長
辺鋳型との間で当接された状態で移動せしめられ
るので、そこに耐摩耗性を付与する意味からも重
要である。 以下本発明を図面を参酌し乍ら詳述する。まず
表面コーテイング層を鋳型本体の内表面のみに形
成させる方法につき述べれば、第1図に示す様に
銅若しくは銅合金製鋳型本体1の内表面にニツケ
ル若しくはニツケル合金から成るアンダーコート
材2を通常100μm前後装着し、その上面にニツ
ケル基自溶性合金溶射層3を0.2〜0.7mm厚に装着
する。次いで最上面にクロム層4をメツキその他
の手段で装着する。 なおニツケル若しくはニツケル合金から成るア
ンダーコート材2を装着した後は通常脱水素処理
として300〜400℃、1時間以上の加熱を行う。ま
た用いるニツケル基自溶性合金は、後の処理によ
りその上面のクロムと炭化反応を起こす必要があ
る所から炭素を必須成分として含有するもの、即
ち下表の如き組成のものを用いる。
The present invention relates to a method for manufacturing a continuous casting mold that is highly durable and does not cause breakout. Continuous casting molds are usually made of copper or its alloy, which has high thermal conductivity, and are coated with various heat-resistant and wear-resistant materials. Many problems still remain regarding the seizability of the shell. In particular, recently, for some reason during operation, the solidified shell that is in the growth process breaks through the mold powder film used to provide lubricity, comes into direct contact with the inner surface of the mold, and seizes there, causing the solidified shell to break. The so-called restrictive breakout that occurs as a result of this has become a major problem. This restrictive breakout is mainly caused by seizure of the solidified shell due to insufficient supply of mold powder, so the present invention aims to eliminate this cause and provide a method for manufacturing a mold with high wear resistance.
The gist is that an undercoat material made of nickel or nickel alloy is attached to the surface of a mold body made of copper or copper alloy, a nickel-based self-fusing alloy sprayed layer is attached to the undercoat material, and the upper surface of the sprayed layer is By further attaching a chromium layer to the chromium layer and then carburizing it, carbon is diffused and penetrated from the surface of the chromium layer, and from the side of the chromium layer in contact with the nickel-based self-fusing alloy sprayed layer, the same sprayed layer is removed. This method of manufacturing a continuous casting mold is characterized in that the chromium layer is converted into chromium carbide from both sides by reacting carbon and chromium contained therein. In order to prevent such peeling of the surface coating layer, the surface coating layer may be extended to include not only the inner surface of the mold body but also part or all of the side wall surface. In particular, in the case of a mold that is sandwiched between a pair of opposing long-side molds and is used as a short-side mold with a variable width, the both side walls are moved while being in contact with the long-side molds. Therefore, it is important from the point of view of imparting wear resistance. The present invention will be described in detail below with reference to the drawings. First, to describe a method of forming a surface coating layer only on the inner surface of the mold body, as shown in FIG. A thickness of about 100 μm is attached, and a nickel-based self-fusing alloy sprayed layer 3 is attached to a thickness of 0.2 to 0.7 mm on the upper surface. A chromium layer 4 is then applied to the top surface by plating or other means. Note that after the undercoat material 2 made of nickel or nickel alloy is attached, heating is usually performed at 300 to 400° C. for one hour or more as a dehydrogenation treatment. The nickel-based self-fusing alloy to be used contains carbon as an essential component, that is, has a composition as shown in the table below, since it is necessary to cause a carbonization reaction with chromium on the upper surface in a later treatment.

【表】 第1図で示す如く多段に表面コーテイング層を
装着した後、それを浸炭処理を施す。この場合の
浸炭処理は固体浸炭、ガス浸炭、真空浸炭又はイ
オン浸炭のいずれでもよいが、ただ鋳型本体が純
銅製である場合にはあまり高温にするとその機械
的強度が低下する。従つて鋳型本体は高温にして
もその後の急冷→時効再加熱により強度を出し得
るクロム−銅、クロム−ジルコニウム−銅、ある
いはベリリウム−銅等の析出硬化型銅合金を用い
る様にするとよい。 この浸炭処理により表面のクロム層4中には炭
素が侵入しその表面からクロム炭化物5に変化せ
しめられると共に、浸炭時の加熱によりニツケル
基自溶性合金溶射層3と接するクロム層4ではそ
の間で該溶射層3中に含まれる炭素とクロムが炭
化反応を起こし、ここでもクロム層4がクロム炭
化物層5に変化せしめられる。この場合において
浸炭処理の温度、時間を調整する事によりクロム
層4がまだ残存しクロム炭化物5に挟まれた形態
で存在するもの(第2図参照)と、全てがクロム
炭化物5に変化せしめられた形態のもの(第3図
参照)の2種類が得られる。 この第2図、第3図は説明の都合上はつきりと
各コーテイング層が分かれている様に描いている
が、実際上は鋳型本体とアンダーコート材間並び
に各コーテイング層間ではそれぞれに隣接するも
のとの間に互いに拡散し合つており各々拡散層が
形成され、それら拡散層を介して全コーテイング
層が強固に密着されているのである。 今まで述べて来た方法による連続鋳造用鋳型は
それを斜視図で示せば第4図の如くコーテイング
層が鋳型本体の内表面のみに装着されているもの
であるが、第5図及び第6図に示す様にコーテイ
ング層が鋳型本体両側面の一部又は全部にまで巻
込延長されているものがあり、これらはコーテイ
ング層が剥離し難く、又特に第6図に示すものは
先に述べた様な長辺鋳型間に挟持されて使われる
短辺鋳型の場合に有効である。なお図示はしない
が、表面コーテイング層を鋳型本体の上下両端面
の一部又は全部にも装着し一層の密着力の向上を
図ると共に該部所の耐食性、耐摩耗性を高める事
もある。 また連続鋳造用鋳型にあつては、その使用状況
からして鋳型上部では抜熱性が、鋳型下部では耐
摩耗性が特に要求されるのでそれら要望を満たす
為に、予め装着するニツケル基自溶性合金溶射層
やクロム層の厚さを鋳型下部になるにつれ順次大
とする、鋳型下部の方を上部より高温及び又は長
時間に渡り浸炭処理をする、又は浸炭後の表面研
削等によつて第7図〜第9図に示す様な種々の形
態のものを得ることが出来る。 以上述べて来た様に本発明方法は、適宜手段に
より各コーテイング層を装着した後浸炭処理とい
う簡単な方法により鋳型本体と各コーテイング層
をそれらの間に形成される拡散層を介し化学的に
強固に接合させる事が出来、溶射層は再溶融され
クロム層はその場所に於て一部あるいは全部がク
ロム炭化物となり、このクロム炭化物はHv2000
以上の硬さと優れた耐摩耗性及び耐食性を有する
ものである。そしてクロムメツキ層特有の微細割
れが生起したとしてもその割れの中にもクロム炭
化物が形成され結果的には割れは現れないのでモ
ールドパウダーの均一な流れを助ける事、並びに
耐熱性に富む事の為に溶鋼や凝固シエルが焼付く
事がなく所謂拘束性ブレークアウトを生起する事
がない。 従つて永きに渡つて安定した操業が出来るとい
う効果がある。
[Table] After the surface coating layer is applied in multiple stages as shown in Figure 1, it is carburized. The carburizing treatment in this case may be solid carburizing, gas carburizing, vacuum carburizing, or ion carburizing, but if the mold body is made of pure copper, its mechanical strength will decrease if the temperature is too high. Therefore, it is preferable to use a precipitation hardening type copper alloy such as chromium-copper, chromium-zirconium-copper, or beryllium-copper, which can be strengthened even at high temperatures by subsequent rapid cooling, aging, and reheating. Through this carburizing treatment, carbon penetrates into the chromium layer 4 on the surface and is converted into chromium carbide 5 from the surface. At the same time, the chromium layer 4 in contact with the nickel-based self-fluxing alloy sprayed layer 3 is heated during the carburizing process. Carbon and chromium contained in the sprayed layer 3 undergo a carbonization reaction, and the chromium layer 4 is also changed into a chromium carbide layer 5 here. In this case, by adjusting the temperature and time of the carburizing treatment, the chromium layer 4 that still remains and is sandwiched between the chromium carbides 5 (see Figure 2) and all of it can be changed to the chromium carbide 5. Two types are obtained: one with a different shape (see Fig. 3). For convenience of explanation, the coating layers in Figures 2 and 3 are drawn as if they are separate, but in reality, the areas between the mold body and the undercoat material and between each coating layer are adjacent to each other. They are diffused into each other to form a diffusion layer, and all the coating layers are tightly adhered to each other through these diffusion layers. When the continuous casting mold according to the method described so far is shown in perspective, the coating layer is attached only to the inner surface of the mold body, as shown in Figure 4, but as shown in Figures 5 and 6. As shown in the figure, there are molds in which the coating layer wraps around part or all of the sides of the mold body, making it difficult for the coating layer to peel off. This is effective for short-sided molds that are sandwiched between different long-sided molds. Although not shown, a surface coating layer may also be applied to part or all of the upper and lower end surfaces of the mold body to further improve adhesion and to improve the corrosion resistance and wear resistance of these parts. In addition, in the case of continuous casting molds, due to the usage conditions, heat removal properties are particularly required in the upper part of the mold, and wear resistance is particularly required in the lower part of the mold. The thickness of the sprayed layer or chromium layer is gradually increased toward the bottom of the mold, the bottom of the mold is carburized at a higher temperature and/or for a longer period of time than the top, or surface grinding is performed after carburizing. It is possible to obtain various forms as shown in FIGS. As described above, in the method of the present invention, after attaching each coating layer by appropriate means, the mold body and each coating layer are chemically bonded through the diffusion layer formed between them by a simple method of carburizing. The sprayed layer is remelted and part or all of the chromium layer becomes chromium carbide at that location, and this chromium carbide has an Hv2000
It has the above hardness and excellent wear resistance and corrosion resistance. Even if microscopic cracks peculiar to the chrome plating layer occur, chromium carbide is formed in the cracks, and as a result, no cracks appear, which helps the mold powder to flow evenly, and because it is highly heat resistant. The molten steel and solidified shell do not seize and so-called restraint breakout does not occur. Therefore, it has the effect of allowing stable operation over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法に於る浸炭前の状態を示す
説明図、第2図〜第4図はそれぞれ本発明方法に
より得られる鋳型の説明図、第5図及び第6図は
同コーテイング層を鋳型本体の両側面にも施した
ものの説明図、第7図〜第9図はそれぞれ同コー
テイング層の厚さを鋳型下部になるにつれ順次大
としたものの説明図。 図中、1:鋳型本体、2:アンダーコート材、
3:ニツケル基自溶性合金溶射層、4:クロム
層、5:クロム炭化物。
Fig. 1 is an explanatory diagram showing the state before carburization in the method of the present invention, Figs. 2 to 4 are explanatory diagrams of molds obtained by the method of the present invention, and Figs. 5 and 6 are illustrations of the same coating layer. 7 to 9 are explanatory diagrams in which the thickness of the same coating layer is gradually increased toward the bottom of the mold. In the figure, 1: mold body, 2: undercoat material,
3: Nickel-based self-fusing alloy sprayed layer, 4: Chromium layer, 5: Chromium carbide.

Claims (1)

【特許請求の範囲】 1 銅若しくは銅合金製鋳型本体の表面上に、ニ
ツケル若しくはニツケル合金から成るアンダーコ
ート材を装着し、同アンダーコート材上にニツケ
ル基自溶性合金溶射層を装着し、同溶射層の上面
に更にクロム層を装着し、次いで浸炭処理をする
事により上記クロム層の表面からは炭素を拡散浸
透させると共に、上記クロム層の上記ニツケル基
自溶性合金溶射層との接触側面からは同溶射層中
に含有される炭素とクロムとを反応させる事によ
り上記クロム層をその両面からクロム炭化物に変
化せしむることを特徴とする連続鋳造用鋳型の製
造方法。 2 ニツケル基自溶性合金溶射層を鋳型上部から
鋳型下部になるにつれ順次層厚となすことを特徴
とする特許請求の範囲第1項記載の連続鋳造用鋳
型の製造方法。 3 クロム層を鋳型上部から鋳型下部になるにつ
れ順次層厚となすことを特徴とする特許請求の範
囲第1項若しくは第2項記載の連続鋳造用鋳型の
製造方法。 4 アンダーコート材、ニツケル基自溶性合金溶
射層及びクロム層を鋳型本体両側面の内表面寄り
の一部又は全部まで巻込延長することを特徴とす
る特許請求の範囲第1項〜第3項のいずれかに記
載の連続鋳造用鋳型の製造方法。
[Claims] 1. An undercoat material made of nickel or nickel alloy is mounted on the surface of a mold body made of copper or copper alloy, and a nickel-based self-fusing alloy sprayed layer is mounted on the undercoat material. A chromium layer is further attached to the top surface of the sprayed layer, and then carburized to diffuse and penetrate carbon from the surface of the chromium layer, as well as from the side surface of the chromium layer in contact with the nickel-based self-fusing alloy sprayed layer. A method for manufacturing a continuous casting mold, characterized in that the chromium layer is converted into chromium carbide from both sides by reacting carbon and chromium contained in the sprayed layer. 2. The method for manufacturing a continuous casting mold according to claim 1, characterized in that the sprayed layer of a nickel-based self-fluxing alloy is gradually thickened from the upper part of the mold to the lower part of the mold. 3. A method for manufacturing a continuous casting mold according to claim 1 or 2, characterized in that the chromium layer is made thicker from the upper part of the mold to the lower part of the mold. 4. Claims 1 to 3, characterized in that the undercoat material, the nickel-based self-fusing alloy sprayed layer, and the chromium layer are wound and extended to a part or all of the inner surface of both sides of the mold body. A method for manufacturing a continuous casting mold according to any one of the above.
JP18662982A 1982-10-21 1982-10-21 Production of mold for continuous casting Granted JPS5976645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18662982A JPS5976645A (en) 1982-10-21 1982-10-21 Production of mold for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18662982A JPS5976645A (en) 1982-10-21 1982-10-21 Production of mold for continuous casting

Publications (2)

Publication Number Publication Date
JPS5976645A JPS5976645A (en) 1984-05-01
JPH031097B2 true JPH031097B2 (en) 1991-01-09

Family

ID=16191919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18662982A Granted JPS5976645A (en) 1982-10-21 1982-10-21 Production of mold for continuous casting

Country Status (1)

Country Link
JP (1) JPS5976645A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270249A (en) * 1986-05-17 1987-11-24 Fujiki Kosan Kk Production of mold for continuous casting
EP0320572B1 (en) * 1987-12-17 1992-12-23 Kawasaki Steel Corporation Cooling roll for producing quenched thin metal tape

Also Published As

Publication number Publication date
JPS5976645A (en) 1984-05-01

Similar Documents

Publication Publication Date Title
JPS6117912B2 (en)
JPH031097B2 (en)
JPS5973153A (en) Mold for continuous casting and its production
JP3916388B2 (en) Manufacturing method of continuous casting mold
JPS6133734A (en) Surface treatment of metallic mold for casting
JPS5973152A (en) Mold for continuous casting and its production
JPH0153145B2 (en)
JPS62207534A (en) Mold for continuous casting
JP4055522B2 (en) Molded copper plate for continuous casting mold and manufacturing method thereof
JPH01122611A (en) Carrying roll for high temperature steel material
JPS58151941A (en) Casting mold for continuous casting
JP3622437B2 (en) Continuous casting mold and continuous casting method using the same
JPS60206552A (en) Wide faced mold for continuous casting
JPS58212840A (en) Casting mold for continuous casting
JPS62183950A (en) Thermal spraying roll for hot casting slab
JPS59153506A (en) Manufacture of guide shoe used for manufacturing seamless pipe excellent in wear-and-seizure-resistant properties
JPS5982149A (en) Cooling roll for producing ultraquickly cooled metal
JPH09228071A (en) Method for thermal spraying to casting mold for continuous casting and casting mold for continuous casting
JPS59163056A (en) Cooling roll for producing quickly cooled light-gage metallic strip
JPH01118355A (en) Coated die and core for aluminum die casting
JPS5954446A (en) Casting mold for continuous casting and its production
JPH0153144B2 (en)
JPH024950A (en) Manufacture of surface treated steel sheet having excellent corrosion resistance and wear resistance
JPS5956945A (en) Mold for continuous casting and its production
JPS63487A (en) Heat resistance member having oxide film on coating of chromium-contained thermal spraying metal