JPH0310972A - Rear wheel control method for four-wheel steering vehicle - Google Patents

Rear wheel control method for four-wheel steering vehicle

Info

Publication number
JPH0310972A
JPH0310972A JP14595889A JP14595889A JPH0310972A JP H0310972 A JPH0310972 A JP H0310972A JP 14595889 A JP14595889 A JP 14595889A JP 14595889 A JP14595889 A JP 14595889A JP H0310972 A JPH0310972 A JP H0310972A
Authority
JP
Japan
Prior art keywords
proportional
gravity
rear wheel
center
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14595889A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fukamachi
深町 和弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP14595889A priority Critical patent/JPH0310972A/en
Publication of JPH0310972A publication Critical patent/JPH0310972A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain overall flat gain characteristics, increase a natural frequency and a convergent level and improve maneuverability by detecting lateral acceleration at a position aft of the center of gravity of a vehicle, for example, on a rear wheel, and controlling the rear wheel with the proportional and differential signals from the detected acceleration. CONSTITUTION:In a four-wheel steering vehicle, a rear wheel steering angle deltar is so controlled as to be proportional to lateral acceleration yr at a position aft of the center of gravity of the vehicle. Also, when a differential transfer function including proportional terms is G(S), a proportional gain is alpha, a time constant is T and a steering factor is kr, respectively expressed by an equation G(S)=1+alphaTs/(1+Ts) is G(S), the rear wheel is controlled on the basis of an equation deltar=G(S)kr.yr. According to the aforesaid construction, a peak value of frequency characteristics giving a high yaw rate pertaining to a four-wheel steering vehicle with the center of gravity proportional to lateral G, is eliminated together with a large yaw rate drop in a high frequency range. Overall flat gain characteristics are thereby obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、4輪操舵車で後輪制御方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling rear wheels in a four-wheel steering vehicle.

従来の技術 操安性向上の目的にて前輪および後輪を操舵する4輪操
舵の技術は、特公昭40−10728号公報以来数多く
開発され公開されている。
Conventional Technology Many four-wheel steering techniques for steering front and rear wheels for the purpose of improving steering stability have been developed and published since Japanese Patent Publication No. 10728/1973.

後輪制御の方式としては舵角比例型と舵力比例型とに大
別でき、後者の舵力比例型の中で車で重心に働く横方向
加速度に応じて後輪を制御する技術(以下重心点横G比
例型と称す)は、特開昭57−44568号公報或は特
開昭60−161256号公報などいくつか見られる。
Rear wheel control methods can be roughly divided into steering angle proportional type and steering force proportional type. Among the latter type, there is a technology that controls the rear wheels according to the lateral acceleration acting on the center of gravity of the vehicle (hereinafter referred to as There are several examples of the gravity center point lateral G proportional type) such as Japanese Patent Application Laid-Open No. 57-44568 and Japanese Patent Application Laid-Open No. 60-161256.

発明が解決しようとするWIWJ 前輪舵角δfに比例した後輪舵角δrの制御(δr ”
4δf)を行う舵角比例型では操舵に対する固有振動数
は前輪のみを操舵する従来の2輪操舵と変らない。それ
にくらべ舵力比例型(重心点横G比例型を含む)のもの
は後輪同相操舵(後輪を前輪と同相に操舵すること)に
より固有振動数が上記2輪操舵の場合よりも高くでき且
つ位相遅れを少くできるという利点をもっているものの
、減衰が悪化してヨーレートゲインの周波数特性が2輪
操舵より大きなピークをもつと言う欠点(を伴う。
WIWJ to be solved by the invention Control of rear wheel steering angle δr proportional to front wheel steering angle δf (δr ”
4δf), the natural frequency for steering is the same as the conventional two-wheel steering in which only the front wheels are steered. In comparison, the steering force proportional type (including the center of gravity lateral G proportional type) can have a higher natural frequency than the above two-wheel steering due to rear wheel in-phase steering (steering the rear wheels in the same phase as the front wheels). Although it has the advantage of reducing phase lag, it also has the disadvantage that the attenuation deteriorates and the frequency characteristics of the yaw rate gain have a larger peak than in two-wheel steering.

本発明は車で重心点に働く横方向加速度に応じて後輪を
制御する重心点描G比例型の欠点である車両応答の減衰
性を改善することにより、周波数特性によりフラットな
特性をもたせると同時に重心点描G比例型の長所である
位相遅れの少なさを生かした後輪制御方法を提供するこ
とを目的とするものである。
The present invention improves the attenuation of the vehicle response, which is a drawback of the center-of-gravity stipple G proportional type, which controls the rear wheels according to the lateral acceleration acting on the center of gravity, thereby providing a flatter frequency characteristic. It is an object of the present invention to provide a rear wheel control method that takes advantage of the small phase delay, which is an advantage of the center-of-gravity pointillist G proportional type.

課題を解決するための手段 本発明は、後輪舵角δ「を車両重心点後方の横方向加速
度すrに比例して制御すると共に、比例項を含む微分の
伝達関数G(S)=1+x  にて /+TS δr  =G(S)  4r  yr (但し福、は転舵係数、Tは時定数。
Means for Solving the Problems The present invention controls the rear wheel steering angle δ' in proportion to the lateral acceleration Sr behind the center of gravity of the vehicle, and also controls the differential transfer function G(S)=1+x including a proportional term. /+TS δr = G(S) 4r yr (However, F is the steering coefficient and T is the time constant.

αは比例ゲイン) で後輪制御を行うようにしたものである。α is proportional gain) The system is designed to control the rear wheels.

作   用 上記により、従来の車で重心点に働く横方向加速度に応
じて後輪を制御する重心点検G比例型4輪操舵車両であ
られれていた周波数特性のヨーレイトゲインのより大き
なピークはなくなり且つ高周波域でのヨーレイトゲイン
の落ち込みも少くなり全体としてよりフラットなゲイン
特性を得ることができ、位相遅れも少く、又固有振動数
および収束性を向上できるもので、運転しやすい4輪操
舵車両とすることができるものである。
As a result of the above, the larger peak of the yaw rate gain in the frequency characteristic that occurs in conventional vehicles with G-proportional four-wheel steering vehicles that control the rear wheels according to the lateral acceleration acting on the center of gravity is eliminated. The drop in yaw rate gain in the high frequency range is also reduced, making it possible to obtain flatter gain characteristics as a whole, with less phase lag, and improving the natural frequency and convergence, making it a four-wheel steering vehicle that is easy to drive. It is something that can be done.

実施例 以下本発明の実施例を附図を参照して説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図に示すような4輪操舵車の2輪モデルにおいて、
前輪舵角をδf 、後輪舵角をδ。
In a two-wheel model of a four-wheel steering vehicle as shown in Figure 1,
The front wheel steering angle is δf, and the rear wheel steering angle is δ.

前輪から車両重心までの距離を文f 、後輪から車両重
心までの距離をlr、ヨー角速度をψ。
The distance from the front wheels to the vehicle center of gravity is f, the distance from the rear wheels to the vehicle center of gravity is lr, and the yaw angular velocity is ψ.

重心点検すべり角をβ、車速をVとすると、重心点検G
比例型4輪操舵車で後輪制御は、8r =4y==4V
 C/”り ・・団・−(1)である、但し蚕は転舵係
数、すは重心点描方向加速度である。
Center of gravity inspection If the slip angle is β and the vehicle speed is V, then center of gravity inspection G
Rear wheel control in a proportional 4-wheel steering vehicle is 8r = 4y = = 4V
C/"ri...group-(1), however, for the silkworm, it is the steering coefficient, and S is the acceleration in the direction of the center of gravity.

上記(1)式によって後輪制御される4輪操舵車で、操
舵に対するヨーレイトの周波数応答性および操舵に対す
るる横方向加速度の周波数応答特性は第2図および第3
図の■に示す通りである。
In a four-wheel steered vehicle whose rear wheels are controlled by equation (1) above, the frequency response characteristics of yaw rate to steering and the frequency response characteristics of lateral acceleration to steering are shown in Figures 2 and 3.
As shown in ■ in the figure.

即ち、上記(1)式にて制御される重心点描G比例型の
ものは、第2,3図の■の符号で示す曲線のように、固
有振動数は後輪を操舵しない2輪操舵車両(2WS)よ
りも高くでき且つ位相遅れを小さくすることができるも
のの減衰が悪化して周波数応答性のヨーレイトゲインが
より大きなピークをもつと言う欠点を伴う。
In other words, in the center-of-gravity stippled G proportional type controlled by the above equation (1), the natural frequency is the same as that of a two-wheel steering vehicle in which the rear wheels are not steered, as shown by the curve indicated by the symbol ■ in Figures 2 and 3. (2WS) and can reduce the phase delay, but this has the disadvantage that the attenuation deteriorates and the frequency-responsive yaw rate gain has a larger peak.

そこで本発明では、車両重心点後方例えば後輪上の横方
向加速度を検出して、その比例+微分信号で後輪制御を
行うようにしたものである。即ち後輪上の横方向加速度
をνrとし、比とすると、本発明における後輪舵角δr
の制御方法は、 δr  ”G(S)  4r  5’r= (t +T
V) 4r (j−ur tj)・・・(3)で表わさ
れるものである。但しαは比例ゲイン、Tは時定数、S
はラプラス演算子、元、は数、すは重心点描方向加速度
、又、は後輪から車両重心までの距離、ψははヨー角加
速度、mは車両質量、工・・・車でヨー慣性モーメンh
、Krは後輪のコーナリングパワーである。
Therefore, in the present invention, the lateral acceleration behind the center of gravity of the vehicle, for example, on the rear wheels, is detected, and the rear wheels are controlled using the proportional + differential signals. That is, if the lateral acceleration on the rear wheels is νr, and the ratio is taken as the ratio, then the rear wheel steering angle δr in the present invention is
The control method is as follows: δr ”G(S) 4r 5'r= (t +T
V) 4r (j-ur tj)...(3). However, α is the proportional gain, T is the time constant, and S
is the Laplace operator, an element, a number, is the acceleration in the direction of the center of gravity, or is the distance from the rear wheels to the center of gravity of the vehicle, ψ is the yaw angular acceleration, m is the mass of the vehicle, and the yaw moment of inertia of the car h
, Kr is the cornering power of the rear wheels.

このように(3)式で表される後輪制御を行うことによ
り、第2図、第3図の符号■にて示す曲線のように、ヨ
ーレイト特性において従来の微分制御を行わない重心点
描G比例型■のようなピークを持つものに比べて全体に
よりフラットなゲイン特性を得ることができ、横方向加
速度特性において重心点描G比例型のもの■に比べて高
周波域の位相遅れが少なくなり、非常に運転しやすい特
性とすることができるものである。
By performing the rear wheel control expressed by equation (3) in this way, as shown in the curve shown by the symbol ■ in Figs. 2 and 3, the center of gravity point-pointed G Compared to proportional type (■) which has a peak, it is possible to obtain a flatter gain characteristic as a whole, and in terms of lateral acceleration characteristics, there is less phase delay in the high frequency range compared to center of gravity stippled G proportional type (■). This makes it extremely easy to drive.

以下にその説明を行う。The explanation will be given below.

4輪操舵車で横方向(y軸方向)M動および重心まわり
(Z軸まわり)ヨーモーメント方向運動の各運動方程式
はそれぞれ下記の(4)(5)式で表わされる。
In a four-wheel steered vehicle, the equations of motion for the lateral M motion (in the y-axis direction) and the yaw moment direction motion around the center of gravity (around the Z-axis) are expressed by the following equations (4) and (5), respectively.

式を展開すると、 =鴇侍+21F:rir  ・・・(4)(但し上記(
4)、(5)式において各記号は第1図の記号説明表参
照のこと) 先ず重心点描G比例型4輪操舵車両について固有振動数
と低常ヨーレイトゲインとを求める。(1)式で表わさ
れる後輪舵角δ、を(0゜(5)式に代入しラプラス変
換すると、但し 蚕く刀り 従って固有振動数は、 ・・・・・・・・・・・・(9) ・・・・・・・・・(10) 減衰比をことするとζωは、 (8)式より、特性方程式は、 ・・・(11) 但しθはステアリングハンドル転舵角、Gはステアリン
グギヤ比であり、θ=G−δfで表わされる。
Expanding the formula, = Toshi Samurai + 21F: rir ... (4) (However, the above (
(For each symbol in equations 4) and (5), refer to the symbol explanation table in FIG. 1.) First, the natural frequency and low normal yaw rate gain are determined for the center-of-gravity pointillist G proportional type four-wheel steering vehicle. Substituting the rear wheel steering angle δ, expressed by equation (1), into (0°) into equation (5) and converting it to Laplace, however, the natural frequency is:・(9) ・・・・・・・・・(10) Taking the damping ratio into consideration, ζω is From equation (8), the characteristic equation is: ・・・(11) However, θ is the steering wheel turning angle, G is the steering gear ratio and is expressed as θ=G−δf.

次に後輪点検G比例型4輪操舵車両について固有振動数
と定常ヨーレイトゲインとを求める。後輪点検G比例型
においては後輪転舵角は δン:44r=h(y−14)=/erfV(Inジー
k(pl     =−(13)で表わされる。
Next, the natural frequency and steady yaw rate gain are determined for the rear wheel inspection G-proportional four-wheel steering vehicle. In the rear wheel inspection G proportional type, the rear wheel steering angle is expressed as δ:44r=h(y-14)=/erfV(Ink(pl=-(13)).

(13)式で表わされる後輪舵角δrを(4)、(5)
式に代入しラプラス変換すると、 (15)式を展開すると、 従って固有振動数は ・・・・・・・・・(18) 減衰比をζr とするとζ「 (10式より特性方程式は、 ・・・・・・・・・(13) j包6よ 定常ヨーレイトゲイン θ 次に上記重心点検G比例型と後輪点描G比例型の定常ヨ
ーレイトゲインが等しい条件のもとで、特性の比較を行
う、先ず定常ヨーレイトゲインを表わす(12)式と(
20)式を等しいとすると、 従って 4 = 4 r          ・・・・・・・・
・(21)ここで固有振動数を表わす(10)式と(1
8)式を比較すると、 上記において、スタビリテイファクタを示すω、−ω〉
0即ち ω、〉ω            ・・・・・・・・・
・・・(22)となる、従って同相操舵(4>0)を行
うと後輪点描G比例型の方が重心点検G比例型よりも固
有振動数が高くなる。
Rear wheel steering angle δr expressed by equation (13) is expressed as (4), (5)
Substituting into the equation and applying the Laplace transform, and expanding equation (15), the natural frequency is therefore... (18) If the damping ratio is ζr, ζ' (From equation 10, the characteristic equation is:・・・・・・・・・(13) J envelope 6 Steady yaw rate gain θ Next, compare the characteristics of the above-mentioned center of gravity inspection G proportional type and rear wheel stippled G proportional type under the condition that the steady yaw rate gain is equal. To do this, first, equation (12) expressing the steady yaw rate gain and (
20) Assuming that the formulas are equal, then 4 = 4 r...
・(21) Here, equation (10) representing the natural frequency and (1
8) Comparing the equations, we find that in the above, ω, −ω, which indicates the stability factor
0 that is ω, 〉ω ・・・・・・・・・
...(22) Therefore, when in-phase steering (4>0) is performed, the natural frequency of the rear wheel stipple G proportional type is higher than that of the center of gravity inspection G proportional type.

次に収束間の目安となる整定時間に関係するζω、ζr
ωrを表わす(11)式と(19)式を比較すると、 即ち ζr ω「 〉ζω 従って同相操舵(4>O)を行うと後輪点描G比例型の
方が重心点検G比例型よりもζωが大きくなるため整定
時間(整定時間oc 7万)は短くなり、振動がおさま
るのが早くなり、非常に運転しやすい特性とすることが
できる。
Next, ζω, ζr related to the settling time, which is a guideline for convergence.
Comparing Equation (11) and Equation (19), which express ωr, we find that ζr ω'' 〉ζω Therefore, when performing in-phase steering (4>O), the rear wheel stippled G proportional type has a lower center of gravity inspection G proportional type than the center of gravity inspection G proportional type. Since this becomes larger, the settling time (settling time oc 70,000) becomes shorter, the vibration subsides more quickly, and characteristics that are extremely easy to drive can be obtained.

次に上記(2)式で表わされる伝達関数G (S)につ
いて説明する。
Next, the transfer function G (S) expressed by the above equation (2) will be explained.

α〉0とすると、ボード線図は第4図に示すようになる
When α>0, the Bode diagram becomes as shown in FIG.

常ゲインを61 =4r ’Yr と等しくし、ピーク
同相方向の後輪舵角δ、を従来のものに比しンgキO[
dB]  、IG(S)lキ1であるから後輪舵角はδ
r =4r Yr となる。
The normal gain is set equal to 61 = 4r'Yr, and the rear wheel steering angle δ in the peak in-phase direction is compared with the conventional one.
dB], since IG(S) is 1, the rear wheel steering angle is δ
r = 4r Yr.

であるから、後輪舵角δ、は。Therefore, the rear wheel steering angle δ is.

!r%(J、≦r 4.”   トナル。! r% (J, ≦r 4.” Tonal.

、2/r であるから後輪舵角δ「は δ、≠(l+α)4rY+−となる。,2/r Therefore, the rear wheel steering angle δ is δ,≠(l+α)4rY+-.

即ち、微分制御を行わない重心点検G比例型のものが第
2図の■に示すようにヨーレイトゲインにより大きなピ
ークをもつのに対し、後輪上の横方向加速度νrを用い
上記(2)式で表わされる伝達関数G (S)で後輪制
御を行うことにはδ、Φ(1+α)4rν1を保ち、同
相方向の後輪転舵量を一定にしてゲイン低下を防止し、
第2図の符号■で示すような好ましい周波数応答を得る
ことができると共に、固有振動数および収束性を向上さ
せることができる。
In other words, the center of gravity inspection G proportional type that does not perform differential control has a large peak due to the yaw rate gain, as shown in ■ in Figure 2, whereas the above equation (2) using the lateral acceleration νr on the rear wheels In order to control the rear wheels using the transfer function G (S), δ and Φ(1+α)4rν1 are maintained, and the amount of rear wheel steering in the in-phase direction is kept constant to prevent a decrease in gain.
It is possible to obtain a preferable frequency response as shown by the symbol ■ in FIG. 2, and also to improve the natural frequency and convergence.

尚上記実施例では後輪上の横方向加速度を検出して後輪
制御を行う例を示したが、必ずしも後輪上でなければな
らない訳ではなく車両重心と後輪との間の任意の点を採
用し得ることは言うまでもない。
In the above embodiment, an example was shown in which rear wheel control is performed by detecting the lateral acceleration on the rear wheels, but it does not necessarily have to be on the rear wheels, but can be applied at any point between the vehicle center of gravity and the rear wheels. Needless to say, it is possible to adopt

発明の効果 上記のように本発明によれば、後輪舵角δ。Effect of the invention As described above, according to the present invention, the rear wheel steering angle δ.

を車両重心点後方の横方向加速度Yrに比例して制御す
ると共に、比例項を含む微分の伝達間T5 数G(St)=1+    にて / + 75 δr  = G (S)  4 r  Y r(但し4
rは転舵係数、Tは時定数。
is controlled in proportion to the lateral acceleration Yr behind the vehicle's center of gravity, and the differential transmission interval T5 including the proportional term is controlled at the number G (St) = 1 + / + 75 δr = G (S) 4 r Y r ( However, 4
r is the steering coefficient and T is the time constant.

αは比例ゲイン) で後輪制御を行うことにより、従来の車で重心点に働ら
く横方向加速度に応じて後輪を制御する重心点横G比例
型4輪操舵車両であられれていた周波数特性のヨーレイ
トゲインのより大きなピークはなくなり且つ高周波域で
のヨーレイトゲインの大きな落ち込みも少なくなり全体
としてよりフラットなゲイン特性を得ることができ、位
相遅れも少なく、又固有振動数および収束性を向上でき
るので、運転しやすい4輪操舵車両とすることができる
もので、実用上多大の効果をもたらし得るものである。
α is the proportional gain) By performing rear wheel control, the frequency that was used in conventional vehicles with 4-wheel steering proportional to the center of gravity, which controls the rear wheels according to the lateral acceleration acting on the center of gravity. The large peak of the characteristic yaw rate gain is eliminated, and the large drop in yaw rate gain in the high frequency range is also reduced, making it possible to obtain an overall flatter gain characteristic, less phase lag, and improved natural frequency and convergence. As a result, it is possible to create a four-wheel steering vehicle that is easy to drive, and can bring about great practical effects.

【図面の簡単な説明】 第1図は4輪操舵車で2輪モデル図、第2図は操舵に対
するヨーレイトの周波数応答特性図、第3図は操舵に対
する横方向加速度の周波数応答特性図、第4図は本発明
における伝達関数のボード線図である。 Jkt+−1コttろミーレイト、/にへ演歓兄答涜舵
仲對する膿カ向加之シ洞ス打庭谷
[Brief explanation of the drawings] Figure 1 is a two-wheel model diagram of a four-wheel steering vehicle, Figure 2 is a frequency response characteristic diagram of yaw rate to steering, Figure 3 is a frequency response characteristic diagram of lateral acceleration to steering, FIG. 4 is a Bode diagram of the transfer function in the present invention. Jkt + - 1 Kott me late, /Niheenhan brother answering the helmsman, Puska Mukikano Shidosu Uchiwatani

Claims (1)

【特許請求の範囲】 後輪舵角δ_rを車両重心点後方の横方向加速度■_r
に比例して制御すると共に、比例項を含む微分の伝達関
数G(S)=1+[αTs]/[1+Ts]にてδ_r
=G(S)k_r■_r (但しk_rは転舵係数、Tは時定数、 αは比例ゲイン) で後輪制御を行うことを特徴とする4輪操舵車両の後輪
制御方法。
[Claims] The rear wheel steering angle δ_r is the lateral acceleration behind the vehicle center of gravity ■_r
δ_r with the differential transfer function G(S)=1+[αTs]/[1+Ts] including the proportional term.
=G(S)k_r■_r (where k_r is a steering coefficient, T is a time constant, and α is a proportional gain).
JP14595889A 1989-06-08 1989-06-08 Rear wheel control method for four-wheel steering vehicle Pending JPH0310972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14595889A JPH0310972A (en) 1989-06-08 1989-06-08 Rear wheel control method for four-wheel steering vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14595889A JPH0310972A (en) 1989-06-08 1989-06-08 Rear wheel control method for four-wheel steering vehicle

Publications (1)

Publication Number Publication Date
JPH0310972A true JPH0310972A (en) 1991-01-18

Family

ID=15396963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14595889A Pending JPH0310972A (en) 1989-06-08 1989-06-08 Rear wheel control method for four-wheel steering vehicle

Country Status (1)

Country Link
JP (1) JPH0310972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038548A (en) * 2006-08-10 2008-02-21 Tcm Corp Hydraulic drive unit in industrial vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038548A (en) * 2006-08-10 2008-02-21 Tcm Corp Hydraulic drive unit in industrial vehicle

Similar Documents

Publication Publication Date Title
US20210046922A1 (en) Yaw motion control method for four-wheel distributed vehicle
JP3409439B2 (en) Driving force distribution control system for left and right wheels and front and rear wheels
DE60127922T2 (en) Device and method for controlling vehicle movement
US5742917A (en) Driving torque distribution control system for vehicle and the method thereof
JP2932589B2 (en) Vehicle motion control device
US8255120B2 (en) Steering apparatus, automotive vehicle with the same, and steering control method
JPH07504141A (en) Vehicle stability control method
US5208751A (en) Active four-wheel steering system for motor vehicles
US20030060959A1 (en) Integration of rear wheel steering with vehicle stability enhancement system
CN110435628A (en) A kind of automobile four-wheel-driven control system and method
JP3210471B2 (en) Steering method for road surface vehicle having front wheel and rear wheel steering
Zheng et al. Active steering control with front wheel steering
JP3078054B2 (en) Apparatus for improving rolling dynamics of vehicles
JPH0310972A (en) Rear wheel control method for four-wheel steering vehicle
JP2707574B2 (en) Vehicle turning control device
EP0980806A1 (en) Wheelslip regulating brake control
JPH0295982A (en) Steering controlling method for four-wheel steered vehicle
JPH0948338A (en) Behavior control device for vehicle
JP3463530B2 (en) Vehicle motion control device
JPS6299213A (en) Drive power distribution control device for four wheel drive vehicle
JPH05278490A (en) Driving force distribution device for four-wheel drive vehicle
JPH092220A (en) Method for controlling distribution of braking force of vehicle
Gan et al. A Torque Vectoring Control System for Maneuverability Improvement of 4WD EV
Nagai et al. Stability of 4WS vehicle based on side slip zeroing control: Influence of steering system dynamics
JP3775127B2 (en) Vehicle motion control device