JPH03109292A - Vapor growth method for oxide thin film - Google Patents

Vapor growth method for oxide thin film

Info

Publication number
JPH03109292A
JPH03109292A JP24075289A JP24075289A JPH03109292A JP H03109292 A JPH03109292 A JP H03109292A JP 24075289 A JP24075289 A JP 24075289A JP 24075289 A JP24075289 A JP 24075289A JP H03109292 A JPH03109292 A JP H03109292A
Authority
JP
Japan
Prior art keywords
thin film
crystal
gaseous
plane
reaction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24075289A
Other languages
Japanese (ja)
Inventor
Takatoshi Nakanishi
中西 隆敏
Kazuhiro Eguchi
和弘 江口
Toshie Sato
利江 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24075289A priority Critical patent/JPH03109292A/en
Publication of JPH03109292A publication Critical patent/JPH03109292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the purity of a single crystal by installing the substrate crystal constituted of a specific surface in a reaction furnace and introducing org. metal vapor and O2 or an oxidizing agent which can supply O2 into the furnace and thereby causing pyrolysis. CONSTITUTION:The substrate crystal 20 which is cleaned by chemical etching and is constituted of the face that the low-index face is inclined by 2 to 5 deg. toward a (100) direction from (011) face or (110) face is imposed on a sample imposing base 2. Gaseous Ar is supplied to the reaction furnace 1 to substitute the in-furnace atmosphere; thereafter, the gaseous O2 is supplied from a gaseous O2 cylinder 16 into the reaction furnace 1 where the substrate crystal 20 is heated to a prescribed temp. by an electric furnace 3. The gaseous Ar is passed to containers 10, 11, 12 for org. metal raw materials after stopping of the supply of the gaseous O2 and the org. metal vapors are supplied into the reaction furnace 1 by operating 3-way valves 13, 14, 15. The supply of the vapors to the reaction furnace 1 is stopped after the prescribed time and the gaseous O2 is supplied into the reaction furnace 1 upon lapse of some time. This stage is repeated several tens times, by which the thin film of the oxide superconductor consisting of the single crystal is obtd. at a prescribed thickness over the entire surface.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は有機金属化学気相成長(MOCVD)による酸
化物薄膜の気相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for vapor phase growth of oxide thin films by metal organic chemical vapor deposition (MOCVD).

(従来の技術) 近年、Y B a 2 Cu O7−a、Bi2 Sr
2 CaCu、Osなどに代表される酸化物超電導体が
発見され注目を集めている。これまで知られていたNb
3 Gaのような金属間化合物からなる超電導体では、
その超電導特性の指標である臨界温度(Tc)が高々2
0Kに過ぎず、高価な液体ヘリウム(4,2K)冷媒に
よる冷却下でしか超電導特性を示さないため、超電導体
の用途が著しく制限されていた。これに対して、前述し
た酸化物超電導体のTcは100 Kを超えており、工
業的に安価に製造されている液体窒素(77K)による
冷却下で超電導特性を示すため、従来の用途は勿論、7
7にで動作する超高速論理素子などの電子デバイスへの
応用を含めた新しい用途が提案され始めている。
(Prior art) In recent years, YBa2CuO7-a, Bi2Sr
2 Oxide superconductors such as CaCu and Os have been discovered and are attracting attention. Previously known Nb
3 In superconductors made of intermetallic compounds such as Ga,
The critical temperature (Tc), which is an indicator of its superconducting properties, is at most 2
The superconductor's applications have been severely limited because it exhibits superconducting properties only when cooled with an expensive liquid helium (4.2K) coolant. On the other hand, the Tc of the oxide superconductor mentioned above exceeds 100 K, and it exhibits superconducting properties when cooled with liquid nitrogen (77 K), which is industrially produced at low cost. ,7
New uses are beginning to be proposed, including applications to electronic devices such as ultra-high-speed logic elements that operate at 700 nm.

酸化物超電導体が工業的に使用されるためには、組成の
制御された、欠陥の少ない酸化物結晶を再現性よく作製
できることが不可欠である。特に、超高速論理素子など
の電子デバイスへ適用するには酸化物i11結晶で構成
される平坦な薄膜が必要不可欠となる。
In order for oxide superconductors to be used industrially, it is essential that oxide crystals with controlled composition and few defects can be produced with good reproducibility. In particular, a flat thin film composed of oxide i11 crystal is essential for application to electronic devices such as ultrahigh-speed logic elements.

従来、酸化物超電導体薄膜を作製するには、スパッタリ
ングや電子ビーム蒸着などの物理的手法が用いられてき
た。これらの方法を用いれば、比較的単純な装置で薄膜
が得られる。しかし、これらの方法では、酸化物超電導
体薄膜の構成元素の供給量を独立に精密制御することが
困難であり、しかも構成元素の供給量がスパッタリング
ターゲットや蒸発源の形状に左右されることから、所望
の組成の酸化物超電導体を再現性よく堆積することが困
難であった。
Conventionally, physical methods such as sputtering and electron beam evaporation have been used to fabricate oxide superconductor thin films. Using these methods, thin films can be obtained using relatively simple equipment. However, with these methods, it is difficult to independently and precisely control the supply amount of the constituent elements of the oxide superconductor thin film, and furthermore, the supply quantity of the constituent elements depends on the shape of the sputtering target and evaporation source. However, it has been difficult to deposit an oxide superconductor with a desired composition with good reproducibility.

そこで、最近では酸化物超電導体薄膜を作製するために
、CV D (Chemical Vapor Dep
osition )の一種である有機金属の熱分解反応
を利用したM OCV D (Metalorganf
c CVD)法の開発が活発に進められている。これは
、MOCVD法が前述した物理的手法とは異なる化学気
相成長法であり、酸化物超電導体の構成元素を含有する
原料の供給量を独立に精密制御できるので、薄膜組成の
制御性が向上するためである。
Therefore, in order to produce oxide superconductor thin films, CVD (Chemical Vapor Dep.
MOCV D (Metalorgan
c CVD) method development is actively underway. This is a chemical vapor deposition method that is different from the physical method described above, and the MOCVD method allows for independent and precise control of the amount of raw materials containing the constituent elements of the oxide superconductor, making it possible to control the composition of the thin film. The purpose is to improve.

しかし、従来のMOCVD法で堆積された薄膜に関して
は以下のような問題点が報告されている。
However, the following problems have been reported regarding thin films deposited by the conventional MOCVD method.

すなわち、成長温度が600℃以下である場合、堆積さ
れた薄膜は超電導層とは別の多結晶層、又は非晶質層で
構成されており、そのままでは超電導特性を示さない。
That is, when the growth temperature is 600° C. or lower, the deposited thin film is composed of a polycrystalline layer or an amorphous layer different from the superconducting layer, and does not exhibit superconducting properties as it is.

そして、薄膜を堆積した後、800℃以上の高温で空気
又は純酸素雰囲気中で酸化及び結晶化熱処理を施すこと
によりはじめて、薄膜が超電導特性を示すようになる。
After the thin film is deposited, the thin film exhibits superconducting properties only by performing oxidation and crystallization heat treatment in air or pure oxygen at a high temperature of 800° C. or higher.

ところが、こうして得られた薄膜は多結晶体であり、し
かもより高温での結晶化熱処理工程によって堆積したま
まの結晶組成とは別の超電導体層を得ているため、得ら
れた薄膜表面の平坦性が非常に悪く、到底超高速電子デ
バイスなどに用いることができない。
However, the thin film obtained in this way is polycrystalline, and the superconductor layer has a different crystal composition from the as-deposited crystal composition due to the crystallization heat treatment process at a higher temperature, so the surface flatness of the thin film obtained is Its properties are extremely poor, and it cannot be used in ultrahigh-speed electronic devices.

従来の方法で堆積後の酸化及び結晶化熱処理を省略しよ
うとすると、堆積温度を少なくとも800℃以上にしな
ければ所望の超電導層が得られない。
If an attempt is made to omit post-deposition oxidation and crystallization heat treatment using the conventional method, the desired superconducting layer cannot be obtained unless the deposition temperature is at least 800° C. or higher.

しかし、この場合にも薄膜表面の平坦性は極めて悪かっ
た。また、堆積温度及び堆積後の熱処理温度が高いと、
基板と薄膜との反応による膜質の劣化を引き起こすなど
の好ましくない問題も生じる。
However, even in this case, the flatness of the thin film surface was extremely poor. Also, if the deposition temperature and post-deposition heat treatment temperature are high,
Undesirable problems such as deterioration of film quality due to reaction between the substrate and the thin film also occur.

以上のように、従来のMOCVD法では、薄膜堆積後に
酸素又は空気中で高温熱処理しなければ所望の超電導体
層が得られないこと、高温熱処理を省略しようとすると
堆積温度を高めなければならないことから、低温では薄
膜の酸化が充分に進行しないことを示している。したが
って、何らかの方法で酸化の程度を高めなければ、より
低温で所望の超電導体結晶層を得ることができないとい
う問題があった。
As described above, in the conventional MOCVD method, the desired superconductor layer cannot be obtained unless high-temperature heat treatment is performed in oxygen or air after thin film deposition, and the deposition temperature must be increased if high-temperature heat treatment is to be omitted. This indicates that oxidation of the thin film does not proceed sufficiently at low temperatures. Therefore, there is a problem in that a desired superconductor crystal layer cannot be obtained at a lower temperature unless the degree of oxidation is increased in some way.

更に、従来のMOCVD法によって酸化物超電導体を堆
積する場合、有機金属原料の混合蒸気と酸素ガスとを同
時に反応炉に導入している。しかし、この方法では酸素
供給量を増加させても、酸素が有機金属蒸気気相中で反
応して所望の堆積物以外の化合物として消費されるため
、堆積中の薄膜表面に酸素が充分供給されにくい。そし
て、酸素が有機金属蒸気気相中で反応する程度は低温堆
積時はど顕著に現われていた。
Furthermore, when depositing an oxide superconductor by the conventional MOCVD method, a mixed vapor of organometallic raw materials and oxygen gas are simultaneously introduced into a reactor. However, in this method, even if the amount of oxygen supplied is increased, oxygen reacts in the organometallic vapor gas phase and is consumed as compounds other than the desired deposit, so oxygen is not sufficiently supplied to the surface of the thin film being deposited. Hateful. Furthermore, the degree to which oxygen reacts in the metal organic vapor gas phase becomes more pronounced during low-temperature deposition.

これに対して、本発明者らは、薄膜堆積時に反応炉へ有
機金属原料蒸気と酸素ガスとを交互に繰り返して導入す
ることにより、低温において表面の平坦性の良好な酸化
物高温超電導体薄膜を再現性よく得ることができること
を見出した。
In contrast, the present inventors have developed an oxide high-temperature superconductor thin film with good surface flatness at low temperatures by alternately and repeatedly introducing organic metal raw material vapor and oxygen gas into the reactor during thin film deposition. We found that it is possible to obtain with good reproducibility.

しかし、この方法で堆積された薄膜についてX線回折像
を観察した結果、酸化物高温超電導体はほぼ完全にC軸
配向(酸化物超電導体薄膜結晶のC軸が基板表面に垂直
であること)しているものの、薄膜表面に平行なa軸(
及びb軸)には互いに直交した方向に分布していること
が判明した。
However, as a result of observing X-ray diffraction images of thin films deposited by this method, the oxide high temperature superconductor is almost completely C-axis oriented (the C-axis of the oxide superconductor thin film crystal is perpendicular to the substrate surface). However, the a-axis parallel to the thin film surface (
and b-axis), it was found that they were distributed in directions perpendicular to each other.

すなわち、堆積された薄膜はエピタキシャル成長しては
いるものの、単結晶ではなく多くの双晶を含んでいる。
That is, although the deposited thin film is epitaxially grown, it is not a single crystal but contains many twin crystals.

(発明が解決しようとする課題) 以上のように従来のMOCVD法によって平坦な表面を
有する薄膜を堆積することが可能になったが、薄膜全体
に分布する双晶をなくし、薄膜全面を制御性及び再現性
よく単結晶化することができないという問題があった。
(Problems to be Solved by the Invention) As described above, it has become possible to deposit a thin film with a flat surface by the conventional MOCVD method, but it is possible to eliminate twin crystals distributed throughout the thin film, making it possible to control the entire surface of the thin film. There was also the problem that single crystallization could not be achieved with good reproducibility.

本発明は前記事情に基づいてなされたものであり、双晶
がなく、全面にわたって単結晶化された酸化物薄膜を制
御性及び再現性よく製造できる方法を提供することを目
的とする。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a method capable of producing a twin-free, single-crystal oxide thin film over the entire surface with good controllability and reproducibility.

[発明の構成] (課題を解決するための手段) 本発明の酸化物薄膜の気相成長方法は、反応炉内に基板
結晶を収容し、酸化物を構成する金属元素を含有する有
機金属蒸気と、酸素又は酸素を供給可能な酸化剤とを導
入し、これらを熱分解して前記基板結晶上に酸化物薄膜
を気相成長させるにあたり、前記基板結晶の表面が、該
結晶の低指数面から傾いた面で構成されていることを特
徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The method of vapor phase growth of an oxide thin film of the present invention accommodates a substrate crystal in a reactor, and generates an organic metal vapor containing a metal element constituting the oxide. and oxygen or an oxidizing agent capable of supplying oxygen, and thermally decompose them to grow an oxide thin film on the substrate crystal in a vapor phase. It is characterized by being composed of a surface that is tilted away from the surface.

本発明において、基板結晶の表面を構成する面に対する
基準となる低指数面としては、MOCVD法で酸化物高
温超電導体を気相成長させる場合に通常使用される(0
01)面又は(110)面が挙げられる。基板結晶の表
面を構成する面は、例えば(001)面又は(110)
面などの低指数面から2〜5度傾いた面であることが望
ましい。
In the present invention, the low index plane that serves as a reference for the plane constituting the surface of the substrate crystal is usually used when growing an oxide high temperature superconductor in the vapor phase using the MOCVD method (0
01) plane or (110) plane. The plane constituting the surface of the substrate crystal is, for example, a (001) plane or a (110) plane.
It is desirable that the surface is inclined by 2 to 5 degrees from a low index surface such as a plane.

(作用) 従来のように、酸化物薄膜を気相成長させる際に、表面
が低指数面となっている基板結晶上に薄膜を堆積させる
と、2種の結晶粒が同じ確率で成長するため、双晶が形
成される。これに対して、本発明のように、表面が基板
を構成する結晶の低指数面から傾いた面となっている基
板結晶を用いれば、前述した双晶を構成する結晶粒のう
ち1種の結晶粒のみが基板上で成長する確率が高くなる
(Function) When depositing an oxide thin film on a substrate crystal whose surface is a low-index plane as in the past, two types of crystal grains grow with the same probability. , twins are formed. On the other hand, if a substrate crystal whose surface is tilted from the low-index plane of the crystal constituting the substrate as in the present invention is used, one of the crystal grains constituting the twin described above can be used. The probability that only crystal grains grow on the substrate increases.

その結果、薄膜全面を単結晶にすることができる。As a result, the entire surface of the thin film can be made into a single crystal.

本発明において、基板結晶の表面を構成する面を低指数
面から2〜5度傾いた面とすることが望ましいとしたの
は、以下のような理由による。すなわち、現在の結晶作
製技術では、基板結晶の表面を低指数面から2度未満の
角度で制御して傾けることが困難であるうえ、2度未満
であると1種の結晶粒のみが基板上で成長する確率が高
くならない。一方、5度を超えると、基準となる低指数
面とは異なる低指数面に近づくなどの理由により、2種
の結晶粒のいずれにとっても基板上での成長が不利にな
り、単結晶が得られない。
In the present invention, the reason why it is desirable that the plane constituting the surface of the substrate crystal be a plane inclined by 2 to 5 degrees from the low index plane is as follows. In other words, with current crystal manufacturing technology, it is difficult to control and tilt the surface of the substrate crystal at an angle of less than 2 degrees from the low-index plane, and if the angle is less than 2 degrees, only one type of crystal grain will be on the substrate. The probability of growth is not high. On the other hand, if the angle exceeds 5 degrees, growth on the substrate becomes disadvantageous for both types of crystal grains due to reasons such as approaching a low-index plane different from the reference low-index plane, and a single crystal is obtained. I can't.

(実施例) 以下、基板結晶上にY B a 2 Cu O7−a薄
膜を気相成長させた実施例について図面を参照して説明
する。
(Example) Hereinafter, an example in which a YBa 2 Cu O7-a thin film was grown in vapor phase on a substrate crystal will be described with reference to the drawings.

第1図は本実施例において使用されたMOCVD装置を
示す概略構成図である。反応炉1内には黒鉛表面に炭化
ケイ素(S t C)を被覆した試料載置台2が設置さ
れ、この試料載置台2上に基板結晶20が載置される。
FIG. 1 is a schematic configuration diagram showing the MOCVD apparatus used in this example. A sample mounting table 2 whose graphite surface is coated with silicon carbide (S t C) is installed in the reactor 1 , and a substrate crystal 20 is placed on this sample mounting table 2 .

反応炉1は電気炉3により外部加熱される。反応炉1内
はロータリーポンプ4により減圧され、炉内の圧力は圧
力計5によりモニターされる。
The reaction furnace 1 is externally heated by an electric furnace 3. The pressure inside the reactor 1 is reduced by a rotary pump 4, and the pressure inside the reactor is monitored by a pressure gauge 5.

イツトリウム(Y)、バリウム(Ba)、銅(Cu)の
有機金属原料としては、それぞれY (02C,□H1
9) 3  (=Y (DPM) 3 )、Ba (0
2CIIH19) 2  (=Ba (DPM) 2 
)、Cu (02CIIH19) 2  (−Cu (
DPM) 2 )が用いられる。有機金属原料は、それ
ぞれ140 ℃、250℃、150℃に保温されたステ
ンレス製原料容器10、IL 12に収容されている。
Organic metal raw materials for yttrium (Y), barium (Ba), and copper (Cu) include Y (02C, □H1
9) 3 (=Y (DPM) 3 ), Ba (0
2CIIH19) 2 (=Ba (DPM) 2
), Cu (02CIIH19) 2 (-Cu (
DPM) 2) is used. The organometallic raw materials are stored in stainless steel raw material containers 10 and IL 12 kept at 140°C, 250°C, and 150°C, respectively.

酸素源としては酸素ガスボンベ16に封入された純酸素
が用いられる。配管は全てステンレス製であり、配管系
は原料蒸気が凝結しないようにヒーターにより260 
’Cに保温されている。アルゴンガスボンベ6がら高純
度アルコンガスが配管系を通じてマスフローコントロー
ラ7.8.9に導入されて流量を調節され、原料容器1
0.11.12に導入されて各々の有機金属蒸気を発生
させ、3方弁13.14.15を介して反応炉1へ供給
される。酸素ガスボンベ16から純酸素が配管系を通じ
てマスフローコント0−ラ17に導入されて流量を調節
され、3方弁18を介して反応炉1へ供給される。3方
弁13.14.15.18は空気作動する電磁弁により
電気的に開閉される。
Pure oxygen sealed in an oxygen gas cylinder 16 is used as the oxygen source. All piping is made of stainless steel, and the piping system is heated to 260°C by a heater to prevent raw material vapor from condensing.
It is kept warm at 'C. High-purity arcon gas from the argon gas cylinder 6 is introduced into the mass flow controller 7.8.9 through the piping system and the flow rate is adjusted.
0.11.12 to generate the respective organometallic vapors, which are supplied to the reactor 1 via three-way valves 13, 14, and 15. Pure oxygen is introduced from an oxygen gas cylinder 16 through a piping system into a mass flow controller 17, the flow rate of which is adjusted, and supplied to the reactor 1 via a three-way valve 18. The three-way valves 13, 14, 15, 18 are electrically opened and closed by pneumatically actuated solenoid valves.

3方弁13.14.15.18の切り替えにより、原料
蒸気及び酸素は反応炉1への配管又は排気経路19のい
ずれかに流される。3方弁13.14.15.18を構
成する電磁弁はすべてシーケンスコントローラーによっ
て統括されており、これらの開閉タイミングと保持時間
が予めプログラムできるようになっている。
By switching the three-way valves 13, 14, 15, 18, the raw material vapor and oxygen are allowed to flow into either the piping to the reactor 1 or the exhaust path 19. All of the solenoid valves that make up the three-way valves 13, 14, 15, and 18 are controlled by a sequence controller, and their opening/closing timing and holding time can be programmed in advance.

この気相成長装置を用いたY B a 2 Cu 07
−a薄膜の気相成長は以下のようにして行われる。
Y B a 2 Cu 07 using this vapor phase growth apparatus
-a The vapor phase growth of the thin film is performed as follows.

まず、薄膜の気相成長を始める前の予備段階として以下
の操作を行う。化学エツチングにより表面を清浄化した
チタン酸ストロンチウム(SrTt03)基板結晶20
を試料載置台2上に載置スる。アルゴンガスボンベ6か
ら高純度アルゴンガスを反応炉1へ供給して炉内の雰囲
気を置換する。ロータリーポンプ4を作動させ、圧力計
5を観察しながら、反応炉1内の圧力を5〜76Tor
rの範囲で調節する。酸素ガスボンベ16から高純度酸
素ガスを反応炉1へ供給し、電気炉3によりど料裁置台
2及び基板結晶20を600〜850℃の範囲の所定の
温度で加熱し、基板結晶20の表面を清浄化する。3方
弁18を素早く切り替えて酸素ガスボンベ16から供給
される酸素ガスを排出経路19に通じさせることにより
、反応炉1への酸素ガスの供給を停止する。このように
3方弁18を素早く切り替えると、流路遮断による一時
的な流動変動を少なくすることができる。基板結晶20
の表面を清浄化している間に、アルゴンガスボンベ6か
らマスフローコントローラ7.8.9を経由して流量を
調節されたアルゴンガスを各有機金属原料容器10.1
1、L2に50■3/分の流量で導入し、3方弁13.
14.15を操作して蒸気を排気経路19に放流してお
く。
First, the following operations are performed as a preliminary step before starting the vapor phase growth of a thin film. Strontium titanate (SrTt03) substrate crystal 20 whose surface was cleaned by chemical etching
Place the sample on the sample mounting table 2. High purity argon gas is supplied from the argon gas cylinder 6 to the reactor 1 to replace the atmosphere inside the reactor. While operating the rotary pump 4 and observing the pressure gauge 5, the pressure inside the reactor 1 is adjusted to 5 to 76 Torr.
Adjust within the range of r. High-purity oxygen gas is supplied from the oxygen gas cylinder 16 to the reaction furnace 1, and the electric furnace 3 heats the processing table 2 and the substrate crystal 20 at a predetermined temperature in the range of 600 to 850°C, so that the surface of the substrate crystal 20 is heated. Cleanse. The supply of oxygen gas to the reactor 1 is stopped by quickly switching the three-way valve 18 to allow the oxygen gas supplied from the oxygen gas cylinder 16 to pass through the exhaust path 19. By quickly switching the three-way valve 18 in this manner, temporary flow fluctuations due to flow path blockage can be reduced. Substrate crystal 20
While the surface of
1. Introduce into L2 at a flow rate of 50 3/min, 3-way valve 13.
14 and 15 to release steam into the exhaust path 19.

次に、薄膜を気相成長させるための工程を第2図を参照
して説明する。■3方弁13.14.15を同時に切り
替えて有機金属原料蒸気を反応炉1へ供給する。90秒
経過した後、3方弁13.14.15を同時に切り替え
て蒸気を排出経路I9に排出し、反応炉1への有機金属
蒸気の供給を停止する。■少なくとも3秒以内に3方弁
18を切り替えて排気経路19に流していた酸素ガスを
反応炉1へ供給する。
Next, a process for vapor phase growth of a thin film will be explained with reference to FIG. ■Switch three-way valves 13, 14, and 15 at the same time to supply organic metal raw material vapor to reactor 1. After 90 seconds have elapsed, the three-way valves 13, 14, and 15 are simultaneously switched to discharge the steam to the exhaust path I9, and the supply of organometallic vapor to the reactor 1 is stopped. (2) Switch the three-way valve 18 within at least 3 seconds to supply the oxygen gas that was flowing through the exhaust path 19 to the reactor 1.

300c+n3/分の流量で90秒間酸素ガスを供給し
た後、3方弁18を切り替えて反応炉1への酸素ガスの
供給を停止する。以上の工程を20回繰り返すことによ
り、約5000人の厚さの酸化物薄膜を堆積させる。
After supplying oxygen gas for 90 seconds at a flow rate of 300c+n3/min, the three-way valve 18 is switched to stop the supply of oxygen gas to the reactor 1. By repeating the above steps 20 times, an oxide thin film with a thickness of approximately 5,000 wafers is deposited.

基板結晶としては、その表面が(001)面又は(00
1)面から(100)方向へ第1表に示す種々の角度θ
だけ傾いた面で構成されているものを用いた。いずれの
基板結晶を用いた場合でも、得られた薄膜は全て表面の
凹凸が200人程度と平坦であった。また、X線回折測
定から、いずれの基板結晶を用いた場合でも、 YBa2Cu、Oツー、結晶粒以外は見出せず、しかも
YBa2Cu307−J結晶の(001)面が5rTi
O,基板結晶面と平行に配列していること、すなわちエ
ピタキシャル成長していることがわかった。しかし、各
基板結晶を用いた場合に、第1表に示すように双晶の発
生状況に違いがあることがわかった。
The surface of the substrate crystal is a (001) plane or a (00
1) Various angles θ shown in Table 1 from the plane to the (100) direction
We used a device that consists of a surface that is tilted by a certain angle. No matter which substrate crystal was used, all of the obtained thin films had a flat surface with about 200 surface irregularities. Furthermore, X-ray diffraction measurements revealed that no matter what substrate crystal was used, no particles other than YBa2Cu, O2, and crystal grains were found, and the (001) plane of the YBa2Cu307-J crystal was 5rTi.
It was found that O was arranged parallel to the substrate crystal plane, that is, it was epitaxially grown. However, it was found that when each substrate crystal was used, there were differences in the occurrence of twin crystals as shown in Table 1.

第1表から明らかなように、基板結晶表面が正確に(0
01)面である場合には、多数の双晶が発生する。これ
に対して、基板結晶表面が(001)面から(100)
方向へ2〜5度傾いた面で構成されている場合には、双
晶のない単結晶薄膜を成長させることができる。しかし
、基板結晶表面の(001)面からの傾き角θが5度を
超えると、双晶が発生するとともに、a軸配向結晶も出
現しはじめる。
As is clear from Table 1, the substrate crystal surface is accurately (0
01), many twins occur. On the other hand, the substrate crystal surface changes from the (001) plane to the (100) plane.
When the crystal is composed of a plane tilted by 2 to 5 degrees in the direction, a twin-free single-crystal thin film can be grown. However, when the tilt angle θ from the (001) plane of the substrate crystal surface exceeds 5 degrees, twins occur and a-axis oriented crystals also begin to appear.

第  1  表 O:なし、Δ:若干、×:多数 また、基板の傾き角がどの方向に対して有効であるかを
調べるために、(001)面からそれぞれ(100)、
(110)、(111)面方向へ3度傾けた基板、及び
(001)面から特に方向を決めずに3度傾けた基板を
用いて、前記と同様にYBa2 Cu30t−a薄膜を
成長させた。
Table 1 O: None, Δ: Slightly, ×: Many In addition, in order to investigate in which direction the tilt angle of the substrate is effective, (100),
A YBa2Cu30t-a thin film was grown in the same manner as above using substrates tilted 3 degrees toward the (110) and (111) planes, and substrates tilted 3 degrees from the (001) plane without any particular direction. .

その結果、堆積された薄膜は全て双晶を含まないもので
あった。このことから、基板結晶表面を(001)面か
らどの方向へ傾けた面で構成しても、前記と同様な効果
が得られることがわかった。
As a result, all of the deposited thin films were twin-free. From this, it was found that the same effect as described above can be obtained no matter which direction the substrate crystal surface is inclined from the (001) plane.

このようにして得られた薄膜の一指標である臨界温度は
、若干のバラツキはあるものの、(001)上に形成さ
れた薄膜に比べ、平均して4〜5″高い。
The critical temperature, which is an index of the thin film thus obtained, varies slightly, but is on average 4 to 5 inches higher than that of a thin film formed on (001).

また、電子デバイス構造を形成するために酸化物や金属
を被着する際、双晶粒では結晶粒ごとの方位差により被
着物との反応が異なるが、本発明方法では薄膜が単結晶
化するため、このような現象が生じることな(−様であ
った。
Furthermore, when depositing oxides or metals to form electronic device structures, twin grains react differently with the deposit depending on the orientation difference of each crystal grain, but with the method of the present invention, the thin film becomes a single crystal. Therefore, it was unlikely that such a phenomenon would occur.

次いで、装置としては第1図のものを用い、3方弁の切
り替えタイミングに関しては前記実施例と異なる方法を
用いてyJHの気相成長を行った。
Next, vapor phase growth of yJH was performed using the apparatus shown in FIG. 1 and using a method different from that of the previous example regarding the switching timing of the three-way valve.

まず、薄膜の気相成長を始める前の予備段階として以下
の操作を行う。アルゴンガスボンベ6がらマスフローコ
ントローラ7〜9を経由して流量を調節されたアルゴン
ガスを各原料容器10−12に50cm3/分の流量で
導入し、3方弁13〜15を操作して蒸気を排気経路1
9に放流しておく。
First, the following operations are performed as a preliminary step before starting the vapor phase growth of a thin film. Argon gas whose flow rate is adjusted from the argon gas cylinder 6 via the mass flow controllers 7 to 9 is introduced into each raw material container 10-12 at a flow rate of 50 cm3/min, and the steam is exhausted by operating the three-way valves 13 to 15. Route 1
Release it at 9.

次に、薄膜を気相成長させるための工程を第3図を参照
して説明する。■3方弁13を切り替えてY (DPM
)3の蒸気を反応炉1へ供給する。90秒経過した後、
3方弁13を切り替えて蒸気を排出経路19に排出する
。3方弁13の切り替え後3秒以内に、3方弁18を切
り替えて排気経路19に流していた酸素ガスを反応炉1
へ供給する。300cm’/分の流量で90秒間酸素ガ
スを供給した後、3方弁18を切り替えて反応炉1への
酸素ガスの供給を停止する。同様にして、■Ba(DP
M)zと酸素ガスとを交互に、■Cu (D P M)
 2と酸素ガスとを交互に反応管1へ供給する。以上の
■〜■の操作を繰り返すことによりYBa2Cu、、0
□−6薄膜を成長させる。
Next, a process for vapor phase growth of a thin film will be explained with reference to FIG. ■Switch the 3-way valve 13 to Y (DPM
) 3 steam is supplied to the reactor 1. After 90 seconds,
The three-way valve 13 is switched to discharge steam to the discharge path 19. Within 3 seconds after switching the 3-way valve 13, the 3-way valve 18 is switched to remove the oxygen gas flowing into the exhaust path 19 from the reactor 1.
supply to After supplying oxygen gas for 90 seconds at a flow rate of 300 cm'/min, the three-way valve 18 is switched to stop the supply of oxygen gas to the reactor 1. Similarly, ■Ba(DP
M) z and oxygen gas alternately, ■Cu (D P M)
2 and oxygen gas are alternately supplied to the reaction tube 1. By repeating the operations from ■ to ■ above, YBa2Cu, 0
□-6 Grow thin film.

成長温度は600℃とし、有機金属蒸気と酸素ガス流量
並びにその積分供給時間は前記実施例と比較できるよう
に同一にした。このほか、1回当りの有機金属蒸気と酸
素ガスの供給時間とを前記実施例と同一にして1分(繰
り返し回数30回)、5分(繰り返し回数6回)と変化
させてみた。
The growth temperature was 600° C., and the flow rates of organometallic vapor and oxygen gas and their integral supply time were the same as in the previous example for comparison. In addition, the supply time of organometallic vapor and oxygen gas per supply was the same as in the above example, and was changed to 1 minute (30 repetitions) and 5 minutes (6 repetitions).

成長時間3時間で約8000人の厚さの薄膜が得られた
。更に、基板温度を600℃から500℃まで変化させ
て基板温度が薄膜特性にどのような影響を与えるかにつ
いても調べた。また、酸素供給時間を有機金属供給時間
に対して1から10倍まで変化させた。
A thin film with a thickness of about 8,000 wafers was obtained with a growth time of 3 hours. Furthermore, the substrate temperature was varied from 600° C. to 500° C. to examine how the substrate temperature affects the thin film properties. Further, the oxygen supply time was varied from 1 to 10 times the organometallic supply time.

以上の実験を試みた結果、前記実施例と同一温度の80
0℃で堆積した酸化物薄膜については、前記実施例の場
合と同様に双晶を含まず、良好な表面平坦度、及びより
高い超電導臨界温度を示した。
As a result of trying the above experiment, we found that
The oxide thin film deposited at 0° C. contained no twins, had good surface flatness, and exhibited a higher superconducting critical temperature, as in the previous example.

成長温度を下げた場合には、550℃までほとんど双晶
を含まない薄膜が得られた。すなわち、前記実施例より
も更に50’C低温でエピタキシャル薄膜が得られるこ
とがわかった。また、酸素供給時間を10倍にすると、
超電導臨界温度を5〜IOK程度高温側へ改善すること
ができた。更に、Cu。
When the growth temperature was lowered, thin films containing almost no twins were obtained up to 550°C. That is, it was found that an epitaxial thin film could be obtained at a lower temperature of 50'C than in the above example. Also, if the oxygen supply time is increased by 10 times,
It was possible to improve the superconducting critical temperature to a higher temperature side by about 5 to IOK. Furthermore, Cu.

B a s Yの酸化の困難さを考慮に入れて酸素供給
時間を延長させると、超電導臨界温度が数置向上するこ
とがわかった。
It was found that extending the oxygen supply time, taking into account the difficulty of oxidizing B a s Y, improves the superconducting critical temperature by several orders of magnitude.

本発明の主旨は、前記実施例に限定されるものではなく
、種々変形して実施することができる。
The gist of the present invention is not limited to the embodiments described above, and can be implemented with various modifications.

例えば、前記実施例では基板結晶材料として5iTrO
,を用い、ソノ表面を(001)面から数置傾けた面と
したが、基板結晶材料としてL a G a OsやL
aA10*などを用いることができ、基準となる低指数
面として(100)面、(010)面、(110)面な
どを用いることができる。また、基板上に堆積する酸化
物薄膜は、Y−Ba−Cu−0系酸化物高温超電導体薄
膜に限らず、B i−8r−Ca−Cu−0系酸化物高
温超電導体薄膜や、PbTi0.、 PbZrx Tf+−x 03 、BaTiO3などの
強誘電体薄膜でもよい。後者の酸化物を堆積する場合、
基板結晶材料としてMgOやCaF2なども用いること
ができる。
For example, in the above embodiment, 5iTrO is used as the substrate crystal material.
, and the sono surface was tilted several places from the (001) plane, but the substrate crystal material was L a Ga Os or L
aA10* or the like can be used, and a (100) plane, (010) plane, (110) plane, etc. can be used as a reference low index plane. Furthermore, the oxide thin film deposited on the substrate is not limited to the Y-Ba-Cu-0 based oxide high temperature superconductor thin film, but may also include Bi-8r-Ca-Cu-0 based oxide high temperature superconducting thin film, PbTi0 .. , PbZrx Tf+-x 03 , BaTiO3, or other ferroelectric thin films may be used. When depositing the latter oxide,
MgO, CaF2, etc. can also be used as the substrate crystal material.

[発明の効果] 以上詳述したように本発明方法によれば、全面にわたっ
て単結晶からなる酸化物薄膜を製造することができる。
[Effects of the Invention] As detailed above, according to the method of the present invention, an oxide thin film made of single crystal can be produced over the entire surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において用いられたMOCV[
>装置の概略構成図、第2図は本発明の実施例における
MOCVD装置の3方弁の切り替え操作を示すタイミン
グ図、第3図は本発明の他の実施例におけるMOCVD
装置の3方弁の切り替え操作を示すタイミング図である
。 1・・・反応炉、2・・・試料載置台、3・・・電気炉
、4・・・ロータリーポンプ、5・・・圧力計、6・・
・アルゴンガスボンベ、7.8.9・・・マスフローコ
ントローラ、10.11.12・・・原料容器、13.
14.15・・・3方弁、16・・・酸素ガスボンベ、
17・・・マスフローコントローラ、18・・・3方弁
、19・・・排気経路、20・・・基板結晶。
FIG. 1 shows the MOCV[
>Schematic configuration diagram of the device, FIG. 2 is a timing diagram showing switching operation of the three-way valve of the MOCVD device in an embodiment of the present invention, and FIG. 3 is a diagram of the MOCVD device in another embodiment of the present invention.
FIG. 3 is a timing diagram showing a switching operation of a three-way valve of the device. DESCRIPTION OF SYMBOLS 1...Reaction furnace, 2...Sample mounting stand, 3...Electric furnace, 4...Rotary pump, 5...Pressure gauge, 6...
- Argon gas cylinder, 7.8.9... Mass flow controller, 10.11.12... Raw material container, 13.
14.15...3-way valve, 16...oxygen gas cylinder,
17... Mass flow controller, 18... Three-way valve, 19... Exhaust path, 20... Substrate crystal.

Claims (1)

【特許請求の範囲】 (1)反応炉内に基板結晶を収容し、金属元素を含有す
る有機金属蒸気と、酸素又は酸素を供給可能な酸化剤と
を導入し、これらを熱分解して前記基板結晶上に酸化物
薄膜を気相成長させるにあたり、前記基板結晶の表面が
、該結晶の低指数面から傾いた面で構成されていること
を特徴とする酸化物薄膜の気相成長方法。 (2)前記低指数面が(001)面又は (110)面であることを特徴とする請求項(1)記載
の酸化物薄膜の気相成長方法。 (3)前記基板結晶の表面を構成する面が低指数面から
2〜5度傾いた面であることを特徴とする請求項(1)
又は(2)記載の酸化物薄膜の気相成長方法。
[Scope of Claims] (1) A substrate crystal is housed in a reactor, and organometallic vapor containing a metal element and oxygen or an oxidizing agent capable of supplying oxygen are introduced, and these are thermally decomposed. 1. A method for vapor phase growth of an oxide thin film on a substrate crystal, characterized in that the surface of the substrate crystal is comprised of a plane tilted from a low index plane of the crystal. (2) The method for vapor phase growth of an oxide thin film according to claim (1), wherein the low index plane is a (001) plane or a (110) plane. (3) Claim (1) characterized in that the plane constituting the surface of the substrate crystal is a plane inclined by 2 to 5 degrees from the low index plane.
Or the method for vapor phase growth of an oxide thin film according to (2).
JP24075289A 1989-09-19 1989-09-19 Vapor growth method for oxide thin film Pending JPH03109292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24075289A JPH03109292A (en) 1989-09-19 1989-09-19 Vapor growth method for oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24075289A JPH03109292A (en) 1989-09-19 1989-09-19 Vapor growth method for oxide thin film

Publications (1)

Publication Number Publication Date
JPH03109292A true JPH03109292A (en) 1991-05-09

Family

ID=17064183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24075289A Pending JPH03109292A (en) 1989-09-19 1989-09-19 Vapor growth method for oxide thin film

Country Status (1)

Country Link
JP (1) JPH03109292A (en)

Similar Documents

Publication Publication Date Title
Lathrop et al. Production of YBa2Cu3O7− y superconducting thin films in situ by high‐pressure reactive evaporation and rapid thermal annealing
US5164363A (en) Method for vapor-phase growth of a superconducting oxide thin film
US5350738A (en) Method of manufacturing an oxide superconductor film
US7985713B2 (en) Superconducting magnesium boride thin-film and process for producing the same
KR20060127859A (en) Growth of in-situ thin films by reactive evaporation
CA1322514C (en) Thin film of single crystal of lna_cu_o___ having three-layered perovskite structure and process for producing the same
US5480861A (en) Layered structure comprising insulator thin film and oxide superconductor thin film
JPH04300292A (en) Film forming method for multicomponent oxide film superconducting film
JP3144104B2 (en) Preparation method of high quality oxide superconducting thin film
JPH03109292A (en) Vapor growth method for oxide thin film
JP3253295B2 (en) Manufacturing method of oxide thin film
Buchholz et al. Surface morphology studies of Y-Ba-Cu-oxide thin films prepared by pulsed organometallic beam epitaxy
JPH035397A (en) Vapor growth method for thin oxide crystal film
Speller et al. Buffer layers for Tl-2212 thin films on MgO and sapphire substrates
JP2000058524A (en) Vapor phase growth device for metal oxide dielectric material
JP2541037B2 (en) Oxide superconducting thin film synthesis method
US7507290B2 (en) Flux assisted solid phase epitaxy
JP2648211B2 (en) Preparation method of oxide thin film
JP2551983B2 (en) Preparation method of oxide superconducting film using chemical vapor deposition
JPH02210718A (en) Gaseous phase growing method for oxide superconductor
JPH03146405A (en) Formation of oxide superconducting thin film
JPH0196015A (en) Formation of superconducting thin film
JPH03120364A (en) Production of oxide thin film substrate and oxide thin film
Saikusa et al. Bi Based Oxide Superconducting Thin Film Prepared by CVD Method
JPH05170597A (en) Production of thin oxide superconductor film