JPH03109029A - Eye sight detector - Google Patents

Eye sight detector

Info

Publication number
JPH03109029A
JPH03109029A JP1247333A JP24733389A JPH03109029A JP H03109029 A JPH03109029 A JP H03109029A JP 1247333 A JP1247333 A JP 1247333A JP 24733389 A JP24733389 A JP 24733389A JP H03109029 A JPH03109029 A JP H03109029A
Authority
JP
Japan
Prior art keywords
photoelectric element
element array
eyeball
pupil
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247333A
Other languages
Japanese (ja)
Other versions
JP2803222B2 (en
Inventor
Akihiko Nagano
明彦 長野
Kazuki Konishi
一樹 小西
Tokuichi Tsunekawa
恒川 十九一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1247333A priority Critical patent/JP2803222B2/en
Publication of JPH03109029A publication Critical patent/JPH03109029A/en
Application granted granted Critical
Publication of JP2803222B2 publication Critical patent/JP2803222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2213/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B2213/02Viewfinders
    • G03B2213/025Sightline detection

Abstract

PURPOSE:To enable highly accurate calculation of eye sight of an observer by selecting specified two from a plurality of photoelectric element array to obtain information based on a cornea reflection image and an iris reflection image from the two photoelectric element array. CONSTITUTION:Luminous fluxes from infrared light emitting diodes 5a and 5b arranged being separated in the way of a photoelectric element array 6 form cornear reflection images (e) and (d) individually in a Z axis. As an interval between the cornea reflection images (e) and (d) varies corresponding to a distance between the infrared light emitting diodes and eyeballs of an observer, reading of image signals of the photoelectric element array 6 is performed sequentially to detect a photoelectric element array Yp' in which cornear reflection image e' and d' are formed again and positions Zd' and Ze' of generation thereof in the way of the array to determine an image formation multiplying factor B from the interval. Moreover, field of view points Z2b' and Z2a' of iris 23 and pupil 24 are detected on the photoelectric element array Yp' to calculate the length of the pupil on the photoelectric element array Yp'. Then, another photoelectric element array Y1' of an image signal is calculated from the image formation multiplying factor and a value of the length of pupil. When detected, field of view points Z1a' and Z1b' of the iris 23 and the pupil 24 on the photoelectric element array Y1' can be used to calculate eye sight.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は視線検出装置に関し、例えばカメラ等の光学装
置において、撮影系による被写体像が形成されている観
察面(ピント面)上の観察者(撮影者)が観察している
注視点方向の軸いわゆる視線(視軸)を、観察者の眼球
面上を照明したときに得られる眼球の反射像を利用して
検出するようにした視線検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a line of sight detection device, for example, in an optical device such as a camera, when an observer on an observation plane (focus plane) on which a subject image is formed by a photographing system. Line-of-sight detection that detects the axis of the gaze point direction (visual axis) observed by the photographer (photographer) using the reflected image of the eyeball obtained when the surface of the viewer's eyeball is illuminated. It is related to the device.

(従来の技術) 従来より観察者が観察面上のどの位置を観察しているか
を検出する、いわゆる視線(視軸)を検出する装置が種
々提案されている。
(Prior Art) Various devices for detecting the so-called line of sight (visual axis), which detects which position on the observation surface an observer is observing, have been proposed.

例えば特開昭61−172552号公報に右いては、光
源からの平行光束を観察者の眼球の前眼部へ投射し、角
膜からの反射光による角膜反射像と瞳孔の結像位置を利
用して視軸を求めている。第8図(A) 、 (B)は
視線検出方法の原理説明図で、同図(A)は視線検出光
学系の概略図、同図(B)は光電素子列6からの出力信
号の強度図である。
For example, in Japanese Patent Application Laid-open No. 172552/1982, a parallel light beam from a light source is projected onto the anterior segment of the observer's eyeball, and the corneal reflection image due to the light reflected from the cornea and the image formation position of the pupil are used. I'm looking for the visual axis. 8(A) and 8(B) are diagrams explaining the principle of the line-of-sight detection method, where (A) is a schematic diagram of the line-of-sight detection optical system, and (B) is the intensity of the output signal from the photoelectric element array 6. It is a diagram.

同図において5は観察者に対して不感の赤外光を放射す
る発光ダイオード等の光源であり、投光レンズ3の焦点
面に配置されている。
In the figure, reference numeral 5 denotes a light source such as a light emitting diode that emits infrared light that is insensitive to the observer, and is arranged on the focal plane of the projection lens 3.

光源5より発光した赤外光は投光レンズ3により平行光
となりハーフミラ−2で反射し、眼球201の角膜21
を照明する。このとき角膜21の表面で反射した赤外光
の一部による角膜反射像dはハーフミラ−2を透過し受
光レンズ4により集光され光電素子列6上の位置Zd’
に再結像する。
The infrared light emitted from the light source 5 becomes parallel light by the projection lens 3 and is reflected by the half mirror 2, and is reflected by the cornea 21 of the eyeball 201.
to illuminate. At this time, a corneal reflection image d, which is a part of the infrared light reflected on the surface of the cornea 21, passes through the half mirror 2, is focused by the light receiving lens 4, and is located at a position Zd' on the photoelectric element array 6.
re-image.

また虹彩23の端部a、bからの光束はハーフミラ−2
、受光レンズ4を介して光電素子列6上の位置Za、Z
b”に該端部a、bの像を結像する。受光レンズ4の光
軸(光軸ア)に対する眼球の光軸イの回転角θが小さい
場合、虹彩23の端部a、bのZ座標をZa、Zbとす
ると、虹彩23の中心位置Cの座標Zcは Z c ’= (Z a + Z b ) / 2と表
わされる。
Also, the light flux from the ends a and b of the iris 23 is transmitted to the half mirror 2.
, positions Za, Z on the photoelectric element array 6 through the light receiving lens 4
Images of the ends a and b of the iris 23 are formed on "b". When the rotation angle θ of the optical axis A of the eyeball with respect to the optical axis of the light receiving lens 4 (optical axis A) is small, the images of the ends a and b of the iris 23 are When the Z coordinates are Za and Zb, the coordinate Zc of the center position C of the iris 23 is expressed as Z c ′=(Z a + Z b )/2.

又、角膜反射像の発生位置dのZ座標をZd、角膜21
の曲率中心0と虹彩23の中心Cまでの距離なOCとす
ると眼球光軸イの回転角θは、OC*SINθ舛Z c
 −Z d    ” ” (1)の関係式を略満足す
る。
Also, the Z coordinate of the position d of the corneal reflection image is Zd, and the cornea 21
If OC is the distance between the center of curvature 0 of
−Z d ” ” The relational expression (1) is approximately satisfied.

ここで角膜反射像の位置dのZ座標Zdと角膜21の曲
率中心OのZ座標Z。とは一致している。このため演算
手段9において、同図(B)のごとく光電素子列6面上
に投影された各特異点(1iJ11!2反射像d及び虹
彩の端部a、b)の位置を検出することにより眼球光軸
イの回転角θを求めることかできる。この時(1)式は
、 /3*OC*5INe’−,Za”Zb’  −Zd”
・・・・・・・・(2) とかきかえられる。但し、βは角膜反射像の発生位置d
と受光レンズ4との距111LIと受光レンズ4と光電
素子列6との距離LOで決まる倍率で、通常はぼ一定の
値となっている。
Here, the Z coordinate Zd of the position d of the corneal reflection image and the Z coordinate Z of the center of curvature O of the cornea 21. is consistent with Therefore, in the calculation means 9, by detecting the position of each singular point (1iJ11!2 reflected image d and the ends a and b of the iris) projected on the six surfaces of the photoelectric element array as shown in FIG. The rotation angle θ of the eyeball optical axis I can be determined. At this time, equation (1) is /3*OC*5INe'-,Za"Zb'-Zd"
It can be replaced with ・・・・・・・・・(2). However, β is the occurrence position d of the corneal reflection image.
The magnification is determined by the distance 111LI between the light-receiving lens 4 and the photoelectric element array 6, and the distance LO between the light-receiving lens 4 and the photoelectric element array 6, and is usually a constant value.

これは例えばカメラの自動焦点検出装置において測距点
を画面中心のみならず画面内の複数箇所に設けた場合、
観察者がそのうち1つの測距点を選択して自動焦点検出
を行おうとする場合、その1つを選択入力する手間を省
き観察者が観察している点を測距点とみなし、該測距点
を自動的に選択して自動焦点検出を行うのに有効である
。カメラの測距点はファインダー画面内に2次元的に設
定されていることが望ましいため、視線検出装置も2軸
の視線情報を検出することが必要となってくる。
For example, in a camera's automatic focus detection device, if the distance measuring point is set not only at the center of the screen but also at multiple locations within the screen,
When an observer wants to select one of the distance measurement points and perform automatic focus detection, the point that the observer is observing is regarded as the distance measurement point, and the point that the observer is observing is assumed to be the distance measurement point. This is effective for automatically selecting points and performing automatic focus detection. Since it is desirable that the distance measurement point of the camera be set two-dimensionally within the finder screen, the line-of-sight detection device also needs to detect biaxial line-of-sight information.

(発明が解決しようとする問題点) 第8図示す視線検出方法は、観察者の眼球がZ−X平面
(例えば水平面)内で回転する場合の他にX−Y平面(
例えば垂直面)内で回転する場合においても原理的には
有効である。
(Problems to be Solved by the Invention) The line of sight detection method shown in FIG.
In principle, it is also effective when rotating within a vertical plane, for example.

第9図は2次元の光電素子列6面上に投影された眼球の
反射像を示す説明図である。眼球のX−Y平面内の回転
角を検出するには虹彩23と瞳孔24とのY軸方向の境
界点Ya  、Yb’を検出しなければならない。
FIG. 9 is an explanatory diagram showing a reflected image of the eyeball projected onto the six surfaces of the two-dimensional photoelectric element array. In order to detect the rotation angle of the eyeball in the X-Y plane, it is necessary to detect the boundary points Ya and Yb' between the iris 23 and the pupil 24 in the Y-axis direction.

一般に光電素子列6の読み出しは線順次で行なわれ、光
電素子列の列方向と直交する方向(Y軸方向)の情報を
得るためには各光電素子列の像情報を一度記憶装置に記
憶し、その後詰記憶装置より情報の読み出しを行って前
記境界点YaYb′を検出するという過程をふまなくて
はならないため、大容量の記憶装置が必要であるという
問題点があった。
Generally, the readout of the photoelectric element array 6 is performed line-sequentially, and in order to obtain information in the direction (Y-axis direction) perpendicular to the column direction of the photoelectric element array, the image information of each photoelectric element array must be stored once in the storage device. There is a problem in that a large-capacity storage device is required because a process of reading out information from the post-fill storage device and detecting the boundary point YaYb' is required.

そこで第10図(A)に示すように瞳孔24を含2つの
光電素子列2列Yl’、Y2’を順次選択し該光電素子
列から検出される虹彩23と瞳孔24との4つの境界点
Zla  、Zlb’Z2a′、Z2b’の内の3点を
用いて瞳孔24の中心C′の位置を算出しそれと不図示
の角膜反射像の位置より観察者の視線を算出する方法が
考えられる。
Therefore, as shown in FIG. 10(A), two photoelectric element rows Yl' and Y2' containing the pupil 24 are sequentially selected, and four boundary points between the iris 23 and the pupil 24 are detected from the photoelectric element rows. A method can be considered in which the position of the center C' of the pupil 24 is calculated using three points among Zla, Zlb'Z2a', and Z2b', and the line of sight of the observer is calculated from this and the position of a corneal reflection image (not shown).

しかしながら第8図(A)に示すように被検体である虹
彩23はコンデンサーレンズの役割を果たす角膜21を
介して光電素子列6上に結像するため、光電素子列6上
で得られる虹彩23の位置は実際の虹彩の位置とは異な
る見かけの位置となる。そのため複数の光電素子列より
2つの光電素子列Yl’、Y2’を任意に選択すると眼
球の瞳孔中心C′に対して上下どちらか(+Yもしくは
−Y方向)に偏った2列を選択してしまう場合がある。
However, as shown in FIG. 8(A), the iris 23, which is the subject, is imaged on the photoelectric element array 6 through the cornea 21, which plays a role as a condenser lens. The position of the iris is an apparent position that is different from the actual position of the iris. Therefore, when two photoelectric element rows Yl' and Y2' are arbitrarily selected from a plurality of photoelectric element rows, two rows biased either above or below (+Y or -Y direction) with respect to the pupil center C' of the eyeball are selected. It may be stored away.

この場合、算出される垂直方向(X−Y平面内)の眼球
の回転角は実際の回転角に対して一部線形ではなくなり
検出誤差が生ずるという問題点があった。
In this case, there is a problem in that the calculated rotation angle of the eyeball in the vertical direction (in the X-Y plane) is partially not linear with respect to the actual rotation angle, resulting in a detection error.

また一般に観察者の眼球に入射する光量の変化に対する
瞳孔径の変化及び個人差による瞳孔径の違いを考慮して
、光電素子列Yl’と光電素子列Y2’との間隔は瞳孔
径の最小値の2/3程度に小さく初期設定される。そこ
で第1O図(B)に示すように眼球の瞳孔中心C′に対
して上下(+Y及び−Y力方向に分かれた2つの光電素
子列Yl”、Y2′を選択しても観察者の瞳孔径が大き
くまた各光電素子列Yl′、Y2′と瞳孔中心C′との
間隔が非対称である場合は、第11図に示すように算出
される垂直方向(x−y平面内)の眼球の回転角は実際
の回転角に対して一部線形ではなくなり検出誤差が生ず
るという問題点があった。
In addition, in general, taking into consideration changes in pupil diameter due to changes in the amount of light incident on the observer's eyeballs and differences in pupil diameter due to individual differences, the interval between the photoelectric element row Yl' and the photoelectric element row Y2' is set to the minimum value of the pupil diameter. It is initially set to be small, about 2/3 of . Therefore, as shown in Figure 1O (B), even if two photoelectric element arrays Yl'' and Y2' are selected above and below (+Y and -Y force directions) with respect to the pupil center C' of the eyeball, the observer's pupil If the diameter is large and the distance between each photoelectric element row Yl', Y2' and the pupil center C' is asymmetric, the vertical direction (in the x-y plane) of the eyeball calculated as shown in FIG. There is a problem in that the rotation angle is partially not linear with respect to the actual rotation angle, resulting in a detection error.

本発明は受光手段を構成する複数の光電素子列のうちか
ら所定の2つの光電素子列を適切に選択し、該選択した
2つの光電素子列より角膜反射像と虹彩反射像に基づく
情報を得ることにより観察者の視線を高蹟度に算出する
ことのできる視線検出装置の提供を目的とする。
The present invention appropriately selects two predetermined photoelectric element arrays from among a plurality of photoelectric element arrays constituting a light receiving means, and obtains information based on a corneal reflection image and an iris reflection image from the selected two photoelectric element arrays. The present invention aims to provide a line-of-sight detection device that can calculate the line-of-sight of an observer with high accuracy.

(問題点を解決するための手段) 本発明の視線検出装置は、観察者の眼球を照明手段によ
り照明し、該眼球の角膜反射像と虹彩反射像の所定面上
における結像位置を受光手段で検出し、該受光手段から
の出力信号を利用して演算手段により該眼球の視線を算
出するようにした視線検出装置において、該受光手段は
複数の光電素子列を有し、該演算手段は該複数の光電素
子列のうちの1つの光電素子列A面上に形成された角膜
反射像の位置を検出すると共に、該光電素子列6上に形
成された虹彩反射像の情報より該光電素子列Aが瞳孔上
を横切る瞳孔長を算出し、該瞳孔長に基づいて他の光電
素子列Bを選択し、該光電素子列Bから得られる虹彩反
射像に基づく情報を利用して視線を算出するようにした
ことを特徴としている。
(Means for Solving the Problems) The line of sight detecting device of the present invention illuminates an observer's eyeball with an illumination means, and detects the image formation position of a corneal reflected image and an iris reflected image of the eyeball on a predetermined plane using a light receiving means. In the line-of-sight detecting device, the line of sight of the eyeball is calculated by a calculating means using an output signal from the light receiving means, the light receiving means has a plurality of photoelectric element arrays, and the calculating means includes a plurality of photoelectric element arrays. The position of the corneal reflection image formed on the surface A of one of the photoelectric element arrays among the plurality of photoelectric element arrays is detected, and the position of the corneal reflection image formed on the photoelectric element array 6 is detected. Calculate the pupil length where row A crosses the pupil, select another photoelectric element row B based on the pupil length, and calculate the line of sight using information based on the iris reflection image obtained from the photoelectric element row B. It is characterized by the fact that it is made to do so.

特に本発明では、ml記光電素子列Aと光電素子列Bは
瞳孔中心に対して互いに反対側に例えば瞳孔中心に対し
て略対称に位置していることを特徴としている。
In particular, the present invention is characterized in that the photoelectric element array A and the photoelectric element array B are located on opposite sides of the pupil center, for example, approximately symmetrically with respect to the pupil center.

(実施例) 第1図(A)は本発明を一眼レフカメラに通用したとき
の一実施例の光学系の要部概略図、同図(B)は同図(
A)の一部分の説明図である。
(Example) Figure 1 (A) is a schematic diagram of the main parts of an optical system of an example when the present invention is applied to a single-lens reflex camera, and Figure 1 (B) is a
It is an explanatory view of a part of A).

図中、1は接眼レンズで、その内部には可視光透過・赤
外光反射のダイクロイックミラー1aが斜設されており
、光路分割器を兼ねている。
In the figure, reference numeral 1 denotes an eyepiece lens, and a dichroic mirror 1a that transmits visible light and reflects infrared light is installed obliquely inside the eyepiece lens, and also serves as an optical path splitter.

4は受光レンズ、5 (5a、5b、5c)は照明手段
であり、例えば発光ダイオードから成っている。6は光
電素子列である。受光レンズ4と光電素子列6は受光手
段の一要素を構成している。
4 is a light-receiving lens, and 5 (5a, 5b, 5c) is an illumination means, which is made of, for example, a light emitting diode. 6 is a photoelectric element array. The light receiving lens 4 and the photoelectric element array 6 constitute one element of the light receiving means.

光電素子列6は通常は、図面垂直方向に1次元的に複数
の光電素子が並んだデバイスを使うが、必要に応じて2
次元に光電素子が並んだデバイスを使用する。各要素1
,4,5.6より眼球の視線検出系を構成している。
The photoelectric element row 6 normally uses a device in which a plurality of photoelectric elements are arranged one-dimensionally in the direction perpendicular to the drawing, but if necessary, two or more photoelectric elements are used.
It uses a device with photoelectric elements lined up in one dimension. Each element 1
, 4, 5.6 constitute an eyeball line-of-sight detection system.

101は撮影レンズ、102はクイックリターン(QR
)ミラー、103は表示素子、104はピント板、10
5はコンデンサーレンズ、106はペンタダハプリズム
、107はサブミラー108は多点焦点検出装置であり
、If画面内の複数の領域を選択して焦点検出を行って
いる。
101 is a photographing lens, 102 is a quick return (QR)
) Mirror, 103 is a display element, 104 is a focusing plate, 10
5 is a condenser lens, 106 is a pentagonal roof prism, and 107 is a submirror 108, which is a multi-point focus detection device, which performs focus detection by selecting a plurality of areas within the If screen.

多点焦点検出装置の説明は本発明理解のために必要ない
ため概略に止める。
The explanation of the multi-point focus detection device is not necessary for understanding the present invention, so a brief explanation will be provided.

即ち本実施例では第1図(B)に描く様に撮影レンズ1
01の予定結像面近傍に配され、夫々測距域な決める複
数のスリットを有する視野マスク110と各スリット内
の像に対してフィールドレンズの作用を果たすレンズ部
材111を近接配置し、更にスリット数に応じた再結像
レンズの組112と光電素子列の組113を装置する。
That is, in this embodiment, the photographing lens 1 is
A field mask 110 having a plurality of slits, each of which determines a distance measurement area, is arranged near the planned image forming plane of 01, and a lens member 111 that functions as a field lens for the image in each slit is arranged in close proximity. A set of re-imaging lenses 112 and a set of photoelectric element arrays 113 corresponding to the number are provided.

スリット110、フィールドレンズ111、再結像レン
ズの組112、そして光電素子列の組113はそれぞれ
周知の焦点検出系を構成している。
The slit 110, the field lens 111, the reimaging lens set 112, and the photoelectric element array set 113 each constitute a well-known focus detection system.

本実施例では撮影レンズ101の透過した被写体光の一
部はQRミラー102によって反射してピント板104
近傍に被写体像を結像する。ピント板104の拡散面で
拡散した被写体光はコンデンサーレンズ105、ペンタ
ダハプリズム106、接眼レンズ1を介してアイポイン
トEに導かれる。
In this embodiment, a part of the subject light that has passed through the photographic lens 101 is reflected by the QR mirror 102 and is reflected by the focusing plate 102.
Forms an image of the subject nearby. The object light diffused by the diffusing surface of the focusing plate 104 is guided to the eye point E via the condenser lens 105, the penta roof prism 106, and the eyepiece lens 1.

ここで表示素子103は例えば偏光板を用いない2層タ
イプのゲスト−ホスト型液晶素子で、ファインダー視野
内の測距域(焦点検出位置)を表示するものである。
Here, the display element 103 is, for example, a two-layer type guest-host type liquid crystal element that does not use a polarizing plate, and displays a distance measurement area (focus detection position) within the field of view of the finder.

又、撮影レンズ101を透過した被写体光の部は、QR
ミラー102を透過し、サブミラー107で反射してカ
メラ本体底部に配置された前述の多点焦点検出装置10
8に導かれる。さらに多点焦点検出装置108の選択し
た被写体面上の位置の焦点検出情報に基づいて、不図示
の撮影レンズ駆動装置により撮影レンズ101の縁り出
しくもしくは繰り込み)が行なわれ、焦点調節が行なわ
れる。
Also, the part of the subject light that has passed through the photographic lens 101 is QR
The multi-point focus detection device 10 described above is transmitted through the mirror 102 and reflected by the sub-mirror 107, and is disposed at the bottom of the camera body.
Guided by 8. Further, based on the focus detection information of the position on the subject surface selected by the multi-point focus detection device 108, the photographic lens driving device (not shown) moves the photographic lens 101 to the edge (extending or retracting) to perform focus adjustment. It will be done.

本実施例に係る視線検出装置は、符番1,4゜5.6で
表わされた部材より構成された視線検出系と、演算手段
である信号処理回路109に含まれる眼球光軸検出回路
、眼球判別回路、視軸補正回路、注視点検出回路等から
構成されている。
The line-of-sight detection device according to this embodiment includes a line-of-sight detection system composed of members denoted by reference numerals 1, 4, 5, 6, and an eyeball optical axis detection circuit included in a signal processing circuit 109 that is a calculation means. , an eyeball discrimination circuit, a visual axis correction circuit, a gaze point detection circuit, etc.

該視線検出系において、赤外発光ダイオード5から放射
される赤外光は、図中上方から接眼レンズ1に入射しダ
イクロイックミラー1aにより反射されアイポイントE
近傍に位置する観察者の眼球201を照明す。また眼球
201で反射した赤外光は、ダイクロイックミラー1a
で反射され受光レンズ4によって収斂しながら光電素子
列6上に像を形成する。また、前記信号処理回路109
はマイクロコンピュータのソフトで実行される。
In the line of sight detection system, infrared light emitted from an infrared light emitting diode 5 enters the eyepiece lens 1 from above in the figure, is reflected by the dichroic mirror 1a, and is directed to an eye point E.
The eyeball 201 of an observer located nearby is illuminated. In addition, the infrared light reflected by the eyeball 201 is reflected by the dichroic mirror 1a.
The light is reflected by the light receiving lens 4 and converged to form an image on the photoelectric element array 6. Further, the signal processing circuit 109
is executed by microcomputer software.

注視点検出回路において検知された注視点情報は、まず
表示素子103と多点焦点検出装置108に伝送される
。表示素子103においてはl!察者が注視した場所を
カメラのファインダー内に表示し、注視点(焦点検出点
)の確認を行う役割を果たす。
The gaze point information detected by the gaze point detection circuit is first transmitted to the display element 103 and the multi-point focus detection device 108. In the display element 103, l! The function is to display the place the viewer is looking at in the camera's viewfinder and to confirm the point of gaze (focus detection point).

また多点焦点検出装置108においては、観察者が注視
した点の焦点検出が行なわれ注視被写体に対して焦点調
節が行なわれる。
In addition, the multi-point focus detection device 108 performs focus detection of the point gazed at by the observer, and performs focus adjustment on the gazed subject.

第2図は第1図の視線検出系の要部斜視図、第3図(A
) 、 (B)は視線検出系の光学原理図である。照明
用の赤外発光ダイオード5a、5b。
Figure 2 is a perspective view of the main parts of the line of sight detection system in Figure 1, and Figure 3 (A
) and (B) are diagrams of the optical principles of the line of sight detection system. Infrared light emitting diodes 5a, 5b for illumination.

5cはカメラと観察者の眼球との距離を検出するために
2個一組で使用され、カメラの姿勢に応じて赤外発光ダ
イオード5a、5bで横位置、赤外発光ダイオード5b
、5cで縦位置の検出を行っている。尚、同図において
カメラの姿勢検知手段は図示されていないが水銀スイッ
チ等を利用した姿勢検知手段が有効である。
5c is used in pairs to detect the distance between the camera and the observer's eyeballs, and depending on the camera posture, infrared light emitting diodes 5a and 5b are in the horizontal position, and infrared light emitting diode 5b is in the horizontal position.
, 5c, the vertical position is detected. Incidentally, although the attitude detection means of the camera is not shown in the figure, an attitude detection means using a mercury switch or the like is effective.

赤外発光ダイオード5a、5bは受光レンズ4の光軸(
X軸)に対して光電素子列6の列方向(Z軸方向)及び
該列方向と直交する方向にシフトした位置に配置されて
いる。
The infrared light emitting diodes 5a and 5b are connected to the optical axis (
It is arranged at a position shifted in the column direction (Z-axis direction) of the photoelectric element array 6 and in a direction perpendicular to the column direction with respect to the X-axis).

第3図(A)において光電素子列6の列方向(Z軸方向
)に分離して配置された赤外発光ダイオード5a、5b
からの光束はZ軸方向に分離した位置に角膜反射像e、
dをそれぞれ形成する。
Infrared light emitting diodes 5a and 5b are arranged separately in the row direction (Z-axis direction) of the photoelectric element row 6 in FIG. 3(A).
The light flux from the corneal reflection images e,
d respectively.

この時、角膜反射像e及びdの中点のZ座標は角膜21
の曲率中心0のZ座標と一致している。また角膜反射像
e及びdの間隔は赤外発光ダイオードと観察者の眼球と
の距離に対応して変化するため、光電素子列6上に再結
像した角膜反射像の位置e”、d’を検出することによ
り眼球からの反射像の結像倍率βを求めることが可能と
なる。また第3図(B)において光電素子列6の列方向
と直交する方向に配置された赤外発光ダイオード5a 
(5b)は観察者の眼球を斜め上から照明することにな
り、そのため観察者の眼球が垂直方向(X−Y平面内)
に回転していない場合は角膜反射像e(d、)は角膜の
曲率中心及び瞳孔の中心よりも図中+Y力方向形成され
る。
At this time, the Z coordinate of the midpoint of the corneal reflection images e and d is the cornea 21
coincides with the Z coordinate of the center of curvature 0. Furthermore, since the interval between the corneal reflection images e and d changes depending on the distance between the infrared light emitting diode and the observer's eyeball, the positions e'' and d' of the corneal reflection images re-imaged on the photoelectric element array 6 are By detecting this, it is possible to determine the imaging magnification β of the reflected image from the eyeball.Also, in FIG. 5a
In (5b), the observer's eyeball is illuminated from diagonally above, so the observer's eyeball is in the vertical direction (within the X-Y plane).
If the corneal reflection image e(d,) is not rotated, the corneal reflection image e(d,) is formed in the +Y force direction in the figure from the center of curvature of the cornea and the center of the pupil.

第4図(A)は本実施例において光電素子列6の複数の
光電素子列面上に投影された眼球からの反射像を示す説
明図である。
FIG. 4(A) is an explanatory diagram showing a reflected image from an eyeball projected onto a plurality of photoelectric element array surfaces of the photoelectric element array 6 in this embodiment.

第4図(A)は光電素子列6上に投影された眼球からの
反射像を示したものである。同図において角膜反射像e
′、d’は光電素子列yp’上に再結像している。この
とき光電素子列Yp’より得られる出力信号を第4図(
B)に示す。
FIG. 4(A) shows the reflected image from the eyeball projected onto the photoelectric element array 6. In the same figure, the corneal reflection image e
', d' are re-imaged on the photoelectric element array yp'. At this time, the output signal obtained from the photoelectric element array Yp' is shown in FIG.
Shown in B).

次に本実施例における視線検出方法を第5図のフローチ
ャートを用いて順次説明する。
Next, the line of sight detection method in this embodiment will be sequentially explained using the flowchart shown in FIG.

まず信号処理回路109に含まれる眼球光軸検出回路に
おいて眼球光軸の回転角が検出される。
First, an eyeball optical axis detection circuit included in the signal processing circuit 109 detects the rotation angle of the eyeball optical axis.

次いで光電素子列6の像信号の読み出しを第4図(A)
で示す−Y力方向り順次行い角膜反射像e、d’が形成
される光電素子列(ライン)Yp′を検出する(#l)
。同時に角膜反射像e、d”の列方向の発生位置Zd’
、Ze′を検出しく#2)、該角膜反射像の間隔IZd
′Ze  lより光学系の結像倍率βを求める(#3)
。さらに該光電素子列(ライン)Yp’上に虹彩23と
瞳孔24との境界点22b ”Z2a ’を検出しく#
4)、該光電素子列yp上の瞳孔長1Z2a  −Z2
b’lを算出する(#5)。
Next, the image signal of the photoelectric element array 6 is read out as shown in FIG. 4(A).
Detect the photoelectric element array (line) Yp' where the corneal reflection images e and d' are formed sequentially in the −Y force direction shown by (#l)
. At the same time, the generation position Zd' of the corneal reflection images e and d'' in the column direction
, Ze′ #2), and the interval IZd between the corneal reflection images.
Find the imaging magnification β of the optical system from 'Ze l (#3)
. Further, a boundary point 22b "Z2a' between the iris 23 and the pupil 24 is detected on the photoelectric element array (line) Yp'.
4), pupil length 1Z2a −Z2 on the photoelectric element array yp
Calculate b'l (#5).

第4図(A)に示すように通常、角膜反射像が形成され
る光電素子列Yp’は瞳孔中心C′の存在する光電素子
列YO′より図中−Y方向に発生し、像信号の読み出し
を行うべきもう一つの光電素子列Y1′は前記結像倍率
β及び瞳孔長の値より算出される(#6)。この詩語光
電素子列Yl’は光電素子列Yp′に対して十分な間隔
を有するように設定される。同様に光電素子列Yl’上
の虹彩23と瞳孔24との境界点Z1a′、zib”が
検出されると(#7)、該境界点(Zla  、Yl′
)、(Zlb’、Yl’)及び前記境界点(Z2a  
、Y2′)、(22b”、Y2’)の内の少なくとも3
点を用いて瞳孔の中心位置C′(Zc  、Yc’)が
求められる。さらに前記角膜反射像の位置(Zd’Yp
’)、(Ze”、Yρ′)を用いて前記(2)式を変形
すると眼球光軸の回転角θ2゜θyは ・・・・・・・・・・(3) β*oc*s I Nθy勺Yc ′−Yp ”+δY
′・・・・・・・・・・(4) を満足する(#8)。但しδY′は赤外発光ダイオード
が受光レンズ4に対して光電素子列6の列方向と直交す
る方向に配置されていることにより、角膜反射像の再結
像位置e、d′が光電素子列6上で角膜21の曲率中心
のY座標に対してY軸方向にシフトしている分を補正す
る値である。
As shown in FIG. 4(A), normally, the photoelectric element array Yp' where a corneal reflection image is formed is generated in the -Y direction in the figure from the photoelectric element array YO' where the pupil center C' exists, and the image signal is Another photoelectric element array Y1' to be read out is calculated from the values of the imaging magnification β and pupil length (#6). This poetic photoelectric element array Yl' is set to have a sufficient distance from the photoelectric element array Yp'. Similarly, when the boundary point Z1a', zib'' between the iris 23 and the pupil 24 on the photoelectric element array Yl' is detected (#7), the boundary point (Zla, Yl'
), (Zlb', Yl') and the boundary point (Z2a
, Y2'), (22b'', Y2')
Using the points, the center position C' (Zc, Yc') of the pupil is determined. Furthermore, the position of the corneal reflection image (Zd'Yp
'), (Ze'', Yρ') to transform the above equation (2), the rotation angle θ2゜θy of the optical axis of the eyeball is... (3) β*oc*s I NθyYc ′−Yp ”+δY
′・・・・・・・・・(4) is satisfied (#8). However, δY' is because the infrared light emitting diode is arranged with respect to the light receiving lens 4 in a direction perpendicular to the column direction of the photoelectric element array 6, so that the re-imaging positions e and d' of the corneal reflected image are different from the photoelectric element array. This is a value for correcting the shift in the Y-axis direction with respect to the Y coordinate of the center of curvature of the cornea 21 on 6.

さらに、信号処理回路109に含まれる眼球判別回路に
おいては、例えば算出される眼球光軸の回転角の分布よ
りファインダーをのぞいている観察者の目が右目か左目
かを判別しNt9)、さらに視軸補正回路において該眼
球判別情報と前記眼球光軸の回転角に基づいて視軸の補
正が行われる(#10)。また注視点検出回路において
は、ファインダー光学系の光学定数に基づいて注視点を
算出される(#11)。
Furthermore, the eyeball discrimination circuit included in the signal processing circuit 109 discriminates whether the eye of the observer looking into the finder is the right eye or the left eye based on the distribution of the calculated rotation angle of the eyeball optical axis (Nt9). In the axis correction circuit, the visual axis is corrected based on the eyeball discrimination information and the rotation angle of the eyeball optical axis (#10). Furthermore, in the gaze point detection circuit, the gaze point is calculated based on the optical constants of the finder optical system (#11).

尚、観察者によってはまぶたによって瞳孔がけられる状
態が発生する。このような場合、第10図に示したよう
な光電素子列の選択を行なわなければならないが、その
際、眼球光軸の回転角の検出誤差を小さくするような補
正を眼球光軸検出回路によって行うのが望ましい。
Note that, depending on the observer, the pupil may be obstructed by the eyelid. In such a case, it is necessary to select a photoelectric element array as shown in Fig. 10, but at this time, the eyeball optical axis detection circuit must perform a correction to reduce the detection error of the rotation angle of the eyeball optical axis. It is desirable to do so.

また本実施例において垂直方向の回転角を求める際、角
膜反射像のY軸方向の位置なδY′だけ補正して回転角
を求めているが、カメラの姿勢に関係せず照明用の赤外
発光ダイオード5a。
Furthermore, in this embodiment, when determining the rotation angle in the vertical direction, the rotation angle is determined by correcting the position of the corneal reflection image in the Y-axis direction, δY'. Light emitting diode 5a.

5b、5cを常時点灯し、光電素子列6の列方向と平行
なZ−X平面に関して対称な赤外発光ダイオード(5b
、5c)の組を用いて該赤外発光ダイオードによる角膜
反射像の中点(Y座標)を求めてから回転角を算出して
も構わない。この詩話赤外発光ダイオード5Cの角膜反
射像の光電素子列6上への投影像の位置(Y座標)を検
知する必要があるが、角膜反射像は比較的光強度が強い
ため容易に検知可能である。
5b and 5c are always lit, and infrared light emitting diodes (5b
, 5c) may be used to find the midpoint (Y coordinate) of the corneal reflection image by the infrared light emitting diode, and then calculate the rotation angle. It is necessary to detect the position (Y coordinate) of the projected image of the corneal reflection image of the poem infrared light emitting diode 5C onto the photoelectric element array 6, but since the corneal reflection image has a relatively strong light intensity, it can be easily detected. It is.

また観察者がカメラを縦位置に構えた場合においても同
様の方法で観察者の注視点を精度よく検知することが可
能である。
Further, even when the viewer holds the camera in a vertical position, it is possible to accurately detect the viewer's gaze point using the same method.

第6図は本発明の第2実施例において光電素子列6面上
に投影された眼球からの反射像を示す説明図である。本
実施例では角膜反射像e、d’は光電素子列yp’面上
に形成されている。
FIG. 6 is an explanatory diagram showing a reflected image from the eyeball projected onto the six surfaces of the photoelectric element array in the second embodiment of the present invention. In this embodiment, the corneal reflection images e and d' are formed on the photoelectric element array yp' plane.

次に本実施例における視線検出方法を第7図のフローチ
ャートを用いて順次説明する。
Next, the line of sight detection method in this embodiment will be sequentially explained using the flowchart shown in FIG.

まず演算手段である信号処理回路109に含まれる眼球
光軸検出回路において眼球光軸の回転角が検出される。
First, the rotation angle of the eyeball optical axis is detected in the eyeball optical axis detection circuit included in the signal processing circuit 109, which is a calculation means.

次いで光電素子列6の像信号の読み出しを第6図で示す
−Y力方向り順次行い角膜反射像e、d’が形成される
。光電素子列(ライン)Yp’を検出する(#21)。
Next, the image signals of the photoelectric element array 6 are sequentially read out in the -Y force direction shown in FIG. 6 to form corneal reflection images e and d'. The photoelectric element array (line) Yp' is detected (#21).

同時に角膜反射像e、d’の発生位置Zd’、Ze’を
検出しく#22)、該角膜反射像の間隔lZd”Ze’
lより結像倍率βを求める(# 23 )。また観察者
の眼球の垂直方向(X−Y平面内)の回転が無いとする
と、光電素子列6上に発生する前記角膜反射像と瞳孔中
心C′とのY軸方向の間隔は前記視線検出系と観察者の
眼球との距離によって決まっているため、前記角膜反射
像の間隔より瞳孔中心C′の存在する光電素子列(ライ
ン)YO′が算出される(#24)。
At the same time, the generation positions Zd' and Ze' of the corneal reflection images e and d' are detected #22), and the interval lZd"Ze' of the corneal reflection images is detected.
The imaging magnification β is determined from l (#23). Further, assuming that there is no rotation of the observer's eyeball in the vertical direction (in the X-Y plane), the distance in the Y-axis direction between the corneal reflected image generated on the photoelectric element array 6 and the pupil center C' is the distance detected by the line of sight. Since it is determined by the distance between the system and the observer's eyeball, the photoelectric element array (line) YO' where the pupil center C' is located is calculated from the interval between the corneal reflection images (#24).

さらに観察者の瞳孔径の最小値を想定することにより検
出すべき2つの光電素子列(ライン)Yl’とY2′と
の間隔が決定し、瞳孔中心C′の存在する光電素子列Y
O′に関してY軸方向に略対称な2つの光電素子列Yl
′、Y2’が選択される(井25)。
Furthermore, by assuming the minimum value of the observer's pupil diameter, the interval between the two photoelectric element rows (lines) Yl' and Y2' to be detected is determined, and the photoelectric element row Y where the pupil center C' is located is determined.
Two photoelectric element rows Yl approximately symmetrical in the Y-axis direction with respect to O'
', Y2' are selected (I25).

本実施例において光電素子列Y2’と光電素子列Yp′
とが一致している例を示しているが、光電素子列Y2’
が光電素子列yp’に対して−Y方向に存在する場合が
ある。そのため角膜反射像e”、d’が存在する光電素
子列Yp’を検出する以前に読み出した光電素子列の像
情報を記憶しておく記憶装置が必要となるがその記憶容
量は小さいため不都合はない。
In this embodiment, the photoelectric element array Y2' and the photoelectric element array Yp'
In this example, the photoelectric element row Y2'
exists in the -Y direction with respect to the photoelectric element array yp'. Therefore, a storage device is required to store the image information of the photoelectric element array read out before detecting the photoelectric element array Yp' where the corneal reflection images e'' and d' are present, but since its storage capacity is small, there is no inconvenience. do not have.

次に眼球光軸検出回路は前記光電素子列Y2’(=Yp
′)上の虹彩23と瞳孔24との境界点22a  、Z
2b’及び前記光電素子列Y1′上の虹彩23と瞳孔2
4との境界点ZlaZlb’を検出する(井26.井2
7)。該境界点(Zla  、Y1’)、(21b′、
Yl ′)及び前記境界点(22a  、Y2’)、(
22b’、Y2’)の内の少なくとも3点を用いて瞳孔
の中心位置C’ (Zc  、Yc’)が求められる。
Next, the eyeball optical axis detection circuit detects the photoelectric element array Y2' (=Yp
') Upper boundary point 22a between iris 23 and pupil 24, Z
2b' and the iris 23 and pupil 2 on the photoelectric element row Y1'
Detect the boundary point ZlaZlb' with 4 (I26.I2
7). The boundary points (Zla, Y1'), (21b',
Yl') and the boundary point (22a, Y2'), (
The center position C' (Zc, Yc') of the pupil is determined using at least three points among the points C' (Zc, Yc').

さらに前記角膜反射像の位置(Zd’Yp’)、(2e
  、Yp’)を用いて前記(3)、(4)式より眼球
光軸の回転角が算出される($28)。
Furthermore, the position (Zd'Yp') of the corneal reflection image, (2e
, Yp'), the rotation angle of the eyeball optical axis is calculated from equations (3) and (4) above ($28).

さらに信号処理回路109に含まれる眼球判別回路にお
いては、例えば算出される眼球光軸の回転角の分布より
ファインダーをのぞいている観察者の目が右目か左目か
を判別しく#29)、ざらに視軸補正回路において該眼
球判別情報と前記眼球光軸の回転角に基づいて視軸の補
正が行なわれる(#30)。また注視点検出回路におい
ては、ファインダー光学系の光学定数に基づいて注視点
が算出される(#31)。
Furthermore, the eyeball discrimination circuit included in the signal processing circuit 109 roughly determines whether the observer looking into the finder has the right eye or the left eye based on the calculated rotation angle distribution of the optical axis of the eyeball (#29). In the visual axis correction circuit, the visual axis is corrected based on the eyeball discrimination information and the rotation angle of the eyeball optical axis (#30). Further, in the gaze point detection circuit, the gaze point is calculated based on the optical constants of the finder optical system (#31).

尚、本実施例において観察者の眼球の垂直方向(X−Y
平面円)の回転が無いと前提して瞳孔中心の存在する光
電素子列YO’を求めているが、眼球の垂直方向の回転
がある場合、算出される光電素子列YO’の位置と実際
に瞳孔中心が存在する光電素子列の位置が若干ずれるが
実用上問題はない。
In this example, the vertical direction of the observer's eyeball (X-Y
The photoelectric element array YO' where the pupil center is located is calculated on the assumption that there is no rotation of the pupil center (plane circle), but if there is vertical rotation of the eyeball, the calculated position of the photoelectric element array YO' and the actual Although the position of the photoelectric element row where the center of the pupil exists is slightly shifted, there is no problem in practical use.

また本実施例において垂直方向の回転角を求める際(4
)式に示すよに角膜反射像のY軸方向の位置をδY′だ
け補正して回転角を求めているが、カメラのS勢に関係
せず照明用の赤外発光ダイオード5a、5b、5cを常
時点灯し、光電素子列6の列方向と平行なZ−x平面に
関して対称な赤外発光ダイオード(5b、5c)の組を
用いて該赤外発光ダイオードによる角膜反射像の中点(
Y座標)を求めてから回転角を算出しても構わない。こ
の時、該赤外発光ダイオード5Cの角膜反射像の光電素
子列6上への投影像の位置(Y座標)を検知する必要が
あるが、角膜反射像は比較的光強度が強いため容易に検
知可能である。
Also, in this example, when determining the rotation angle in the vertical direction (4
), the rotation angle is determined by correcting the position of the corneal reflected image in the Y-axis direction by δY'; is always turned on, and using a set of infrared light emitting diodes (5b, 5c) symmetrical with respect to the Z-x plane parallel to the column direction of the photoelectric element array 6, the midpoint of the corneal reflection image by the infrared light emitting diodes (
The rotation angle may be calculated after determining the Y coordinate). At this time, it is necessary to detect the position (Y coordinate) of the projected image of the corneal reflection image of the infrared light emitting diode 5C onto the photoelectric element array 6, but since the corneal reflection image has a relatively strong light intensity, it is easy to detect. Detectable.

また観察者がカメラを縦位置に構えた場合においても同
様の方法で観察者の注視点を精度よく検知することが可
能である。
Further, even when the viewer holds the camera in a vertical position, it is possible to accurately detect the viewer's gaze point using the same method.

(発明の効果) 本発明によれば受光手段を構成する複数の光電素子列の
うち前述の如く所定の2つの光電素子列を選択し、該2
つの光電素子列から眼球の角膜反射像と虹彩反射像の位
置情報を得ることにより、観察者の眼球の視線を高精度
に検出することができ、しかも眼球の反射像に関する情
報を記憶する記憶装置の容量が少なくても良いという効
果を有した視線検出装置を達成することができる。
(Effects of the Invention) According to the present invention, two predetermined photoelectric element arrays are selected as described above from among the plurality of photoelectric element arrays constituting the light receiving means, and
By obtaining positional information of the corneal reflection image and iris reflection image of the eyeball from two photoelectric element arrays, the line of sight of the observer's eyeball can be detected with high precision, and a storage device that stores information about the reflection image of the eyeball. It is possible to achieve a line-of-sight detection device that has the effect of requiring only a small capacity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)は本発明を一眼レフカメラに適用したとき
の第1実施例の要部概略図、第1図(B)は第1図(A
)の一部分の説明図、第2図は第1図の視線検出系の要
部斜視図、第3図(A)。 (B)は本発明の視線検出系の光学原理説明図、第4図
(^)、(B)は本発明に係る光電素子列面上の眼球か
らの反射像と光電素子列からの出力信号の説明図、第5
図は本発明の第1実施例のフローチャート、第6図は本
発明の第2実施例に係る光電素子列面上の眼球の反射像
の説明図、第7図は本発明の第2実施例のフローチャー
ト、第8図(A) 、 (B)は従来の視線検出装置の
要部概略図と出力信号の説明図、第9図、第10図(A
) 、 (B)は光電素子列面上の眼球からの反射像の
説明図、第11図は眼球の回転角の検出特性図である。 図中、1は接眼レンズ、4は受光レンズ、5a、5b、
5cは照明手段、6は光電素子列、109は演算手段、
101は撮影レンズ、102は跳ね上げミラー、103
は表示素子、104はピント板、105はコンデンサー
レンズ、106はペンタダハプリズム、21は角膜、2
3は虹彩、24は瞳孔である。 第 図(ハ、)
FIG. 1(A) is a schematic diagram of the main parts of the first embodiment when the present invention is applied to a single-lens reflex camera, and FIG.
), FIG. 2 is a perspective view of a main part of the line of sight detection system in FIG. 1, and FIG. 3 (A). (B) is an explanatory diagram of the optical principle of the line of sight detection system of the present invention, and Figures 4 (^) and (B) are images reflected from the eyeball on the photoelectric element array surface and output signals from the photoelectric element array according to the present invention. Explanatory diagram, 5th
The figure is a flowchart of the first embodiment of the present invention, FIG. 6 is an explanatory diagram of the reflected image of the eyeball on the photoelectric element array surface according to the second embodiment of the present invention, and FIG. 7 is the second embodiment of the present invention. 8(A) and 8(B) are schematic diagrams of main parts of a conventional line of sight detection device and explanatory diagrams of output signals, and FIGS. 9 and 10(A).
), (B) is an explanatory diagram of the reflected image from the eyeball on the photoelectric element array surface, and FIG. 11 is a detection characteristic diagram of the rotation angle of the eyeball. In the figure, 1 is an eyepiece lens, 4 is a light receiving lens, 5a, 5b,
5c is an illumination means, 6 is a photoelectric element array, 109 is a calculation means,
101 is a photographing lens, 102 is a flip-up mirror, 103
104 is a display element, 104 is a focusing plate, 105 is a condenser lens, 106 is a penta roof prism, 21 is a cornea, 2
3 is an iris, and 24 is a pupil. Figure (ha)

Claims (4)

【特許請求の範囲】[Claims] (1)観察者の眼球を照明手段により照明し、該眼球の
角膜反射像と虹彩反射像の所定面上における結像位置を
受光手段で検出し、該受光手段からの出力信号を利用し
て演算手段により該眼球の視線を算出するようにした視
線検出装置において、該受光手段は複数の光電素子列を
有し、該演算手段は該複数の光電素子列のうちの1つの
光電素子列A面上に形成された角膜反射像の位置を検出
すると共に、該光電素子列A面上に形成された虹彩反射
像の情報より該光電素子列Aが瞳孔上を横切る瞳孔長を
算出し、該瞳孔長に基づいて他の光電素子列Bを選択し
、該光電素子列Bから得られる虹彩反射像に基づく情報
を利用して視線を算出するようにしたことを特徴とする
視線検出装置。
(1) Illuminating the observer's eyeball with an illumination means, detecting the image formation position of the corneal reflection image and the iris reflection image of the eyeball on a predetermined plane with the light receiving means, and using the output signal from the light receiving means. In a visual line detection device that calculates the line of sight of the eyeball by a calculating means, the light receiving means has a plurality of photoelectric element arrays, and the calculating means calculates one photoelectric element array A of the plurality of photoelectric element arrays. The position of the corneal reflection image formed on the surface is detected, and the pupil length at which the photoelectric element array A crosses over the pupil is calculated from the information of the iris reflection image formed on the surface of the photoelectric element array A. A line-of-sight detection device characterized in that another photoelectric element array B is selected based on the pupil length, and the line of sight is calculated using information based on an iris reflection image obtained from the photoelectric element array B.
(2)前記光電素子列Aと光電素子列Bは瞳孔中心に対
して互いに反対側に位置していることを特徴とする請求
項1記載の視線検出装置。
(2) The line of sight detection device according to claim 1, wherein the photoelectric element array A and the photoelectric element array B are located on opposite sides of the pupil center.
(3)観察者の眼球を照明手段により照明し、該眼球の
角膜反射像と虹彩反射像の所定面上における結像位置を
受光手段で検出し、該受光手段からの出力信号を利用し
て演算手段により該眼球の視線を算出するようにした視
線検出装置において、該受光手段は複数の光電素子列を
有し、該演算手段は該複数の光電素子列のうちの1つの
光電素子列A面上に形成された角膜反射像の位置を検出
すると共に、該光電素子列Aの瞳孔の中心に対して略対
称な位置にある光電素子列Cを選択し、該光電素子列C
から得られる虹彩反射像に基づく情報を利用して視線を
算出するようにしたことを特徴とする視線検出装置。
(3) Illuminating the observer's eyeball with the illumination means, detecting the image formation position of the corneal reflection image and the iris reflection image of the eyeball on a predetermined plane with the light reception means, and using the output signal from the light reception means. In a visual line detection device that calculates the line of sight of the eyeball by a calculating means, the light receiving means has a plurality of photoelectric element arrays, and the calculating means calculates one photoelectric element array A of the plurality of photoelectric element arrays. At the same time as detecting the position of the corneal reflection image formed on the surface, selecting the photoelectric element array C located approximately symmetrically with respect to the center of the pupil of the photoelectric element array A, and selecting the photoelectric element array C.
A line-of-sight detection device characterized in that the line-of-sight is calculated using information based on an iris reflection image obtained from the iris reflection image.
(4)前記照明手段の光軸と前記受光手段の光軸とは前
記光電素子列の列方向と直交する方向に異っていること
を特徴とする請求項1又は3記載の視線検出装置。
(4) The line of sight detection device according to claim 1 or 3, wherein the optical axis of the illumination means and the optical axis of the light receiving means are different in a direction perpendicular to the column direction of the photoelectric element array.
JP1247333A 1989-09-22 1989-09-22 Eye gaze detection device Expired - Fee Related JP2803222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247333A JP2803222B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247333A JP2803222B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device

Publications (2)

Publication Number Publication Date
JPH03109029A true JPH03109029A (en) 1991-05-09
JP2803222B2 JP2803222B2 (en) 1998-09-24

Family

ID=17161848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247333A Expired - Fee Related JP2803222B2 (en) 1989-09-22 1989-09-22 Eye gaze detection device

Country Status (1)

Country Link
JP (1) JP2803222B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0588431A2 (en) * 1992-09-14 1994-03-23 Nikon Corporation Visual line detection device and camera equipped therewith
EP0687932A2 (en) 1994-06-13 1995-12-20 Canon Kabushiki Kaisha Display device
US5600399A (en) * 1993-11-25 1997-02-04 Canon Kabushiki Kaisha Optical apparatus and camera for controlling a plurality of functions by using a visual axis
US5689736A (en) * 1995-02-28 1997-11-18 Canon Kabushiki Kaisha Image observation apparatus
US5692222A (en) * 1994-11-08 1997-11-25 Canon Kabushiki Kaisha Camera having focus detection device
US5815741A (en) * 1994-12-21 1998-09-29 Canon Kabushiki Kaisha Image observing apparatus and imaging apparatus utilizing the image observing apparatus
US5970258A (en) * 1992-07-31 1999-10-19 Canon Kabushiki Kaisha Optical apparatus capable of performing a desired function by gazing
US6191892B1 (en) 1996-04-02 2001-02-20 Canon Kabushiki Kaisha Image display apparatus
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US6490095B2 (en) 2000-03-23 2002-12-03 Canon Kabushiki Kaisha Image display apparatus
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
JP2004233425A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Image display device
US6814442B2 (en) * 2000-04-28 2004-11-09 Canon Kabushiki Kaisha Image display apparatus and optical system
US7012756B2 (en) 2001-11-14 2006-03-14 Canon Kabushiki Kaisha Display optical system, image display apparatus, image taking optical system, and image taking apparatus
US7019909B2 (en) 2001-11-14 2006-03-28 Canon Kabushiki Kaisha Optical system, image display apparatus, and image taking apparatus
US7253960B2 (en) 1994-06-13 2007-08-07 Canon Kabushiki Kaisha Head-up display device with rotationally asymmetric curved surface
CN110751093A (en) * 2019-10-20 2020-02-04 赵俊杰 Method for automatically identifying pupil and calculating pupil diameter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5970258A (en) * 1992-07-31 1999-10-19 Canon Kabushiki Kaisha Optical apparatus capable of performing a desired function by gazing
EP0588431A2 (en) * 1992-09-14 1994-03-23 Nikon Corporation Visual line detection device and camera equipped therewith
EP0588431A3 (en) * 1992-09-14 1994-05-04 Nikon Corporation Visual line detection device and camera equipped therewith
US5552854A (en) * 1992-09-14 1996-09-03 Nikon Corporation Visual line detection device and camera equipped therewith
US5600399A (en) * 1993-11-25 1997-02-04 Canon Kabushiki Kaisha Optical apparatus and camera for controlling a plurality of functions by using a visual axis
US7538950B2 (en) 1994-06-13 2009-05-26 Canon Kabushiki Kaisha Display device
US7567385B2 (en) 1994-06-13 2009-07-28 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
EP0687932A2 (en) 1994-06-13 1995-12-20 Canon Kabushiki Kaisha Display device
US7253960B2 (en) 1994-06-13 2007-08-07 Canon Kabushiki Kaisha Head-up display device with rotationally asymmetric curved surface
US7505207B2 (en) 1994-06-13 2009-03-17 Canon Kabushiki Kaisha Display device
US7495836B2 (en) 1994-06-13 2009-02-24 Canon Kabushiki Kaisha Display device
US7355795B1 (en) 1994-06-13 2008-04-08 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
US7345822B1 (en) 1994-06-13 2008-03-18 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
US7262919B1 (en) 1994-06-13 2007-08-28 Canon Kabushiki Kaisha Head-up display device with curved optical surface having total reflection
US5692222A (en) * 1994-11-08 1997-11-25 Canon Kabushiki Kaisha Camera having focus detection device
US5815741A (en) * 1994-12-21 1998-09-29 Canon Kabushiki Kaisha Image observing apparatus and imaging apparatus utilizing the image observing apparatus
US5689736A (en) * 1995-02-28 1997-11-18 Canon Kabushiki Kaisha Image observation apparatus
US6191892B1 (en) 1996-04-02 2001-02-20 Canon Kabushiki Kaisha Image display apparatus
US6310728B1 (en) 1998-06-19 2001-10-30 Canon Kabushiki Kaisha Image viewing apparatus
US6490095B2 (en) 2000-03-23 2002-12-03 Canon Kabushiki Kaisha Image display apparatus
US6814442B2 (en) * 2000-04-28 2004-11-09 Canon Kabushiki Kaisha Image display apparatus and optical system
US6594085B2 (en) 2000-04-28 2003-07-15 Canon Kabushiki Kaisha Image display apparatus and optical system
US6552854B2 (en) 2000-04-28 2003-04-22 Canon Kabushiki Kaisha Image display apparatus and optical system
US7446943B2 (en) 2001-11-14 2008-11-04 Canon Kabushiki Kaisha Display optical system, image display apparatus, image taking optical system, and image taking apparatus
US7012756B2 (en) 2001-11-14 2006-03-14 Canon Kabushiki Kaisha Display optical system, image display apparatus, image taking optical system, and image taking apparatus
US7019909B2 (en) 2001-11-14 2006-03-28 Canon Kabushiki Kaisha Optical system, image display apparatus, and image taking apparatus
JP2004233425A (en) * 2003-01-28 2004-08-19 Mitsubishi Electric Corp Image display device
CN110751093A (en) * 2019-10-20 2020-02-04 赵俊杰 Method for automatically identifying pupil and calculating pupil diameter
CN110751093B (en) * 2019-10-20 2023-10-27 赵俊杰 Method for automatically identifying pupil and calculating pupil diameter

Also Published As

Publication number Publication date
JP2803222B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
US5036347A (en) Visual line detecting device and camera having the same
US6014524A (en) Camera with visual axis detecting device
JP2803222B2 (en) Eye gaze detection device
JPH04240438A (en) Line of sight detector
US3543666A (en) Automatic ranging and focusing system
JP2749818B2 (en) Eye gaze detection device
JP2861349B2 (en) Optical device having line-of-sight detecting means
JP2911125B2 (en) Eye gaze detection device
JP3109870B2 (en) Video camera
JPH04347131A (en) Visual axis detector
JPS63259521A (en) Composite type focusing detection device
JPS63229439A (en) Automatic focusing device
JPH04138431A (en) Camera having detection means for line of sight
JP2794752B2 (en) Optical device having visual axis detecting means
JPH02206425A (en) Glance detection apparatus
JPH04347132A (en) Visual axis detector
JP2632178B2 (en) Automatic focus detection device for camera
JPH03107909A (en) Optical device provided with line of sight detector
JP4323592B2 (en) Focus detection device
JPH04347127A (en) Visual axis detector
JP2744417B2 (en) Equipment with gaze detection device
JPH0288034A (en) Detection device
JPS5843410A (en) Detector for focusing
JPH03293367A (en) Camera provided with detection device for line of sight
JPH0280026A (en) Detecting device for line of sight

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees