JPH0280026A - Detecting device for line of sight - Google Patents
Detecting device for line of sightInfo
- Publication number
- JPH0280026A JPH0280026A JP63231934A JP23193488A JPH0280026A JP H0280026 A JPH0280026 A JP H0280026A JP 63231934 A JP63231934 A JP 63231934A JP 23193488 A JP23193488 A JP 23193488A JP H0280026 A JPH0280026 A JP H0280026A
- Authority
- JP
- Japan
- Prior art keywords
- line
- sight
- eye
- examined
- coordinates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims description 19
- 238000003384 imaging method Methods 0.000 claims description 19
- 210000003786 sclera Anatomy 0.000 claims description 4
- 238000005286 illumination Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 claims 3
- 210000001508 eye Anatomy 0.000 abstract description 24
- 210000005252 bulbus oculi Anatomy 0.000 abstract description 9
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 210000000695 crystalline len Anatomy 0.000 description 14
- 230000003287 optical effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 210000004087 cornea Anatomy 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000005375 photometry Methods 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 206010025421 Macule Diseases 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000000744 eyelid Anatomy 0.000 description 1
Landscapes
- Eye Examination Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は視線の方向を検出するための装置に関し、特に
被検眼と検出装置の検出光学系とが偏芯している場合で
も視線方向を正確に検出できる装置であってカメラの様
な光学機器と組合せて使用するのに、適した装置に関す
る。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a device for detecting the direction of the line of sight, and particularly to a device for detecting the direction of the line of sight, and in particular, a device for detecting the direction of the line of sight even when the eye to be examined and the detection optical system of the detection device are eccentric. The present invention relates to an accurate detection device suitable for use in combination with an optical device such as a camera.
従来より被検眼の視線方向を検出する装置は周知である
。例えばJournal of 0ptical 5o
cietyof America、 vol、63.
No、8.921頁以下に説明された方法あるいは
特開昭61−172552号に開示の方法は、被検眼の
前眼部へ光線を投射し、角膜あるいは水晶体による反射
像であるプルキンエ像を利用・するものである。これと
は別に、虹彩の輪郭を用いる視線検出法として第8図の
様な構成が提案されている。2. Description of the Related Art Apparatuses for detecting the line of sight direction of an eye to be examined are well known. For example, Journal of 0ptical 5o
Society of America, vol, 63.
No. 8. The method described on pages 921 and below or the method disclosed in JP-A-61-172552 projects a light beam to the anterior segment of the subject's eye and utilizes the Purkinje image, which is an image reflected by the cornea or crystalline lens.・It is something to do. Apart from this, a configuration as shown in FIG. 8 has been proposed as a line of sight detection method using the outline of the iris.
この方法は虹彩(黒目の部分)が強膜(白目の部分)よ
り低射率が低く、両者の境界の検出が比較的容易な点を
利用しており、まず光源LSで虹彩輪郭(虹彩と強膜の
境界部)の水平両側をスポット状または短冊状に照明す
る。その反射光を2個の受光素子で受光し、その差分信
号から水平方向の眼球運動量(回転角)を検出する。ま
た2個の受光素子の和信号により垂直方向の眼球運動量
を検出する。なお光源には赤外発光ダイオード、受光素
子としては赤外フォトダイオードを用いて人間の眼への
違和感をなくしている。This method takes advantage of the fact that the iris (the black part of the eye) has a lower emissivity than the sclera (the white part of the eye), and it is relatively easy to detect the boundary between the two. Both horizontal sides of the sclera (scleral border) are illuminated in a spot or strip shape. The reflected light is received by two light receiving elements, and the horizontal eye movement amount (rotation angle) is detected from the difference signal. Further, the amount of eye movement in the vertical direction is detected based on the sum signal of the two light receiving elements. An infrared light emitting diode is used as the light source, and an infrared photodiode is used as the light receiving element to eliminate any discomfort to the human eye.
ただしこの装置は検出装置の光軸と被検眼の光軸を一致
させて使用することを前提とするため、眼レフレックス
カメラ等の光学機器の接眼レンズを不用意に覗いている
被検眼の様に接眼レンズ光軸と眼球軸との間に偏芯が含
まれる可能性が大きい場合には不向きである。However, since this device is based on the premise that the optical axis of the detection device and the optical axis of the eye to be examined are aligned, it is possible to use this device with the eye of the eye carelessly looking into the eyepiece of an optical device such as an ocular reflex camera. It is unsuitable when there is a high possibility that eccentricity will be included between the optical axis of the eyepiece lens and the axis of the eyeball.
因に一眼レフレックスカメラを覗いている被検眼の視線
の方向を検出する必要性は、最近、カメラの自動焦点検
出技術が進歩して焦点を検出する測距視野が画面中心の
みならず、複数箇所に設けられ、その内の1つを迅速に
選択するための入力手段が求められる様になった点ある
いはカメラの他の撮影条件、例えば平均測光と重点測光
の切換あるいは複数の撮影モードの内の1つを選択入力
する手段を簡略化したいと云う欲求に基づいている。こ
の様な必要性はカメラのみならず、顕微鏡等の観察装置
あるいは位置整合装置などにも存在する。Incidentally, the need to detect the direction of the line of sight of the subject's eye when looking into a single-lens reflex camera has increased recently due to advancements in camera automatic focus detection technology, which has expanded the field of view for detecting focus to include multiple fields, not just the center of the screen. There is now a need for an input means to quickly select one of them, or for other shooting conditions of the camera, such as switching between average metering and weighted metering, or selecting one of multiple shooting modes. This is based on the desire to simplify the means for selecting and inputting one of the following. Such a need exists not only in cameras but also in observation devices such as microscopes, position alignment devices, and the like.
〔発明が解決しようとしている問題点〕本発明は観察者
が接眼部を覗いた際に、接眼部と被検眼が正確に整合さ
れていなかったとしても視線方向を正しく検出すること
を目的とする。[Problems to be Solved by the Invention] The purpose of the present invention is to accurately detect the direction of line of sight when an observer looks into the eyepiece, even if the eyepiece and the subject's eye are not accurately aligned. shall be.
本発明は、被検眼の前眼部を撮像するための撮像手段と
、撮像手段の出力信号より被検眼の強膜と虹彩の境界の
所定複数箇所について撮像手段上での座標を求め、この
座標を使用して゛視線の回転角度及び本装置と被検眼と
の相対変位量を演算し、更にこれら演算結果より被検眼
の視線方向を求める演算手段を備える。The present invention includes an imaging means for imaging the anterior segment of the eye to be examined, and coordinates on the imaging means for a plurality of predetermined points at the boundary between the sclera and the iris of the eye to be examined from the output signal of the imaging means. The apparatus is equipped with a calculation means for calculating the rotation angle of the line of sight and the amount of relative displacement between the present device and the eye to be examined using the above equation, and further calculating the direction of the line of sight of the eye to be examined from the results of these calculations.
以下、本発明の詳細な説明することとし、まず基本的考
え方を第1図を使って述べる。図は水平光学断面に当る
もので、lはラインセンサー、2は結像レンズ、3は被
検眼球を示す。ラインセンサーlと結像レンズ2の設定
距離をf、その際にラインセンサー1と共役な位置を占
める被検眼3と接眼レンズ2との間隔をlとする。X座
標を結像レンズ2の光軸上に採り、X座標を結像レンズ
2の主点を通りX座標に垂直に採っている。The present invention will be described in detail below, and first the basic idea will be described using FIG. The figure corresponds to a horizontal optical cross section, where l indicates a line sensor, 2 indicates an imaging lens, and 3 indicates an eyeball to be examined. Let f be the set distance between the line sensor l and the imaging lens 2, and let l be the distance between the eye 3 and the eyepiece 2, which occupy a position conjugate with the line sensor 1. The X coordinate is taken on the optical axis of the imaging lens 2, and the X coordinate is taken perpendicular to the X coordinate through the principal point of the imaging lens 2.
またbは虹彩の半径、Cは角膜前面の曲率半径、γは眼
球の回転中心Oから角膜前面までの距離であり、Sは結
像レンズ光軸と眼球の軸との変位量を示す。Further, b is the radius of the iris, C is the radius of curvature of the anterior surface of the cornea, γ is the distance from the center of rotation O of the eyeball to the anterior surface of the cornea, and S represents the amount of displacement between the optical axis of the imaging lens and the axis of the eyeball.
図に描く状態では被検眼3は変位量Sだけ偏芯し、角度
θの方向に視線を向けているわけである。尚、人が物を
見るとき、眼軸から若干外れた黄斑で見るため、眼軸と
視軸には一定量の偏差が存在するが、この分はオフ・セ
ットして取扱えば良い・。In the state depicted in the figure, the eye 3 to be examined is eccentric by a displacement amount S and directs its line of sight in the direction of the angle θ. When people see things, they see with the macula, which is slightly off the axis of the eye, so there is a certain amount of deviation between the axis of the eye and the axis of vision, but this can be handled by offset.
回転角θ、変位量Sの場合の虹彩輪郭の座標を(xI+
” 1)+(X 2 + Y 2 )、センサー
上での結像位置を(−f、 K 、 )、(−f、
K 2)とすると、であるので、これよりに、、に2は
次式の様になる。The coordinates of the iris contour when the rotation angle θ and the displacement amount S are (xI+
” 1) + (X 2 + Y 2 ), the imaging position on the sensor is (-f, K, ), (-f,
If K 2), then from this, 2 becomes as follows.
但しa=c−バy:Pである。However, a=c-by:P.
今、これらの諸量の個人差は実用上定数とみなせるから
、b、 c、 I!、 γ、aを定数とすれば(1)式
はθ、Sに関する連立方程式となるので、これを解けば
θ、Sを求めることができる。その解は、よってイメー
ジセンサ−により虹彩輪郭の左端右端の座標を求めれば
正確に眼球の回転量と変位量すなわち視線の方向を求め
ることができる。Now, since individual differences in these quantities can be regarded as constants in practice, b, c, I! , γ, and a are constants, equation (1) becomes a simultaneous equation regarding θ and S, and by solving this equation, θ and S can be obtained. The solution is therefore that if the coordinates of the left and right ends of the iris contour are determined using an image sensor, the amount of rotation and displacement of the eyeball, that is, the direction of the line of sight can be determined accurately.
以上の方法を実施する視線検出装置をカメラに組込んだ
場合の装置を第2図に示す。FIG. 2 shows an apparatus in which a line-of-sight detection apparatus implementing the above method is incorporated into a camera.
図中、10は撮影レンズ、11は主ミラーで、主ミラー
11は撮影レンズ10を通過した光束の大半を反射し、
一部を透過させる。12はサブミラーで、主ミラー11
を透過した光束をカメラボディの底部へ反射させる。1
3は複数の測距視野を持った焦点検出ユニットである。In the figure, 10 is a photographing lens, 11 is a main mirror, and the main mirror 11 reflects most of the light flux that has passed through the photographic lens 10.
Allow some parts to pass through. 12 is a sub-mirror, and main mirror 11
The light flux that has passed through the camera body is reflected to the bottom of the camera body. 1
3 is a focus detection unit having a plurality of distance measuring fields.
14は焦点板、15は情報表示板で、第3図の様に例え
ば撮影画面内に測距視野マークを表示し、またAv、
Tv、 P、 Mの様な露出制御モード、S(シングル
)、C(連続)9M(マニュアル)の様なフォーカスモ
ードを表示する。図示しないレリーズボタンの押込みに
同期させて露出モード表示、あるいはフォーカスモード
表示のいずれかに視線を向けて選択したモードを登録す
ることもできるし、また測距視野の1つを登録すること
もできる。14 is a focus plate, 15 is an information display board, which displays, for example, a distance measurement field mark in the photographing screen as shown in FIG.
Displays exposure control modes such as Tv, P, and M, and focus modes such as S (single), C (continuous), and 9M (manual). You can register the selected mode by looking at either the exposure mode display or the focus mode display in synchronization with pressing the release button (not shown), or you can also register one of the distance measurement fields. .
16はペンタプリズム、17はアイビーズである。16 is a pentaprism, and 17 is an eye bead.
18は光路分割鏡で、例えばグイクロイックミラーを使
用し、可視光を透過させ赤外光を反射させる。Reference numeral 18 denotes an optical path splitting mirror, which uses a guichroic mirror, for example, to transmit visible light and reflect infrared light.
19は結像レンズで、この結像レンズ19とアイピース
17を合成したものが、第1図の結像レンズ2に相当す
る。la、 lb、 lcは夫々、ライン拳イメー
ジセンサ−で、図面に垂直方向に3本並設されている。19 is an imaging lens, and the combination of this imaging lens 19 and the eyepiece 17 corresponds to the imaging lens 2 in FIG. La, lb, and lc are line fist image sensors, and three of them are arranged in parallel in a direction perpendicular to the drawing.
照明系は後述する。The lighting system will be described later.
ファインダー内の表示が前に触れた第3図に示すような
場合について考えることにする。撮影者が測距点・測光
点を選択するときは中央の列を、露出制御モードを選択
するときは上の列を、フォーカスモードを選択するとき
は下の列をにらむことになる。どの列をにらんでいるか
の判別はla〜ICのセンサ上で虹彩の幅がもっとも大
きく結像されているセンサーを判別することで行う。す
なわち、センサー1aにおいて(Kl−に2)の値が他
のセンサーにおける(Kl−に2)の値より大きければ
センサー1aに対応するフォーカスモードを選択したと
判断する。同様にセンサー1bにおける(KI K2
)の値が最大なら測距点・測光点をセンサー1cにおけ
る(KI K2)の値が最大なら露出制御モードを選
択したと判断する。この縦方向の視線検出に対しても当
然カメラの場合には検出系と眼球の相対的位置の変化が
生じる。よって回転量と変位量を正確に把握しなければ
正確な視線の方向を求めることができない。しかし、こ
の場合は3つの列の間隔が十分に離れているので正確な
視線の方向がわからなくてもおおまかな視線の方向がわ
かれば十分である。そのためには3つのセンサー上での
虹彩の幅、つまり(KI K2)を比較し、どのセン
サー上で最大になっているのかを知ればよい。Let us consider the case where the display in the finder is as shown in FIG. 3 mentioned above. The photographer looks at the center row to select the AF point/light metering point, the top row to select the exposure control mode, and the bottom row to select the focus mode. Determination of which row the user is gazing at is performed by determining which sensor has the widest iris image formed on the sensors la to IC. That is, if the value (2 for Kl-) in the sensor 1a is larger than the value (2 for Kl-) in the other sensors, it is determined that the focus mode corresponding to the sensor 1a has been selected. Similarly, (KI K2
) If the value of (KI K2) at the sensor 1c is the maximum, it is determined that the exposure control mode has been selected. Naturally, in the case of a camera, the relative position of the detection system and the eyeball also changes when detecting the line of sight in the vertical direction. Therefore, the direction of the line of sight cannot be determined accurately unless the amount of rotation and displacement are accurately grasped. However, in this case, the intervals between the three rows are sufficiently far apart, so even if the exact direction of the line of sight is not known, it is sufficient to know the approximate direction of the line of sight. To do this, all you have to do is compare the widths of the iris on the three sensors, that is, (KI K2), and find out which sensor has the maximum width.
そして撮影者がどの列をにらんでいるのがわかったら、
その中でどれを選択したのかを次に判別する。これは、
どのセンサー上で虹彩の幅が最大になっているかを比較
する際に求めたに、、に2を用いて行う。すなわち、撮
影者かにらんでいる列に対応するセンサー上でのに1+
K2と(2)式を用いて回転角θ、変位量Sを算出し
、正確な視線の方向を求める。この視線の方向より撮影
者の意図したものを知ることができる。(2)式の計算
はカメラ内のマイクロコンピュータ20を用い°れば可
能であることは言うまでもない。And once you know which row the photographer is staring at,
Next, determine which one you have selected. this is,
When comparing which sensor has the maximum width of the iris, use 2 for . In other words, 1+ on the sensor corresponding to the row that the photographer is looking at.
The rotation angle θ and the displacement amount S are calculated using K2 and equation (2), and the accurate direction of the line of sight is determined. It is possible to know what the photographer intended from the direction of this line of sight. It goes without saying that calculation of equation (2) can be performed using the microcomputer 20 inside the camera.
この様にして縦方向の視線の向きをおおまかに、横方向
の視線の向きを正確に求めることにより、第3図に示す
ファインダー表示の中のどこに撮影者の視線が向いてい
るのかを知ることができる。In this way, by roughly determining the direction of the vertical line of sight and accurately determining the direction of the horizontal line of sight, it is possible to know where the photographer's line of sight is directed in the viewfinder display shown in Figure 3. Can be done.
なお、虹彩輪郭のコントラストを高め検出の精度をあげ
るために実際には第4図に示すように光源7a、 7b
で虹彩輪郭を照明する。この光源は赤外発光素子である
ことが望ましい。なぜならば、人間の視感度内の光を投
光することは、撮影者のファインダーの観察をしづら(
するからである。また光源に赤外発光素子を用い、18
のミラーにダイクロイックミラーを用いることで視線検
出系ファインダー系双方の光量ロスを防ぐことができる
。Note that in order to increase the contrast of the iris contour and increase the detection accuracy, light sources 7a and 7b are actually used as shown in FIG.
to illuminate the iris contour. This light source is preferably an infrared light emitting element. This is because projecting light within the human visibility range makes it difficult for the photographer to observe the viewfinder (
Because it does. In addition, an infrared light emitting element is used as a light source, and 18
By using a dichroic mirror for the mirror, it is possible to prevent light loss in both the line-of-sight detection system and finder system.
先の実施例においては、撮影者が選択する視野列が縦方
向に十分能れていたので縦方向の視線検出はおおまかで
よかったが、第5図に示すように測距・測光点が多数存
在していたり、全画面中の任意の点で測距・測光を行う
ことを想定した場合は、縦方向の視線も正確に検出しな
ければならない。この様な場合の実施例を以下に示す。In the previous example, the field of view line selected by the photographer was well-defined in the vertical direction, so the line of sight detection in the vertical direction was only rough, but as shown in Figure 5, there were many distance measurement and photometry points. If it is assumed that distance measurement and photometry are to be performed at any point on the entire screen, the line of sight in the vertical direction must also be accurately detected. An example of such a case is shown below.
縦方向の視線を正確に検出するためには、縦方向での虹
彩輪郭のセンサー上での座標を2つ知る必要がある。第
6図A、A’ が検出できれば精度の点などで最も有
利であるが、ここは瞼に隠れていて検出ができない、そ
こでB、 B’ 点を検出することとする。なおCは横
方向の視線を検出する際の検出点である。この場合は第
7図に示すようなレイアウトになる。1はエリアセンサ
ーである。エリアセンサーの出力を信号処理し、虹彩の
幅が最大になる横方向のラインを抽出し、このライン上
の虹彩輪郭の座標K Hl、 K H2を求め、(2
)式を用いて横方向の回転角θHとシフト量SHを求め
る。In order to accurately detect the line of sight in the vertical direction, it is necessary to know two coordinates of the iris contour on the sensor in the vertical direction. It would be most advantageous in terms of accuracy if points A and A' in FIG. 6 could be detected, but since these points are hidden by the eyelids and cannot be detected, we will instead detect points B and B'. Note that C is a detection point when detecting the line of sight in the horizontal direction. In this case, the layout will be as shown in FIG. 1 is an area sensor. Signal processing the output of the area sensor, extract the horizontal line where the width of the iris is maximum, find the coordinates K Hl, K H2 of the iris contour on this line, and calculate (2
) is used to find the lateral rotation angle θH and shift amount SH.
次にCの座標(K H2)よりB、 B’ に相当する
縦方向のラインを抽出し、そのライン上で虹彩輪郭の座
標Kv1.に■2を求め、(2)式を用いて縦方向の回
転角θVとシフト量Svを求める。Next, a vertical line corresponding to B and B' is extracted from the coordinates of C (K H2), and on that line, the coordinates of the iris contour Kv1. 2 is obtained, and the vertical rotation angle θV and shift amount Sv are obtained using equation (2).
この様にして縦方向・横方向の変位量、回転量を求めこ
れを用いて正確な視線の方向を求めればファインダー内
のどこを撮影者が注視しているのかを正確に知ることが
できる。In this way, by determining the amount of displacement and rotation in the vertical and horizontal directions and using these to determine the exact direction of the line of sight, it is possible to accurately determine where in the viewfinder the photographer is gazing.
以上説明してきたように本発明においては、虹彩輪郭の
画像をイメージセンサ−に結像させ、その結像位置の座
標を用いて視線の回転角と変位量を求めているので、カ
メラの様に視線検出系と眼球の相対的位置が変位する場
合においても正確な視線の方向を検出することが可能と
なった。As explained above, in the present invention, an image of the iris contour is formed on an image sensor, and the coordinates of the imaged position are used to determine the rotation angle and displacement of the line of sight. It is now possible to accurately detect the direction of the line of sight even when the relative position of the line of sight detection system and the eyeball is displaced.
第1図は本発明の原理図、第2図は第一実施例のレイア
ウト図、第3図、第5図はファインダー内表示の一例を
示す図、第4図は照明系の斜視図、第6図は虹彩輪郭の
測定点を示す図、第7図は第二実施例のレイアウト図、
第8図は従来例の説明図である。
1はイメージセンサ−12は結像レンズ、3は眼球、1
8はハーフミラ−もしくはダイクロイックミラー、17
はアイピースレンズ、16はペンタプリズム、7a、7
bは照明用光源である。
CM
第5図
第6図
<a>
<b>
第7図
第8図
(Aン
水平方向出力
!亘方同出力Figure 1 is a diagram of the principle of the present invention, Figure 2 is a layout diagram of the first embodiment, Figures 3 and 5 are diagrams showing examples of displays in the finder, Figure 4 is a perspective view of the illumination system, Figure 6 is a diagram showing the measurement points of the iris contour, Figure 7 is a layout diagram of the second embodiment,
FIG. 8 is an explanatory diagram of a conventional example. 1 is an image sensor, 12 is an imaging lens, 3 is an eyeball, 1
8 is a half mirror or dichroic mirror, 17
is an eyepiece lens, 16 is a pentaprism, 7a, 7
b is a light source for illumination. CM Fig. 5 Fig. 6 <a><b> Fig. 7 Fig. 8 (A horizontal direction output! Cross direction same output
Claims (5)
像手段の出力信号より被検眼の強膜と虹彩の境界の所定
複数箇所について撮像手段上での座標を求め、この座標
を使用して視線の回転角度及び本装置と被検眼との相対
変位量を演算し、更にこれら演算結果より被検眼の視線
方向を求める演算手段を備えたことを特徴とする視線検
出装置。(1) An imaging means for imaging the anterior segment of the eye to be examined, and coordinates on the imaging means for a plurality of predetermined points at the boundary between the sclera and iris of the eye to be examined from the output signal of the imaging means, and these coordinates are 1. A visual line detection device, comprising a calculation means for calculating the rotation angle of the visual line and the amount of relative displacement between the device and the eye to be examined, and further determining the direction of the visual line of the eye to be examined from the results of these calculations.
の範囲第1項記載の視線検出装置。(2) The line of sight detection device according to claim 1, further comprising illumination means for illuminating the eye to be examined.
イメージセンサを含む特許請求の範囲第1項記載の視線
検出装置。(3) The imaging means is a line that horizontally images the eye to be examined.
The line of sight detection device according to claim 1, which includes an image sensor.
る特許請求の範囲第1項記載の視線検出装置。(4) The line of sight detection device according to claim 1, wherein three line image sensors are arranged in parallel.
求の範囲第1項記載の視線検出装置。(5) The line of sight detection device according to claim 1, wherein the device is attached to a camera body.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63231934A JP2925147B2 (en) | 1988-09-16 | 1988-09-16 | Eye gaze detection device and optical equipment |
US08/448,871 US6091899A (en) | 1988-09-16 | 1995-05-24 | Apparatus for detecting the direction of visual axis and information selecting apparatus utilizing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63231934A JP2925147B2 (en) | 1988-09-16 | 1988-09-16 | Eye gaze detection device and optical equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0280026A true JPH0280026A (en) | 1990-03-20 |
JP2925147B2 JP2925147B2 (en) | 1999-07-28 |
Family
ID=16931355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63231934A Expired - Fee Related JP2925147B2 (en) | 1988-09-16 | 1988-09-16 | Eye gaze detection device and optical equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2925147B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111527374A (en) * | 2018-01-05 | 2020-08-11 | 三菱电机株式会社 | Sight direction correction device, sight direction correction method, and sight direction correction program |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61172552A (en) * | 1985-01-28 | 1986-08-04 | 株式会社トプコン | Sight automatic following apparatus |
JPS61265523A (en) * | 1985-05-20 | 1986-11-25 | Agency Of Ind Science & Technol | Method for detecting posture angle by pattern |
JPS6263805A (en) * | 1985-09-13 | 1987-03-20 | Agency Of Ind Science & Technol | Detecting method for three-dimensional attitude angle by mark pattern |
JPS6394232A (en) * | 1986-10-08 | 1988-04-25 | Canon Inc | Control device for camera |
-
1988
- 1988-09-16 JP JP63231934A patent/JP2925147B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61172552A (en) * | 1985-01-28 | 1986-08-04 | 株式会社トプコン | Sight automatic following apparatus |
JPS61265523A (en) * | 1985-05-20 | 1986-11-25 | Agency Of Ind Science & Technol | Method for detecting posture angle by pattern |
JPS6263805A (en) * | 1985-09-13 | 1987-03-20 | Agency Of Ind Science & Technol | Detecting method for three-dimensional attitude angle by mark pattern |
JPS6394232A (en) * | 1986-10-08 | 1988-04-25 | Canon Inc | Control device for camera |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111527374A (en) * | 2018-01-05 | 2020-08-11 | 三菱电机株式会社 | Sight direction correction device, sight direction correction method, and sight direction correction program |
CN111527374B (en) * | 2018-01-05 | 2021-10-22 | 三菱电机株式会社 | Sight direction correction device, sight direction correction method, and sight direction correction program |
Also Published As
Publication number | Publication date |
---|---|
JP2925147B2 (en) | 1999-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5486892A (en) | Camera with visual axis detecting device | |
US5455654A (en) | Multi-area focus detection apparatus for detecting focus either automatically or intentionally | |
JPH0265836A (en) | Visual axis detector and camera equipped therewith | |
JP2004234002A (en) | Automatic focusing in digital camera using ocular focal measurement value | |
JP2803222B2 (en) | Eye gaze detection device | |
JPH06304142A (en) | Device for detecting line of sight | |
JP2920940B2 (en) | Equipment with gaze detection means | |
JP2749818B2 (en) | Eye gaze detection device | |
US5402199A (en) | Visual axis detecting apparatus | |
JP2872292B2 (en) | Equipment having line-of-sight detection means | |
JPH02264632A (en) | Sight line detector | |
JP2861349B2 (en) | Optical device having line-of-sight detecting means | |
JP3109870B2 (en) | Video camera | |
JPH0280026A (en) | Detecting device for line of sight | |
JP3256294B2 (en) | Eye gaze detection apparatus and eye gaze detection method | |
JP2733260B2 (en) | Detection device and optical equipment | |
JPH02206425A (en) | Glance detection apparatus | |
JP3176147B2 (en) | Eye gaze detection device | |
JP3219491B2 (en) | Eye gaze detection device | |
JP3211427B2 (en) | Eye gaze detection device | |
JP3391892B2 (en) | Eye gaze detecting device, optical device, and eye gaze detecting method | |
JP2794752B2 (en) | Optical device having visual axis detecting means | |
JPH04138431A (en) | Camera having detection means for line of sight | |
JP2941847B2 (en) | Eye gaze detection device | |
JP2744407B2 (en) | Eye gaze detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |