JPH03108645A - Composition tomographic analyzer - Google Patents

Composition tomographic analyzer

Info

Publication number
JPH03108645A
JPH03108645A JP1246913A JP24691389A JPH03108645A JP H03108645 A JPH03108645 A JP H03108645A JP 1246913 A JP1246913 A JP 1246913A JP 24691389 A JP24691389 A JP 24691389A JP H03108645 A JPH03108645 A JP H03108645A
Authority
JP
Japan
Prior art keywords
radiation
specimen
composition
ray
detection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1246913A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
高志 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1246913A priority Critical patent/JPH03108645A/en
Publication of JPH03108645A publication Critical patent/JPH03108645A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To nondestructively analyze inside an object for every composition by detecting intensity of characteristic radiation radiated according to composition of a specimen when a high energy beam passes through the object (specimen) to be analyzed. CONSTITUTION:An X-ray beam, for example, which has been emitted from a radiation source 1 is incident from an inlet of a radiation detecting element 3 to pass through a specimen 2, when a characteristic X-ray peculiar to a composition element of the specimen is generated. This characteristic X-ray is detected by the detecting element 2 formed in a circle around the specimen 2, and the element 3 generates a pulse signal having height in proportion to the energy of the X-ray at a frequency in proportion to the intensity of the X-ray and transmits the signal via a cable 8 to an arithmetic unit 4. A driver 6 drives the specimen in X, Y, Z and theta directions based on an instruction from the unit 4 while the unit 4 having a pulse-height analyzer and Fourier-transform or back-projection and memory functions can calculate tomographic composition of the specimen 2 based on the signal from the element 3 and display the results on a CRT5.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は1分析対象の内部の組成分布を元素毎に表示す
る組成断層分析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a composition tomography analysis device that displays the internal composition distribution of one analysis object for each element.

〈従来の技術〉 従来1分析対象の内部を測定する装置としてはX線CT
装置が知られている。
<Conventional technology> Conventionally, X-ray CT has been used as a device for measuring the inside of an analysis target.
The device is known.

〈発明が解決しようとする課題〉 しかしながら、従来のCT装置においては分析対象の密
度分布を測定する事は可能であるが0組成の分布までも
分析する事は出来ないという問題かある。また1例えば
セラミックスと金属の組成をその境目で相互に入込ませ
傾斜組成としたものが設計どおりの傾斜となっているが
を検査するような場合、その部分を切断の上表面分析装
置を用いなければならないという問題があった。
<Problems to be Solved by the Invention> However, although it is possible to measure the density distribution of an object to be analyzed using conventional CT apparatuses, there is a problem in that it is not possible to analyze even the distribution of zero composition. In addition, 1. For example, when inspecting a product whose composition is graded by intermixing the composition of ceramic and metal at the boundary, which has a slope as designed, use an upper surface analysis device that cuts that part. There was a problem that it had to be done.

本発明は上記従来の問題点に鑑みて成されたもので1分
析対象の内部を組成毎に、がっ、非破壊で分析する装置
を実現する事を目的とするものである。
The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to realize an apparatus that non-destructively analyzes the inside of an object to be analyzed for each composition.

く課題を解決するための装置〉 上記従来技術の問題を解決する為の本発明の構成は、高
エネルギーの電離放射線を発生する少なくとも一つの線
源と1分析対象と、少なくとも前起電離放射線が入出射
する部分を除いて前記分析対象を囲んで配置された複数
の放射線検出素子と。
Apparatus for Solving the Problems> The configuration of the present invention for solving the problems of the prior art described above includes at least one radiation source that generates high-energy ionizing radiation, one analysis target, and at least pre-ionizing radiation. A plurality of radiation detection elements arranged surrounding the analysis target except for the input and output portions.

前記分析対象を前記放射線検出素子の中で回転させ、か
つ、前記電離放射線の進行方向に対してX。
The object to be analyzed is rotated within the radiation detection element, and X relative to the traveling direction of the ionizing radiation.

Y、Z方向に移動させる駆動装置と、前記電離放射線が
前記分析対象を透過するに際して放射する特性放射線を
吸収して発生する前記放射線検出素子からの信号に基づ
いて前記分析対象の断層組成を演算し、その結果を表示
する演算表示装置を備えた事を特徴とするものである。
Calculate the tomographic composition of the analysis target based on a drive device that moves in the Y and Z directions and a signal from the radiation detection element that is generated by absorbing characteristic radiation emitted when the ionizing radiation passes through the analysis target. The present invention is characterized in that it is equipped with an arithmetic display device that displays the results.

く作用〉 高エネルギーのX線、電子線、陽電子線、中性子線が分
析対象(以下、試料という)を透過すると試料からその
組成に応じた特性放射線が放射する。その放射線の強度
を複数の放射線検出素子で検出し、その信号を演算装置
に送出して各種の演算を行い、試料の断層組成をCRT
上に表示する。
Effect> When high-energy X-rays, electron beams, positron beams, and neutron beams pass through an object to be analyzed (hereinafter referred to as a sample), the sample emits characteristic radiation according to its composition. The intensity of the radiation is detected by multiple radiation detection elements, and the signal is sent to a calculation device to perform various calculations, and the cross-sectional composition of the sample is determined by the CRT.
Display above.

〈実施例〉 以下1図面に従い本発明を説明する。第1図は本発明の
組成断J−分析装置の一実施例を示す要部構成図である
<Example> The present invention will be described below with reference to one drawing. FIG. 1 is a diagram showing the configuration of essential parts of an embodiment of the compositional J-analyzer of the present invention.

図において、1は線源、2は試料、3は複数の放射線検
出素子である。この放射線検出素子3は線源1か入射す
る位置と出射する位置を除いて測定対象2の周りに環状
に形成されており、それぞれの素子か検出した信号はゲ
ーブル9を介して演算表示装置7に入力される。4は波
高分析、フリエ変換1画像再生装置を含む演算装置、5
はCRTである。6は駆動装置であり、その一端に試料
を支持して放射線検出素子3の略中央に位置させるとと
もに1演算装置4からの司令に基づいて。
In the figure, 1 is a radiation source, 2 is a sample, and 3 is a plurality of radiation detection elements. This radiation detection element 3 is formed in an annular shape around the measurement object 2 except for the input position and the output position of the radiation source 1, and the signals detected by each element are transmitted via a gable 9 to an arithmetic display device 7. is input. 4 is a calculation device including wave height analysis and Fourier transform 1 image reproduction device; 5
is a CRT. Reference numeral 6 denotes a driving device, which supports the sample at one end thereof and positions it approximately at the center of the radiation detection element 3, based on commands from the arithmetic device 4.

試料をx、y、z、θ方向に駆動する。The sample is driven in the x, y, z, and θ directions.

ここで、線源1としては例えばX線源の場合はフォトン
ファクトリ−(筑波学園都市の光エネルギー研究所が所
有している)や、シンクロトロン放射(SOR> 、線
形加速器を用いたX線源(三菱電機製ライナック)や、
電子線源、陽子線源としてはサイクロトロン、線形加速
器を用い、中性子としては原子炉を用いる。
Here, as the radiation source 1, for example, in the case of an X-ray source, there is a photon factory (owned by the Light Energy Research Institute in Tsukuba Academy City), a synchrotron radiation (SOR), an X-ray source using a linear accelerator, etc. (Mitsubishi Electric linac),
A cyclotron and a linear accelerator are used as the electron beam source and the proton beam source, and a nuclear reactor is used as the neutron source.

また、放射線検出素子としては放射線損傷に強い高比抵
抗のCd’T”e単結晶を用いた方が望ましく、その数
は一つの素子の面積か小さく数が多いほど高い分解能と
なる。
Further, as the radiation detection element, it is preferable to use a Cd'T"e single crystal which is resistant to radiation damage and has a high specific resistance. The smaller the area of one element, the larger the number, the higher the resolution.

上記構成において、線源を出射した例えばX線ビームは
放射線検出素子の入射口から入射して試料を透過して出
射口から出射するが、その際試料の構成元素特有の特性
X線が発生する。この特性X線は周りに設けられた検出
素子によって捕えられ、検出素子はX線のエネルギーに
比例した高さのパルスをX線の強度に比例した頻度で発
生する。
In the above configuration, for example, the X-ray beam emitted from the radiation source enters the radiation detection element from the entrance, passes through the sample, and exits from the exit, but at this time, characteristic X-rays unique to the constituent elements of the sample are generated. . This characteristic X-ray is captured by a detection element provided around the X-ray, and the detection element generates a pulse having a height proportional to the energy of the X-ray at a frequency proportional to the intensity of the X-ray.

この信号はゲーブル8を介して演算装置4に伝送される
。演算装置4は波高分析器、フーリエ変換またはバック
グロジェクション、メモリ機能等を含むものであり、こ
こで処理した信号をCRT 5により表示する。波高分
析器はパルスの高さを検出するとともにその信号をツー
 リエ変換またはバック10ジエクシヨンに送出する。
This signal is transmitted to the arithmetic unit 4 via the cable 8. The arithmetic unit 4 includes a pulse height analyzer, a Fourier transform or back projection, a memory function, etc., and the signal processed here is displayed on a CRT 5. The pulse height analyzer detects the height of the pulse and sends the signal to the Tourier transform or back-10 transformation.

これらの装置により波高に応じたX線の波長が検知され
、パルスのカウント数からX線の強度を知ることが出来
る。
These devices detect the wavelength of X-rays according to the wave height, and the intensity of the X-rays can be determined from the number of pulse counts.

駆動装置6は試料をビームに対してx、y、z方向に移
動させ、または回転させるものであり。
The drive device 6 moves or rotates the sample in the x, y, and z directions with respect to the beam.

試料は例えば第2図(a)〜(e)に示すような動作を
行う。この図は試料の断面を上方から見た図を示してい
る。即ち、(a)図イは試料の左端部をビームか透過し
た状態であり、検出素子はこのときに発生した特性X線
の強度分布を検出し。
The sample performs operations as shown in FIGS. 2(a) to 2(e), for example. This figure shows a cross section of the sample viewed from above. That is, Fig. 1A shows a state in which the beam passes through the left end of the sample, and the detection element detects the intensity distribution of the characteristic X-rays generated at this time.

演算装置はそのときの各検出素子からの信号値を記憶す
る0次に(a)図口に示すように駆動装置6を回転させ
試料を例えば25°傾けてビームご透過させ、そのとき
のそれぞれの検出素子が検出した特性X線の信号値を記
憶し、さらに(a)図ハに示すように試料を45゛傾け
た状態で同様に検出を行う6次に(b)イではビームの
位置を(a)図イよりもわずかに右側にずらしてビーム
を透過させ、以下同様に(e)ハまでの信号を記憶し、
これらの値を総合して試料の断面にどのような成分がど
のように分布しているかをCRTG上に画像として表示
する。第1図のCRTの画面は上述の装置により検出し
た試料断面の元素の分布状態を示す概念図である。
The arithmetic unit stores the signal values from each detection element at that time.(a) As shown in the figure opening, the drive unit 6 is rotated, the sample is tilted by, for example, 25 degrees, and the beam passes through the sample. The signal value of the characteristic X-ray detected by the detection element is memorized, and the same detection is performed with the sample tilted by 45° as shown in (a) Figure C.6 Next, in (b) A, the beam position (a) Shift the beam slightly to the right of figure A to transmit the beam, and then (e) store the signals up to C in the same manner.
These values are combined to display what kind of components are distributed in the cross section of the sample as an image on the CRTG. The CRT screen in FIG. 1 is a conceptual diagram showing the distribution of elements in a cross section of a sample detected by the above-mentioned apparatus.

第3図(a)〜(c)は検出素子の他の実施例を示すも
ので、符号は第1と同一であり、(a)は検出素子の断
面図、(b)は(a>図のZ親図(C)は<b>図の側
面図で、この例では検出素子は試料2の全体を包むよう
に囲っている。この様に検出素子を構成すれば第1図の
検出素子の配置状態に比較してより詳しく表示する事か
出来る。
3(a) to 3(c) show other embodiments of the detection element, the symbols are the same as those in the first embodiment, (a) is a sectional view of the detection element, and (b) is a (a> figure). The Z parent diagram (C) is a side view of Figure <b>, and in this example, the detection element surrounds the entire sample 2. If the detection element is configured in this way, it will be the same as the detection element in Figure 1. It is possible to display more details compared to the placement status.

第4図は検出素子を第3図と同様の球状とし。In FIG. 4, the detection element is spherical as in FIG. 3.

その検出素子に合計6個の線源入出射孔を設け。A total of six radiation source entrance and exit holes are provided in the detection element.

試料の一点Pに対して3方自から線源を照射した状態を
示している。このように構成すればビームの交点では1
つのビームが原子を励起し、その原子を他のビームでさ
らに励起する事が出来るので感度や分解能を向上させる
事が出来る。
This shows a state in which a point P on the sample is irradiated with radiation sources from three directions. With this configuration, 1 at the intersection of the beams
One beam excites an atom, which can then be further excited by another beam, improving sensitivity and resolution.

〈発明の効果〉 以上実施例とともに具体的に説明した様に本発明によれ
ば1元素分布の断層像を得ることが出来るので1例えば
傾斜機能材料のような元素の分布状態を見るための非破
壊検査装置を実現する事が出来る。なお1本実施例にお
いては検出素子をリング状および球状として図示したが
、検出素子の形状は半球や筒状のものであってもよ〈実
施例に限定されるものではない。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, it is possible to obtain a tomographic image of the distribution of one element. A destructive inspection device can be realized. In this embodiment, the detection element is illustrated as ring-shaped and spherical, but the shape of the detection element may be hemispherical or cylindrical (not limited to the embodiment).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す組成断層分析装置の構
成説明図、第2図はビームに試料を透過させる場合の動
作関係を示す図、第3図は検出素子の他の形状を示す図
、第4図は試料に3方向から異なるビームを照射した状
態を示す概念図である。 1・・・線源、2・・・分析対象(試料)、3・・・放
射線検出素子、4・・・演算装置、5・・・CR’l’
、6・・・駆動装置、7・・・演算表示装置。
FIG. 1 is an explanatory diagram of the configuration of a compositional tomography analyzer showing an embodiment of the present invention, FIG. 2 is a diagram showing the operational relationship when a beam passes through a sample, and FIG. 3 is a diagram showing other shapes of the detection element. The figure shown in FIG. 4 is a conceptual diagram showing a state in which a sample is irradiated with different beams from three directions. DESCRIPTION OF SYMBOLS 1... Radiation source, 2... Analysis object (sample), 3... Radiation detection element, 4... Arithmetic device, 5... CR'l'
, 6... Drive device, 7... Arithmetic display device.

Claims (1)

【特許請求の範囲】[Claims]  高エネルギーの電離放射線を発生する少なくとも一つ
の線源と、分析対象と、少なくとも前記電離放射線が入
出射する部分を除いて前記分析対象を囲んで配置された
複数の放射線検出素子と、前記分析対象を前記放射線検
出素子の中で回転させ、かつ、前記電離放射線の進行方
向に対してX、Y、Z方向に移動させる駆動装置と、前
記電離放射線が前記分析対象を透過するに際して放射す
る特性放射線を吸収して発生する前記放射線検出素子か
らの信号に基づいて前記分析対象の断層組成を演算し、
その結果を表示する演算表示装置を備えた事を特徴とす
る組成断層分析装置。
at least one radiation source that generates high-energy ionizing radiation, an analysis target, a plurality of radiation detection elements arranged surrounding the analysis target except for at least a portion where the ionizing radiation enters and exits, and the analysis target a drive device that rotates the radiation detecting element in the radiation detection element and moves it in the X, Y, and Z directions with respect to the traveling direction of the ionizing radiation; and a characteristic radiation that is emitted when the ionizing radiation passes through the analysis target. calculating the tomographic composition of the analysis target based on the signal from the radiation detection element generated by absorbing the radiation;
A compositional tomography analysis device characterized by being equipped with a calculation display device that displays the results.
JP1246913A 1989-09-22 1989-09-22 Composition tomographic analyzer Pending JPH03108645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1246913A JPH03108645A (en) 1989-09-22 1989-09-22 Composition tomographic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1246913A JPH03108645A (en) 1989-09-22 1989-09-22 Composition tomographic analyzer

Publications (1)

Publication Number Publication Date
JPH03108645A true JPH03108645A (en) 1991-05-08

Family

ID=17155615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1246913A Pending JPH03108645A (en) 1989-09-22 1989-09-22 Composition tomographic analyzer

Country Status (1)

Country Link
JP (1) JPH03108645A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192889A1 (en) * 2013-05-29 2014-12-04 地方独立行政法人東京都立産業技術研究センター Device and method for image reconstruction at different x-ray energies, and device and method for x-ray three-dimensional measurement
US10520453B2 (en) 2015-06-05 2019-12-31 Tokyo Metropolitan Industrial Technology Research Institute Image acquisition device, image acquisition method, and image correction program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192889A1 (en) * 2013-05-29 2014-12-04 地方独立行政法人東京都立産業技術研究センター Device and method for image reconstruction at different x-ray energies, and device and method for x-ray three-dimensional measurement
JPWO2014192889A1 (en) * 2013-05-29 2017-02-23 地方独立行政法人東京都立産業技術研究センター Image reconstruction apparatus and method according to X-ray energy, and X-ray three-dimensional measurement apparatus and method
US9928619B2 (en) 2013-05-29 2018-03-27 Tokyo Metropolitan Industrial Technology Research Institute Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement
US10521936B2 (en) 2013-05-29 2019-12-31 Tokyo Metropolitan Industrial Technology Research Institute Device and method for image reconstruction at different X-ray energies, and device and method for X-ray three-dimensional measurement
US10520453B2 (en) 2015-06-05 2019-12-31 Tokyo Metropolitan Industrial Technology Research Institute Image acquisition device, image acquisition method, and image correction program

Similar Documents

Publication Publication Date Title
JP4614001B2 (en) Three-dimensional quantitative method using transmitted X-ray
RU2475851C2 (en) Systems and methods of improving directed inspection of people
RU2444723C2 (en) Apparatus and method of inspecting objects
JP3782142B2 (en) Apparatus for measuring pulse transmission spectrum of elastically scattered X-ray photons
US4229651A (en) Radiation scanning method and apparatus
JP2018508787A (en) Handheld portable backscatter inspection system
US3936638A (en) Radiology
EP2221847A2 (en) Compact multi-focus x-ray source, x-ray diffraction imaging system, and method for fabricating compact multi-focus x-ray source
JP5957099B2 (en) Dual isotope notch observer for isotope identification, analysis and imaging with a single energy gamma ray source
US20090060119A1 (en) Stationary inspection system for three-dimensional imaging employing electronic modulation of spectral data from compton-scattered gammas
US7190762B2 (en) Scanning line detector for two-dimensional x-ray diffractometer
JP2003121392A (en) Radiation detector
US4727561A (en) Measuring apparatus and method employing hard X-rays
US20190025231A1 (en) A method of detection of defects in materials with internal directional structure and a device for performance of the method
JPH03108645A (en) Composition tomographic analyzer
JP3902048B2 (en) Radiation inspection equipment
JP2002006052A (en) Compound dose distribution measuring method
US5045695A (en) Transition radiation interference spectrometer
JP2004108912A (en) Detecting apparatus using neutron and its method
JP2736189B2 (en) Radioactive waste contamination / activation radioactive identification method with openings
US9151852B1 (en) Material identification based upon energy-dependent attenuation of neutrons
JP5030056B2 (en) Nondestructive inspection method and apparatus
JP2727691B2 (en) X-ray absorption fine structure analyzer
JP4022385B2 (en) Radiation detector
JP2003083916A (en) X-ray imaging apparatus