JPH03108322A - Vapor growth equipment - Google Patents

Vapor growth equipment

Info

Publication number
JPH03108322A
JPH03108322A JP24593889A JP24593889A JPH03108322A JP H03108322 A JPH03108322 A JP H03108322A JP 24593889 A JP24593889 A JP 24593889A JP 24593889 A JP24593889 A JP 24593889A JP H03108322 A JPH03108322 A JP H03108322A
Authority
JP
Japan
Prior art keywords
gas
wafer
oxide film
etching gas
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24593889A
Other languages
Japanese (ja)
Inventor
Yoshio Hayashide
吉生 林出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24593889A priority Critical patent/JPH03108322A/en
Publication of JPH03108322A publication Critical patent/JPH03108322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the damage of vacuum exhaust system caused by etching gas by a method wherein, in order to chemically eliminate a silicon oxide film, a means which introduces and discharges etching gas is installed independently of the vacuum exhaust equipment of a vessel. CONSTITUTION:A wafer 7 is inserted into a reaction pipe 8; the inside of a pressure vessel 2 is vacuumized with a vacuum exhaust equipment 5; inert gas is fed from a material gas introducing pipe 4; when the pressure returns to about 1atm, gas like hydrofluoric acid gas is fed from an etching gas introducing pipe 21, and a silicon oxide film on the wafer surface is eliminated. At this time, a vacuum exhaust valve 16 is kept shut and an etching exhaust valve 23 is opend; thus the etching gas is discharged and corrosion of the equipment 5 is prevented. After that, the etching gas is stopped and pushed out by inert gas; a valve 23 is closed and material gas is fed fom an introducing pipe 4; thereby a film can be formed on the wafer 6 surface, in the same way as the case of a usual low pressure vapor growth equipment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体ウェハの製造に用いられる減圧気相成
長装置に関し、特にその製造工程中、ウェハ表面に生じ
る自然酸化膜の低減に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a reduced pressure vapor phase epitaxy apparatus used for manufacturing semiconductor wafers, and particularly relates to the reduction of natural oxide films formed on the wafer surface during the manufacturing process. .

〔従来の技術〕[Conventional technology]

第2図は従来の減圧気相成長装置を示す側面断面図であ
り、図において、7は半導体ウェハであり、通常石英ガ
ラス又は炭化硅素からなるボート6に載せられ、同様の
材質からなる反応管8の中に置かれ、さらに該反応管8
は同様の材質からなる圧力容器2の中に置かれている。
FIG. 2 is a side sectional view showing a conventional reduced pressure vapor phase growth apparatus. In the figure, 7 is a semiconductor wafer, which is placed on a boat 6 usually made of quartz glass or silicon carbide, and a reaction tube made of the same material. 8, and further the reaction tube 8
is placed in a pressure vessel 2 made of the same material.

該圧力容器2の前後にはそれぞれ前部フランジ3.後部
フランジ13があり、そのいずれか一方には一本又は複
数の原料ガス供給管4が、他の一方には真空排気装置5
が排気配管15を介して接続されている。
A front flange 3 is provided at the front and rear of the pressure vessel 2, respectively. There is a rear flange 13, one or more raw material gas supply pipes 4 are connected to one side of the rear flange 13, and a vacuum exhaust device 5 is connected to the other side of the rear flange 13.
are connected via an exhaust pipe 15.

16は該排気管15の途中に設けられた排気バルブであ
る。上記圧力容器2の外側にはヒータ1が配置され、上
記反応管8内を加熱するようになっている。以下、この
形状の装置を横型減圧気相成長装置と呼ぶ、また上記ボ
ート6はボート保持具(図示せず)を用いて反応管8へ
出し入れされる。
16 is an exhaust valve provided in the middle of the exhaust pipe 15. A heater 1 is arranged outside the pressure vessel 2 to heat the inside of the reaction tube 8. Hereinafter, this shaped device will be referred to as a horizontal reduced pressure vapor phase growth device, and the boat 6 is moved in and out of the reaction tube 8 using a boat holder (not shown).

次に動作について説明する。Next, the operation will be explained.

ウェハ7は前部または後部のフランジ3.13から炉内
に挿入される。炉内に挿入されたウェハ7はその温度が
安定するまで窒素ガスなど不活性ガスを流しながら、減
圧状態で保持された後、原料ガスを前部または後部のフ
ランジ3,13に設けられた原料ガス導入管4から圧力
容器内に導入する。導入された原料ガスはウェハ7上に
そのガスの種類に応じて多結晶シリコン膜や窒化シリコ
ン膜などの膜を形成する。
The wafer 7 is inserted into the furnace through the front or rear flange 3.13. The wafer 7 inserted into the furnace is kept in a reduced pressure state while flowing an inert gas such as nitrogen gas until its temperature stabilizes, and then the raw material gas is transferred to the raw material provided on the front or rear flanges 3 and 13. The gas is introduced into the pressure vessel through the gas introduction pipe 4. The introduced raw material gas forms a film such as a polycrystalline silicon film or a silicon nitride film on the wafer 7 depending on the type of gas.

ところで、半導体装置のいくつかの製造工程においては
、空気中でシリコンウェハや多結晶シリコン膜表面に形
成される自然酸化膜が製品に悪影響を与えることがあり
、例えば、第3図に示す半導体装置の製造工程ではシリ
コン基板101の表面がシリコン酸化膜102で覆われ
、その開口部103上に多結晶シリコン膜104を第2
図に示すような気相成長装置を用いて形成することで、
シリコン基板101と多結晶シリコン膜104を電気的
に接続する。自然酸化膜がこの開口部1゜3のシリコン
基板上に形成されるとシリコン基板101と多結晶シリ
コン膜104の電気的な接続が取れなくなることがある
。このため、このような工程の前には沸化水素酸水溶液
などを用いてウェハ表面の自然酸化膜を除去するエツチ
ング工程が入る。
By the way, in some manufacturing processes of semiconductor devices, a natural oxide film formed on the surface of a silicon wafer or polycrystalline silicon film in the air may have an adverse effect on the product. For example, in the semiconductor device shown in FIG. In the manufacturing process, the surface of a silicon substrate 101 is covered with a silicon oxide film 102, and a second polycrystalline silicon film 104 is formed over the opening 103.
By forming using a vapor phase growth apparatus as shown in the figure,
Silicon substrate 101 and polycrystalline silicon film 104 are electrically connected. If a natural oxide film is formed on the silicon substrate in this opening 1.degree. 3, electrical connection between the silicon substrate 101 and the polycrystalline silicon film 104 may not be established. Therefore, before such a step, an etching step is performed to remove the natural oxide film on the wafer surface using an aqueous hydrofluoric acid solution or the like.

しかしながら、この自然酸化膜のエツチング工程からシ
リコンウェハを炉内に挿入するまでの間に開口部103
のシリコン基板は空気中で酸化され、lnm程度の薄い
自然酸化膜が形成されてしまう5.また、第2図に示す
ような気相成長装置の場合、半導体ウェハが炉内に挿入
する際にウェハが空気中で加熱されるため、さらに2〜
3nmの自然酸化膜がシリコン基板上に形成される。以
下、この酸化膜を巻き込み酸化膜と呼ぶ。
However, the opening 103 is formed between the etching process of the natural oxide film and the insertion of the silicon wafer into the furnace.
5. The silicon substrate is oxidized in the air, and a native oxide film as thin as 1 nm is formed. In addition, in the case of a vapor phase growth apparatus as shown in Fig. 2, since the semiconductor wafer is heated in the air when it is inserted into the furnace, an additional
A 3 nm native oxide film is formed on the silicon substrate. Hereinafter, this oxide film will be referred to as a rolled oxide film.

この巻き込み酸化については、第4図に示すように反応
管を縦方向に配置した縦型気相成長装置を用いることで
、酸化膜の膜厚をlnm程度に低減することができた。
Regarding this entrainment oxidation, by using a vertical vapor phase growth apparatus in which reaction tubes are arranged vertically as shown in FIG. 4, the thickness of the oxide film could be reduced to about 1 nm.

つまり縦型気相成長装置ではウェハ7が保温筒9の上に
置かれたボート6にセットされ、この保温筒9はボート
ローダ−10により昇降される。このとき反応管8内と
外気に対流が起こりにくいため、巻き込み酸化膜の発生
が抑えられるためである。
That is, in the vertical vapor phase growth apparatus, the wafer 7 is set in a boat 6 placed on a heat-insulating tube 9, and this heat-insulating tube 9 is raised and lowered by a boat loader 10. This is because at this time, convection between the inside of the reaction tube 8 and the outside air is difficult to occur, so that the generation of an entrained oxide film is suppressed.

しかしながら、半導体装置の高集積化に伴い、例えば第
3図に示す例では開口部103の面積が狭くなり、酸化
膜のエツチング後、常温の空気中で形成される自然酸化
膜がシリコン基板101と多結晶シリコン膜104の電
気的な接続を阻害するようになってきた。これは第4図
に示す装置を含め、従来の装置を用いて解決できない問
題点であった。
However, as semiconductor devices become more highly integrated, the area of the opening 103 becomes narrower, for example in the example shown in FIG. This has come to impede the electrical connection of the polycrystalline silicon film 104. This was a problem that could not be solved using conventional devices, including the device shown in FIG.

このような問題点を解決するために従来もエピタキシャ
ル成長装置などにおいては、ウェハを装置内に挿入した
後で、ウェハを900 ’C以上の高温に保ち、水素ガ
スを炉内に流すことによりシリコン基板表面の自然酸化
膜を化学的に除去していた。
In order to solve these problems, conventional epitaxial growth equipment has been used to grow silicon substrates by keeping the wafer at a high temperature of 900'C or higher and flowing hydrogen gas into the furnace after inserting the wafer into the equipment. The natural oxide film on the surface was chemically removed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の減圧気相成長装置は以上のように構成されていた
が、近年、半導体装置の高集積化に伴い、不純物の熱拡
散を避けるため、半導体装置の受ける熱処理温度が下が
る傾向にあり、集積度の高い製品においては900°C
以上の熱処理は許されない、従って、上述したような方
法を一般的な気相成長装置に応用することはできない。
Conventional low-pressure vapor phase growth equipment was configured as described above, but in recent years, with the increasing integration of semiconductor devices, the heat treatment temperature to which semiconductor devices are subjected has tended to decrease in order to avoid thermal diffusion of impurities. 900°C for high temperature products
The above heat treatment is not allowed, so the method described above cannot be applied to a general vapor phase growth apparatus.

例えば沸化水素酸ガスを用いると、低温でもシリコン酸
化膜が除去できることは良く知られているが、通常、こ
のようなガスは極めて腐食性が強く、第2図や第4図に
示すような気相成長装置にこの種のガスを流すと真空排
気装置5を腐食し、この寿命を短くするという問題点が
あった。
For example, it is well known that silicon oxide films can be removed even at low temperatures by using hydrofluoric acid gas, but normally such gases are extremely corrosive, and as shown in Figures 2 and 4. There is a problem in that when this type of gas is allowed to flow through the vapor phase growth apparatus, it corrodes the vacuum evacuation apparatus 5, shortening its lifespan.

この発明は上記のような問題点を解消するためになされ
たもので、シリコンウェハが気相成長装置に挿入された
後、外気と遮断し、ウェハ表面の自然酸化膜や巻き込み
酸化膜を化学的に、かつ低温で除去し、半導体装置の不
良率を低減し、より高集積化された半導体装置を得るこ
とを目的とする。
This invention was made to solve the above problems. After a silicon wafer is inserted into a vapor phase growth apparatus, it is isolated from the outside air and the natural oxide film and entrained oxide film on the wafer surface are chemically removed. The purpose of this invention is to reduce the defective rate of semiconductor devices by removing them quickly and at low temperatures, and to obtain more highly integrated semiconductor devices.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る気相成長装置は、シリコン酸化膜を化学
的に除去するためのガスを導入するための配管と、この
ガスを排気するための排気装置とを、膜形成のための原
料ガスを排気する装置とは別に備えたものである。
The vapor phase growth apparatus according to the present invention includes a pipe for introducing a gas for chemically removing a silicon oxide film, an exhaust device for exhausting this gas, and a source gas for film formation. It is provided separately from the exhaust device.

〔作用〕[Effect]

この発明においては、シリコン酸化膜を化学的に除去す
るためのガスを導入するための配管と、このガスを排気
するための排気装置とを、膜形成のための原料ガスを排
気する装置とは別に設け、ウェハが炉内に挿入された後
、炉内にシリコン酸化膜を化学的に除去することができ
るエツチングガスを炉内に導入し、このエツチングガス
によってシリコン基板又は多結晶シリコン股上のシリコ
ン酸化膜を除去し、その後、導入したガスを専用の排気
経路より排気する。
In this invention, a pipe for introducing gas for chemically removing a silicon oxide film and an exhaust device for exhausting this gas are used as a device for exhausting raw material gas for film formation. After the wafer is inserted into the furnace, an etching gas that can chemically remove the silicon oxide film is introduced into the furnace. After removing the oxide film, the introduced gas is exhausted from a dedicated exhaust path.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例による減圧気相成長装置の
側断面図であり、図において、第2図と同一符号は同一
部分を示し、21は酸化膜エツチングガス導入管、22
はエツチングガス排気管であり、エツチングガスに対し
て腐食されにくい合成樹脂等の材質を用いるものとする
。23はエツチングガス排気バルブである。
FIG. 1 is a side sectional view of a reduced pressure vapor phase growth apparatus according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 2 indicate the same parts, 21 is an oxide film etching gas introduction pipe, 22
is an etching gas exhaust pipe, and is made of a material such as synthetic resin that is not easily corroded by etching gas. 23 is an etching gas exhaust valve.

次に動作について説明する。Next, the operation will be explained.

反応管8内にウェハ7が挿入された後、反応管8内に入
った外気を排除するため、まず真空排気装置5により圧
力容器2の中を真空引きした上で、原料ガス導入管4か
ら不活性ガスを圧力容器内に導入する。
After the wafer 7 is inserted into the reaction tube 8, in order to remove the outside air that has entered the reaction tube 8, the inside of the pressure vessel 2 is first evacuated using the evacuation device 5, and then the raw material gas introduction tube 4 is An inert gas is introduced into the pressure vessel.

圧力容器内の圧力がほぼ1気圧に戻った時点でエツチン
グガス導入管21を通じて、例えば窒素など不活性ガス
で、体積比にして10%以下に希釈された沸化水素酸な
どのガスを反応管8内に導入することによってウェハ表
面のシリコン酸化膜を除去する。このとき、ウェハの温
度は膜形成を行うときの温度と同一である必要はない、
またエツチングガスの濃度やエツチング時間は、除去す
るべき酸化膜の膜厚やウェハの温度に依存して変えられ
るものである。
When the pressure inside the pressure vessel returns to approximately 1 atmosphere, a gas such as hydrofluoric acid diluted to 10% or less by volume with an inert gas such as nitrogen is introduced into the reaction tube through the etching gas introduction pipe 21. 8 to remove the silicon oxide film on the wafer surface. At this time, the temperature of the wafer does not need to be the same as the temperature when forming the film.
Further, the concentration of the etching gas and the etching time can be changed depending on the thickness of the oxide film to be removed and the temperature of the wafer.

これらのガスは、通常極めて腐食性が強いため、原料ガ
スを排気するための真空排気装置5を用いると、この排
気装置の寿命を著しく縮めることとなる。そこで、この
エツチングガスが流れている間は真空排気バルブ16を
閉じた状態に保ち、エツチングガス排気パルプ23を開
け、エツチングガス排気管22から排気する。
Since these gases are usually extremely corrosive, if a vacuum exhaust device 5 is used to exhaust the raw material gas, the life of this exhaust device will be significantly shortened. Therefore, while this etching gas is flowing, the vacuum exhaust valve 16 is kept closed, the etching gas exhaust pulp 23 is opened, and the etching gas is exhausted from the etching gas exhaust pipe 22.

その後、エツチングガスを止め、その代わりに窒素など
の不活性ガスを流し、反応管8内ならびにエツチングガ
ス排気管22のエツチングガスを押し出す。そしてエツ
チングガスが反応管8から押し出された時点でエツチン
グガス排気パルプ23が閉じられる。
Thereafter, the etching gas is stopped and an inert gas such as nitrogen is supplied instead to push out the etching gas in the reaction tube 8 and the etching gas exhaust pipe 22. When the etching gas is pushed out from the reaction tube 8, the etching gas exhaust pulp 23 is closed.

その後の処理は通常の減圧気相成長装置と同じく、炉内
を減圧状態に保ちながらガス導入管4より不活性ガスを
炉内に流し、ウェハ6の温度が安定するのを待つ。また
、酸化膜をエツチングした際の温度が膜形成の温度と異
なる場合は、この時点でヒータ1の温度を調整し、ウェ
ハ6の温度が膜形成に適する温度になるようにする。ウ
ェハ6の温度が安定した時点で原料ガスをガス導入管4
から炉内に流し、ウェハ6表面に膜形成を行う。
The subsequent processing is carried out in the same manner as in a normal reduced pressure vapor phase growth apparatus, by flowing an inert gas into the furnace through the gas introduction pipe 4 while maintaining the inside of the furnace in a reduced pressure state, and waiting for the temperature of the wafer 6 to stabilize. Further, if the temperature at which the oxide film is etched is different from the temperature at which the film is formed, the temperature of the heater 1 is adjusted at this point so that the temperature of the wafer 6 becomes a temperature suitable for film formation. When the temperature of the wafer 6 becomes stable, the raw material gas is introduced into the gas introduction pipe 4.
The wafer 6 is then poured into a furnace to form a film on the surface of the wafer 6.

膜形成後、原料ガスを止め、不活性ガスを流して反応管
内をパージした上でウェハ6を取り出す。
After the film is formed, the source gas is stopped, the inside of the reaction tube is purged by flowing an inert gas, and then the wafer 6 is taken out.

なお、上記実施例では横型減圧気相成長装置に本発明を
適応した例を示したが、本発明は縦型減圧気相成長装置
に適用してもよい。またエツチングガスとしては沸化水
素酸以外のガスを使用してもよい。
In addition, although the above-mentioned embodiment showed an example in which the present invention was applied to a horizontal type reduced pressure vapor phase growth apparatus, the present invention may be applied to a vertical type reduced pressure vapor phase growth apparatus. Furthermore, gases other than hydrofluoric acid may be used as the etching gas.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る減圧気相成長装置よれば
、シリコン酸化膜を化学的に除去するためのガスを導入
するための配管と、このガスを排気するための排気装置
とを、膜形成のための原料ガスを排気する装置とは別に
設け、減圧気相成長装置内でウェハ表面の自然酸化膜を
完全に除去するようにしたので、半導体装置の不良率を
低減し、より高集積化された半導体装置の製造が可能と
なる。また、自然酸化膜を除去するためのエツチングガ
スは専用の排気経路を設けたので、減圧気相成長装置の
真空排気系が損傷することを防ぐことができる。
As described above, according to the reduced pressure vapor phase growth apparatus according to the present invention, the piping for introducing the gas for chemically removing the silicon oxide film and the exhaust device for exhausting this gas can be connected to the film. The device is installed separately from the device that exhausts the raw material gas for formation, and the natural oxide film on the wafer surface is completely removed within the low-pressure vapor phase growth device, reducing the defective rate of semiconductor devices and allowing for higher integration. It becomes possible to manufacture standardized semiconductor devices. Further, since a dedicated exhaust path is provided for the etching gas for removing the natural oxide film, damage to the vacuum exhaust system of the reduced pressure vapor phase growth apparatus can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は従来の横
型減圧気相成長装置の一例を示す図、第3図は半導体装
置の一部を示す図、第4図は縦型減圧気相成長装置の一
例を示す図である。 l・・・ヒータ、2・・・圧力容器、3・・・フランジ
、4・・・原料ガス供給管、5・・・真空排気装置、6
・・・ボート、7・・・ウェハ、8・・・反応管、9・
・・保温筒、10・・・ボートローダ−113・・・後
部フランジ。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of a conventional horizontal reduced pressure vapor phase growth apparatus, FIG. 3 is a diagram showing a part of a semiconductor device, and FIG. 4 is a vertical diagram. 1 is a diagram showing an example of a type reduced pressure vapor phase growth apparatus. l... Heater, 2... Pressure vessel, 3... Flange, 4... Raw material gas supply pipe, 5... Vacuum exhaust device, 6
...Boat, 7.Wafer, 8.Reaction tube, 9.
...Heat insulation tube, 10...Boat loader-113...Rear flange. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] (1)シリコンウェハを減圧状態におくため、このシリ
コンウェハを収納する容器と、 該容器に接続された真空排気装置と、 上記容器の中に置かれたウェハを加熱する手段と、 上記容器に原料ガスを供給するための配管とを備え、シ
リコンウェハ表面に薄膜を形成する気相成長装置におい
て、 シリコン酸化膜を化学的に除去するためのガスを導入す
る手段と、該ガスを排気する手段とを、上記真空排気装
置とは別に設けたことを特徴とする気相成長装置。
(1) In order to place the silicon wafer in a reduced pressure state, a container for storing the silicon wafer, a vacuum evacuation device connected to the container, a means for heating the wafer placed in the container, and a device for heating the wafer placed in the container; In a vapor phase growth apparatus for forming a thin film on the surface of a silicon wafer, the apparatus is equipped with piping for supplying raw material gas, and a means for introducing a gas for chemically removing a silicon oxide film, and a means for exhausting the gas. A vapor phase growth apparatus characterized in that the following are provided separately from the vacuum evacuation apparatus.
JP24593889A 1989-09-20 1989-09-20 Vapor growth equipment Pending JPH03108322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24593889A JPH03108322A (en) 1989-09-20 1989-09-20 Vapor growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24593889A JPH03108322A (en) 1989-09-20 1989-09-20 Vapor growth equipment

Publications (1)

Publication Number Publication Date
JPH03108322A true JPH03108322A (en) 1991-05-08

Family

ID=17141092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24593889A Pending JPH03108322A (en) 1989-09-20 1989-09-20 Vapor growth equipment

Country Status (1)

Country Link
JP (1) JPH03108322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339968A (en) * 1996-05-21 1996-12-24 Kokusai Electric Co Ltd Wafer processing method and diffusion furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339968A (en) * 1996-05-21 1996-12-24 Kokusai Electric Co Ltd Wafer processing method and diffusion furnace

Similar Documents

Publication Publication Date Title
US5119541A (en) Wafer succeptor apparatus
TWI331364B (en)
JP3954833B2 (en) Batch type vacuum processing equipment
JPS60200966A (en) Composite coating
JPH07169693A (en) Horizontal low-pressure cvd device and its cleaning method
JPH1112738A (en) Cvd film forming method
JPH03108322A (en) Vapor growth equipment
JP3856397B2 (en) Wafer processing method for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus
US6531415B1 (en) Silicon nitride furnace tube low temperature cycle purge for attenuated particle formation
JPH05326477A (en) Method for removal of halogen from semiconductor substrate surface
KR20010039898A (en) Heat treatment apparatus for semiconductor and heat treatment method for semiconductor substrate
JP2004288903A (en) Manufacturing method of semiconductor device
TW527658B (en) Method and apparatus for etching carbon thin film
JP2001102386A (en) Munufacturing method of semiconductor wafer
JP2657254B2 (en) Processing apparatus and its exhaust method
JPS6399533A (en) Method and apparatus for dry etching of silicon nitride film
JPH10223620A (en) Semiconductor manufacturing device
JP3058655B2 (en) Wafer diffusion processing method and wafer heat treatment method
JP3244760B2 (en) Semiconductor heat treatment equipment
JPH08316160A (en) Heat treating furnace
JPH11186170A (en) Method and device for forming film
JPS5970763A (en) Thin film forming device
JPH11214377A (en) Vertical vacuum vapor phase growing device and method therefor
JPH0883769A (en) Epitaxial grown method
JPH04332122A (en) Reduced pressure cvd device