JPH03108129A - Focusing error signal detecting method - Google Patents

Focusing error signal detecting method

Info

Publication number
JPH03108129A
JPH03108129A JP24436289A JP24436289A JPH03108129A JP H03108129 A JPH03108129 A JP H03108129A JP 24436289 A JP24436289 A JP 24436289A JP 24436289 A JP24436289 A JP 24436289A JP H03108129 A JPH03108129 A JP H03108129A
Authority
JP
Japan
Prior art keywords
error signal
divided
photodetectors
light receiving
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24436289A
Other languages
Japanese (ja)
Inventor
Masaharu Moritsugu
森次 政春
Hiroshi Suzuki
浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP24436289A priority Critical patent/JPH03108129A/en
Publication of JPH03108129A publication Critical patent/JPH03108129A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To reduce the crosstalk of a focusing error signal and a tracking error signal by computing the difference of the sum of the output of partition photodetectors being positioned at both ends of each of two partition detectors with an arithmetic means, and outputting it as the focusing error signal. CONSTITUTION:Assuming the values of the output signals of the partition photodetectors 25A-25C as A-C and that of the partition photodetectors 26A-26C as A'-C', a differential amplifier 31 outputs the focusing error signal with a value FES=(A+C)-(A'+C') in equation (2). Meanwhile, an adder 30 outputs the total sum (A+B+C+A'+B'+C') of the output signals as a reproducing information signal. Since a spot is made incident on only the partition photodetectors 25B, 26B in the center when focusing is obtained, the focusing error signal in equation (2) shows zero, and also, next equation SUM=(A+ C)+(A'+C') goes to zero when the focusing is obtained, which prevents the tracking error signal mixed (servo crosstalk) to the focusing error signal when the focusing is obtained.

Description

【発明の詳細な説明】 〔概要〕 光ディスクの光軸上の変位であるフォーカスエラー信号
を検出する検出方法に関し、 フォーカスエラー信号とトラックエラー信号とのり0ス
トークを低減することを目的とし、光ディスクからの反
射光を集光レンズを経てビームスプリッタで2分割し、
一方の反射光は該集光レンズの焦点より前に位置する第
1の分割光検出器に入射し、他方の反射光は該集光レン
ズの焦点より後に位置する第2の分割光検出器に入射し
、該第1及び第2の分割光検出器の各出力信号に基づい
て前記光ディスクの光軸上の変位であるフォーカスエラ
ー信号を検出する゛フォーカスエラー信号検出方法にお
いて、前記第1及び第2の分割光検出器の各々を、帯状
に分割された少なくとも3個の分割受光素子からなる構
成とし、演算手段により該第1の分割光検出器の両端に
位置する2個の分割受光素Tの出力の和と該第2の分割
光検出器の両端に位置する2個の分割受光素Tの出力の
和との差を演算して検出フォーカスエラー信号として取
り出すよう構成する。
[Detailed Description of the Invention] [Summary] This method relates to a detection method for detecting a focus error signal, which is a displacement on the optical axis of an optical disc, and is aimed at reducing zero stalk between the focus error signal and the track error signal. The reflected light passes through a condensing lens and is split into two by a beam splitter,
One reflected light enters a first divided photodetector located before the focal point of the condensing lens, and the other reflected light enters a second divided photodetector located after the focal point of the condensing lens. and detecting a focus error signal that is a displacement on the optical axis of the optical disc based on each output signal of the first and second split photodetectors. Each of the two divided photodetectors is composed of at least three divided light receiving elements divided into strips, and the two divided light receiving elements T located at both ends of the first divided photodetector are calculated by the calculation means. The difference between the sum of outputs of T and the sum of outputs of two divided light receiving elements T located at both ends of the second divided photodetector is calculated and extracted as a detection focus error signal.

〔産業上の利用分野〕[Industrial application field]

本発明はトラックエラー信号検出方法に係り、特に光デ
ィスクの光軸上の変位であるフォーカスエラー信号を検
出する検出方法に関する。
The present invention relates to a track error signal detection method, and more particularly to a detection method for detecting a focus error signal, which is a displacement on the optical axis of an optical disc.

光ディスクは、その人吉母性と媒体可換性から、情報処
理シス1ムの外部記憶装置として応用分野の拡大が期待
されており、また最近では、従来の追記型から、自換え
可能型へと世代交代が急速に進もうとしている。
Optical disks are expected to expand in the field of application as external storage devices for information processing systems due to their Hitoyoshi mother nature and medium interchangeability, and have recently undergone a generation shift from the conventional write-once type to the self-replaceable type. Replacement is rapidly progressing.

このような光ディスクに対して情報を記録・再生する光
ディスク¥装置においては、トラックエラー信号とフォ
ーカスエラー信号とを光検出器に入射するビームの光は
変化として同時に検出するため、どうしても二つのエラ
ー信号のクロストーク(以トサーボク0ストークと呼ぶ
)が存在する。
In such an optical disc apparatus that records and reproduces information on an optical disc, the track error signal and focus error signal are detected simultaneously as changes in the beam light incident on the photodetector, so two error signals are inevitably generated. There is crosstalk (hereinafter referred to as servotalk).

このリーボクロストークを低減することが、光ディスク
vitv1の4n頼性を決定するR重要課題である。
Reducing this Rivo crosstalk is an important issue that determines the 4n reliability of the optical disc vitv1.

〔従来の技術〕[Conventional technology]

第4図は光デイスク装置の一例の構成図を示す。 FIG. 4 shows a configuration diagram of an example of an optical disk device.

同図中、光源としての半導体レーザ11からの出射発散
光は、コリメートレンズ12により平行光とされてから
ビームスプリン9139反射ミラー14を経て対物レン
ズ15に入射され、これにより光デイスク16上に微小
スポットとして照射される。
In the figure, the emitted diverging light from a semiconductor laser 11 as a light source is made into parallel light by a collimating lens 12, and then enters an objective lens 15 via a beam spring 9139 reflecting mirror 14, thereby causing a microscopic beam to be projected onto an optical disk 16. Irradiated as a spot.

このとき、対物レンズ15は光ディスク16の面振れ、
偏心成分に追従して常にスポットを所定トラックに照射
することが必要であり、このため装置は、スポットをフ
ォーカス及びトラック方向に互いに独立して移動可能と
するアクチユエータ(図示せf)を鏝えている。
At this time, the objective lens 15 detects surface runout of the optical disk 16,
It is necessary to always irradiate a spot on a predetermined track by following the eccentric component, and for this purpose the device is equipped with an actuator (f not shown) that allows the spot to move independently in the focus and track directions. .

光デイスク16上のスポットは反射光として入射時と同
一光路を逆進してビームスプリッタ13に入射されてこ
こで反射され、更に集光レンズ17を透過してビームス
プリッタ18に入射され、ここで一部が透過し、残りが
反射する。ビームスプリッタ18により反射されたビー
ム光は光検出器19に入射されて光電変換され、またビ
ームスプリッタ18を透過したビーム光は光検出器20
に入射されて充電変換される。
The spot on the optical disk 16 travels backward along the same optical path as the incident light, enters the beam splitter 13 and is reflected there, further passes through the condenser lens 17 and enters the beam splitter 18, where it is reflected. Some of it is transmitted and the rest is reflected. The light beam reflected by the beam splitter 18 is incident on a photodetector 19 and photoelectrically converted, and the light beam transmitted through the beam splitter 18 is incident on a photodetector 20.
is incident on the battery and is converted into a charge.

光検出器19及び20の出力検出信号は加算器21によ
り加算され、差動増幅器22.23により夫々減算され
る。光ディスク16からの情報信号は加算器21より取
り出され、フォーカスエラー信号、トラックエラー信号
は差動増幅器22゜23から夫々取り出される。
The output detection signals of the photodetectors 19 and 20 are added by an adder 21 and subtracted by differential amplifiers 22 and 23, respectively. An information signal from the optical disk 16 is taken out by an adder 21, and a focus error signal and a track error signal are taken out from differential amplifiers 22 and 23, respectively.

上記のトラックエラー信号及びフォーカスエラー信号の
うち、トラックエラー信号の検出原理については、既に
詳しく説明された文献も多数存在するし、本発明と直接
関係はないので、ここでは説明を省略する。
Among the above-mentioned track error signals and focus error signals, there are many documents that have already explained in detail the principle of detecting the track error signal, and since it is not directly related to the present invention, the explanation will be omitted here.

一方、フォーカスエラー信号の検出原理は、本発明と直
接関係があるので詳しく説明する。フォーカスエラー信
号検出方法として従来より使用されているものには、以
下のものが挙げられる。
On the other hand, the principle of detecting the focus error signal will be explained in detail since it is directly related to the present invention. Conventionally used focus error signal detection methods include the following.

■スポットサイズデイテクション(880)法■非点収
差法 ■臨界角度法 ■ナイフTツジ法 ■フーコ法 これらのものは、いずれも・一長一短がある。そこで特
に最近その性能の良さがクローズアップされているのが
、■のSSD法を取良したコンプリメンタリSSD法で
ある。
■ Spot size detection (880) method ■ Astigmatism method ■ Critical angle method ■ Knife T-Tsuji method ■ Fuco method All of these methods have their advantages and disadvantages. Therefore, the complementary SSD method, which is an improved version of the SSD method (2), has recently been attracting attention for its excellent performance.

このコンプリメンタリSSD法の原理について第5図及
び第6図と共に説明する。第5図において、集光レンズ
17で集束光に変換された光ディスフからの反射光は、
ビームスプリッタ18で2分割され、集光レンズ17の
焦点の前に配置された第1の3分割光検出器19と、該
焦点の後に配置された第2の3分割光検出器20に入射
される。
The principle of this complementary SSD method will be explained with reference to FIGS. 5 and 6. In FIG. 5, the reflected light from the optical disc, which is converted into focused light by the condensing lens 17, is
The beam is split into two by the beam splitter 18 and is incident on a first three-split photodetector 19 placed in front of the focal point of the condenser lens 17 and a second three-split photodetector 20 placed after the focal point. Ru.

ここで、3分割光検出器19.20の夫々の3つの分割
受光素子を図に示すように、19A〜19G、20A〜
20Cとする。
Here, as shown in the figure, the three divided light receiving elements of the three divided photodetector 19.20 are 19A to 19G, 20A to
It is assumed to be 20C.

この状態で、光ディスクが合焦点の場合(ジャストフォ
ーカス時)、光検出器19.20の受光面における両ス
ポットは、第6図(B)に丞す如く、大略同一径の円形
である。一方、光ディスクが合焦点より遠い位置にある
ときは、第6図(A)に示す如く光検出器19の分割受
光素子19Bだけに小径のスポットが形成されるのに対
し、光検出器20には受光面の略全域に亘って大径のス
ポットが形成される。逆に、光ディスクが合焦点より近
い位置にあるときは、第6図(C)に示す如く、光検出
器19の受光面の略全域に亘って大径のスポットが形成
されるのに対し、光検出器20にはその分割受光素子2
0Bにのみ小径のスポットが形成される。
In this state, when the optical disc is in focus (just in focus), both spots on the light receiving surfaces of the photodetectors 19 and 20 are circular with approximately the same diameter, as shown in FIG. 6(B). On the other hand, when the optical disc is located far from the focal point, a small diameter spot is formed only on the divided light receiving element 19B of the photodetector 19, as shown in FIG. A large-diameter spot is formed over substantially the entire area of the light-receiving surface. On the other hand, when the optical disc is located closer to the focal point, a large-diameter spot is formed over almost the entire light-receiving surface of the photodetector 19, as shown in FIG. 6(C). The photodetector 20 includes the divided light receiving element 2.
A small diameter spot is formed only at 0B.

従って、このコンプリメンタリssD法によれば、フォ
ーカスエラー信号FESは、19A。
Therefore, according to this complementary ssD method, the focus error signal FES is 19A.

19B、19C(7)各出力信号ノ値をA、B、0゜2
0A、20B及び20CのそれをA’ 、8’及びC′
と表すものとすると FES= (A+C+8’ )−(8+A’ 十〇’ 
)(1) で表わされ、光検出器19.20の両サイドの分割受光
素子19Aと190 (2OAと20C)17)雨検出
信号の和から真中の分割受光素子19B(20B)の検
出信号を差し引いた光検出F!!:it 9゜20の各
々の出力の値(これを(A+C−8)。
19B, 19C (7) Each output signal value is A, B, 0°2
0A, 20B and 20C as A', 8' and C'
If it is expressed as FES = (A+C+8') - (8+A'10'
) (1), and from the sum of the rain detection signals of the divided light receiving elements 19A and 190 (2OA and 20C) on both sides of the photodetector 19.20, the detection signal of the middle divided light receiving element 19B (20B) is obtained. Light detection F! ! :it 9°20 each output value (this is (A+C-8).

(A’ +C’ −8’ )と記す)をとり、これらを
減算して得られる。
(denoted as A'+C'-8')) and subtract these.

(発明が解決しようとするF!jI題)光デイスク装置
の場合、信号再生にあずかる対物レンズ15と光ディス
ク16との闇が1sI程度離れており、磁気ディスク装
置で問題になっているヘッドクラツシlの心配は著しく
低減される。
(F!jI problem to be solved by the invention) In the case of an optical disk device, the distance between the objective lens 15, which participates in signal reproduction, and the optical disk 16 is about 1 sI, and the problem of head collision, which is a problem in magnetic disk devices, is Anxiety is significantly reduced.

しかし、記録密度は磁気ディスク装置より1桁高いため
、対物レンズ15で集束された1μ園以下の微小スポッ
トを光ディスク16の面振れ、偏心に追従してサブミク
ロンの精度で正確にフォーカス制御するためには、安定
でSNの良いフォーカス1ラー信号の生成が不可欠であ
る。
However, since the recording density is one order of magnitude higher than that of a magnetic disk device, it is necessary to precisely control the focus of a minute spot of less than 1 μm focused by the objective lens 15 with submicron precision by following the surface runout and eccentricity of the optical disk 16. For this purpose, it is essential to generate a focus 1 color signal that is stable and has good signal to noise.

ところが、光検出器によりトラックエラー信号とフォー
カス1ラー信号とを夫々同時に生成するため、どうして
も鈴記したサーボクロストークが存在する。上記のコン
プリメンタリSSD法によれば、光ディスクからの反射
光を分割してコンプリを取っているので、このサーボク
ロストークを低減できる可能性がある。
However, since the tracking error signal and the focus 1 error signal are generated simultaneously by the photodetector, servo crosstalk inevitably exists. According to the above-mentioned complementary SSD method, since the reflected light from the optical disk is divided and completed, there is a possibility that this servo crosstalk can be reduced.

しか6、このコンプリメンタリSSD法は2個の光検出
器19及び20の両受光面上におけるスポットサイズが
、合焦点時にぴったり一致した場合に初めてコンプリメ
ンタリが可能となるが、集光レンズ17の収差、光検出
器19及び20のZ軸方向の精度などにより、実際には
光検出器19及び20の受光面におけるスポット形状が
異なるため、光検出器19.20の相対的位置調整が極
めて難しい。しかb従来は合焦点時に光検出器19.2
0の真中の分割受光素子の入射光量の総和が大になるよ
うにしてフォーカスエラー信号を検出しているのに対し
、トラックエラー信号は合焦点及びその付近で得られる
から、合焦点時にサーボクロストークの彰1を受は易い
という問題がある。
However, in this complementary SSD method, complementary SSD is only possible when the spot sizes on both the light receiving surfaces of the two photodetectors 19 and 20 match exactly at the time of focusing, but the aberration of the condenser lens 17, Due to the accuracy of the photodetectors 19 and 20 in the Z-axis direction, the spot shapes on the light receiving surfaces of the photodetectors 19 and 20 actually differ, so it is extremely difficult to adjust the relative positions of the photodetectors 19 and 20. However, in the past, the photodetector 19.2 was used when the focus was focused.
The focus error signal is detected by increasing the total amount of incident light on the split light receiving element in the middle of 0, whereas the track error signal is obtained at and around the focused point, so the servo cross is detected at the focused point. There is a problem that it is easy to receive a talk award.

本発明は上記の点に鑑みてなされたもので、フォーカス
エラー信号とトラックエラー信号とのクロストークを低
減し得るフォーカスエラー信号検出方法を提供すること
を目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a focus error signal detection method that can reduce crosstalk between a focus error signal and a track error signal.

〔課題を解決するための手段〕[Means to solve the problem]

第1図は本発明の原理説明図を示す。同図中、第4図と
同一構成部分には同・−符号を付し、その説明を省略す
る。第1図において、第1の分割光検出器25は集光レ
ンズ17の焦点より前に位置する光検出器で、帯状に分
割された少なくとも3個の分割受光素7−25△、25
B及び25Cからなる。また、第2の分割光検出器26
は集光レンズ17の焦点より後に位置する光検出器で、
帯状に分割された少なくとも3個の分割受光素子f26
A、26B及び26Gからなる。
FIG. 1 shows a diagram explaining the principle of the present invention. In the same figure, the same components as those in FIG. 4 are given the same symbols and their explanations will be omitted. In FIG. 1, the first divided photodetector 25 is a photodetector located in front of the focal point of the condensing lens 17, and includes at least three divided light receiving elements 7-25Δ, 25 divided into strips.
Consists of B and 25C. In addition, the second split photodetector 26
is a photodetector located after the focal point of the condensing lens 17,
At least three divided light receiving elements f26 divided into strips
Consisting of A, 26B and 26G.

本発明はこれら2つの分割光検出器25.26の山田力
信号を演忰して検出フォーカスエラー信号を出力する演
算手段27に特徴を有するもので、演算1段27は両端
に位置する分割受光素子25A及び25Gの出力の和と
、両端に位置する分割受光素子26A及び26Gの出力
の和との差を演算粋出し、それをフォーカスエラー信号
として取り出す。
The present invention is characterized by a calculation means 27 that calculates the Yamada power signals of these two divided photodetectors 25 and 26 and outputs a detection focus error signal. The difference between the sum of the outputs of the elements 25A and 25G and the sum of the outputs of the divided light receiving elements 26A and 26G located at both ends is calculated and taken out as a focus error signal.

〔作用〕[Effect]

集光レンズ17により絞られた光(光ディスクからの反
射光)は、ビームスプリッタ18により分v1されて第
1及び第2の分割光検出器25及び26に夫々入射する
が、その際、合焦点状態ではスポットは負中の分割受光
素子25B及び26Bにのみ入射されるように、2個の
分割光検出器25及び26が配置されている。従って、
両端の分割受光素子25Aと25G、26Aと26Gに
夫々入射される光は、合焦点時には原理的にぜOとなる
The light focused by the condensing lens 17 (reflected light from the optical disc) is divided into parts v1 by the beam splitter 18 and enters the first and second split photodetectors 25 and 26, respectively. In this state, the two divided photodetectors 25 and 26 are arranged so that the spot is incident only on the negative medium divided light receiving elements 25B and 26B. Therefore,
The light incident on the divided light receiving elements 25A and 25G and 26A and 26G at both ends is theoretically zero when in focus.

一方、光ディスクが合焦点より遠ざかったり、近付くと
、そのh向に応じて第1及び第2の分7.11光検出器
25及び26の一方のスポット形状が大となり、かつ、
他方のスポット形状が小となる。
On the other hand, when the optical disk moves away from or approaches the focal point, the spot shape of one of the first and second photodetectors 25 and 26 becomes larger depending on the h direction, and
The other spot shape becomes smaller.

従って、上記の演騨手段27からは、光ディスクが合焦
点のときは原理的にぜ口で、近(=jいたときと遠ざか
ったときで極性が異なるフォーカスエラー信号が取り出
される。
Therefore, from the above-mentioned driver 27, a focus error signal is taken out which is basically a gap when the optical disc is in focus, and whose polarity is different when the optical disc is near (=j) and when it is far away.

すなわち、本発明では2個の分割光検出器25及び26
の位置調整の精度が従来と同じであっても、合焦点時に
はフォーカスエラー信号を得るための分割受光素子25
Aと250.並びに26Aと26Gの各入射光間の総和
を最小にできる。
That is, in the present invention, two divided photodetectors 25 and 26 are used.
Even if the accuracy of the position adjustment is the same as before, the split light receiving element 25 is used to obtain a focus error signal when the focus is focused.
A and 250. Furthermore, the sum total between the incident lights 26A and 26G can be minimized.

(実施例〕 第2図は本発明方法が適用された光デイスク装置の要部
の一実施例の構成図を示す。同図中、第1図と同一構成
部分には同一符号を付しである。
(Embodiment) Fig. 2 shows a configuration diagram of an embodiment of the essential parts of an optical disk device to which the method of the present invention is applied.In the figure, the same components as in Fig. 1 are denoted by the same symbols. be.

本発明方法が適用される光デイスク装置の構成は大略第
4図に示した光デイスク装置と同じであるが、第4図の
光検出器19.20.加算器21及び差動増幅器23の
部分が、第2図に示す分割光検出!25,26.加算5
30及tF差1111[器31に置き換わった点が異な
る。
The configuration of the optical disk device to which the method of the present invention is applied is roughly the same as the optical disk device shown in FIG. 4, except that the photodetectors 19, 20, . The adder 21 and differential amplifier 23 are used for split light detection as shown in FIG. 25, 26. addition 5
30 and tF difference 1111 [The difference is that it is replaced with 31.

第2図において、差動増幅器31は演算手段27を構成
しており、分割受光素?25A。
In FIG. 2, the differential amplifier 31 constitutes the arithmetic means 27, and the divided light receiving element? 25A.

25B及び25Cの各出力信号の値を各々A、 B及び
Cとし、分割受光素子26A、26B及び26Cの各出
力信号の値を各々A’ 、B’及びC′と表すものとす
ると、差動増幅器31はFES= (A+C)−(A’
 +C’ )    ■で表される値のフォーカスエラ
ー信号を出力する。
If the values of the output signals of 25B and 25C are respectively A, B and C, and the values of the output signals of the split light receiving elements 26A, 26B and 26C are respectively A', B' and C', then the differential The amplifier 31 is FES=(A+C)-(A'
+C') Outputs a focus error signal with a value represented by (2).

他方、加粋器30はすべての分割受光素子25A〜25
G、26A〜26Cの出力信号の総和である(A+B十
〇)−F (A’ +8’ +C’ )を、再生情報信
号として取り出す。
On the other hand, the adder 30 connects all the divided light receiving elements 25A to 25.
(A+B10)-F (A'+8'+C'), which is the sum of the output signals of G and 26A to 26C, is extracted as a reproduction information signal.

前記したように、合焦点時にはスポットは原理的に中央
の分割受光素?25B及び26Bにだけ入射されるよう
に分別受光素子25及び26が配置されているから、0
式で表されるフォーカスエラー信号は合焦点時ピロであ
り、またディスク位置に対して第3図に実線■で示す如
く変化する。
As mentioned above, when the focus is focused, the spot is in principle split into the center of the photodetector. Since the separate light receiving elements 25 and 26 are arranged so that the light is incident only on 25B and 26B, 0
The focus error signal expressed by the formula is a pyro when the focus is focused, and changes with respect to the disk position as shown by the solid line ■ in FIG.

また、次式、 SUM−(A+C)+ (A’ +C’ )    (
3)で表されるサム信号SUMは、第3図に破線■で示
す如くになる。第3図かられかるように、合焦点(第3
図にOで示す)のとぎは、リム信号SUMはピロとなる
。このことは、フォーカスエラー信号FESを検出する
ために用いられる分割受光素子25A、25C,26A
及び26Cの入射光量の総和が、合焦点時にぜ口である
ことを示している。従って、フォーカスエラー信号に対
するトラックエラー信号の混入は合焦点時にはなくなる
ことになり、サーボクロストークが合焦点のときは発生
しないことがわかる。
In addition, the following formula, SUM-(A+C)+ (A'+C') (
The sum signal SUM represented by 3) is as shown by the broken line ■ in FIG. As can be seen from Figure 3, the in-focus point (third
(indicated by O in the figure), the rim signal SUM becomes pyro. This means that the divided light receiving elements 25A, 25C, 26A used for detecting the focus error signal FES
The sum of the amounts of incident light of 26C and 26C indicates that there is a gap when the focus is focused. Therefore, it can be seen that the tracking error signal is not mixed into the focus error signal when the focus is focused, and servo crosstalk does not occur when the focus is focused.

2個の分割光検出器25.26の相対的位置関係の調整
誤差により、分割受光素子25A。
Due to an adjustment error in the relative positional relationship between the two divided photodetectors 25 and 26, the divided light receiving element 25A.

25G、26A及び26Cのいずれか一つ以上に合焦点
時にスポットの一部がかかっても、合焦点時の入射光量
の総和は常に最小となるから、従来に比ベサーボクロス
トークを大幅に低減することができる。
Even if a part of the spot hits one or more of 25G, 26A, and 26C at the focused point, the total amount of incident light at the focused point will always be the minimum, significantly reducing servo crosstalk compared to conventional methods. can do.

なお、合焦点状態でフォーカスエラー信号に不連続点が
発生することが予想されるが、この範囲が対物レンズの
焦点深度内に入っていれば問題はない。
Although it is expected that a discontinuous point will occur in the focus error signal in the focused state, there will be no problem as long as this range is within the depth of focus of the objective lens.

また、本発明とは直接の関係はないが、トラックエラー
信号を検出するために、分割受光素子25B及び26B
の少なくとも一方を更に上下に2分割するようにしても
よい。
Although not directly related to the present invention, in order to detect a track error signal, divided light receiving elements 25B and 26B are used.
At least one of them may be further divided into upper and lower halves.

入射光量の総和を合焦点特に最小(原叩的にぜ口)にで
きるため、合焦点のザーボクロストークを従来に比べ大
幅に低減することができ、3ビーム法を適用できない書
換え可能型光ディスク装首などに適用して特に有効であ
る等の特長を有するもの1ある。
Since the total amount of incident light can be minimized especially at the focused point (to a gap in the original drum), servo crosstalk at the focused point can be significantly reduced compared to conventional methods, making it possible to use rewritable optical disk devices to which the 3-beam method cannot be applied. There is one type that has features such as being particularly effective when applied to the neck and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原I!l!説明図、 第2図は本発明方法が適用された光デイスク装置の要部
の一実施例の構成図、 第3図はフォーカスエラー信号とリム信号を示す図、 第4図は光デイスク装置の一例の構成図、第5図はコン
プリメンタリSSD法説明図、第6図は第5図の要部説
明図である。 (発明の効果)                  
 図において、上述の如く、本発明によれば、フォーカ
スサ−17は集光レンズ、ボ1ラー信号を検出するため
の分割受光素子の各  18はビームスプリッタ、25
は第1の分割光検出器、 26は第2の分割光検出器、 27は演算手段、 25A 〜25C,26A〜260Lt分割受光素子を
示す。
Figure 1 shows the origin of the present invention! l! 2 is a configuration diagram of an embodiment of the main part of an optical disc device to which the method of the present invention is applied, FIG. 3 is a diagram showing a focus error signal and a rim signal, and FIG. 4 is a diagram of an optical disc device. An example configuration diagram, FIG. 5 is an explanatory diagram of the complementary SSD method, and FIG. 6 is an explanatory diagram of the main part of FIG. 5. (Effect of the invention)
In the figure, as described above, according to the present invention, the focuser 17 is a condensing lens, the split light receiving element 18 is a beam splitter, and 25 is a split light receiving element for detecting a blur signal.
26 is a first divided photodetector, 27 is a calculation means, and 25A to 25C, 26A to 260Lt are divided light receiving elements.

Claims (1)

【特許請求の範囲】  光ディスクからの反射光を集光レンズ(17)を経て
ビームスプリッタ(18)で2分割し、一方の反射光は
該集光レンズ(17)の焦点より前に位置する第1の分
割光検出器(25)に入射し、他方の反射光は該集光レ
ンズ(17)の焦点より後に位置する第2の分割光検出
器(26)に入射し、該第1及び第2の分割光検出器(
25、26)の各出力信号に基づいて前記光ディスクの
光軸上の変位であるフォーカスエラー信号を検出するフ
ォーカスエラー信号検出方法において、 前記第1及び第2の分割光検出器(25、26)の各々
を、帯状に分割された少なくとも3個の分割受光素子(
25A、25B、25C:26A、26B、26C)か
らなる構成とし、演算手段(27)により該第1の分割
光検出器(25)の両端に位置する2個の分割受光素子
(25A、25C)の出力の和と該第2の分割光検出器
(26)の両端に位置する2個の分割受光素子(26A
、26C)の出力の和との差を演算して検出フォーカス
エラー信号として取り出すことを特徴とするフォーカス
エラー信号検出方法。
[Claims] The reflected light from the optical disk passes through a condensing lens (17) and is split into two by a beam splitter (18), one of which is split into two by a beam splitter (18). The other reflected light enters a second divided photodetector (26) located after the focal point of the condenser lens (17), 2 split photodetectors (
In the focus error signal detection method of detecting a focus error signal that is a displacement on the optical axis of the optical disc based on each output signal of 25, 26), the first and second divided photodetectors (25, 26) are divided into at least three divided light receiving elements (
25A, 25B, 25C: 26A, 26B, 26C), and two divided light receiving elements (25A, 25C) located at both ends of the first divided photodetector (25) are determined by the calculation means (27). and the sum of the outputs of the two divided light receiving elements (26A) located at both ends of the second divided photodetector (26).
, 26C) and the sum of the outputs thereof is calculated and extracted as a detected focus error signal.
JP24436289A 1989-09-20 1989-09-20 Focusing error signal detecting method Pending JPH03108129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24436289A JPH03108129A (en) 1989-09-20 1989-09-20 Focusing error signal detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24436289A JPH03108129A (en) 1989-09-20 1989-09-20 Focusing error signal detecting method

Publications (1)

Publication Number Publication Date
JPH03108129A true JPH03108129A (en) 1991-05-08

Family

ID=17117566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24436289A Pending JPH03108129A (en) 1989-09-20 1989-09-20 Focusing error signal detecting method

Country Status (1)

Country Link
JP (1) JPH03108129A (en)

Similar Documents

Publication Publication Date Title
JP2000171346A (en) Aberration detecting device and optical pickup device
JPH0626972Y2 (en) Optical pickup device
JPS629537A (en) Optical pickup device
JPH10134400A (en) Optical head
JP3193105B2 (en) Tilt error detection device
JP2000076665A (en) Optical pickup device
JP2003045066A (en) Optical head and optical disk device
JP2901728B2 (en) Optical head and information recording / reproducing apparatus using the same
JPH03108129A (en) Focusing error signal detecting method
JPS6329337B2 (en)
JPH10134398A (en) Optical head
JPH11259874A (en) Optical disk drive
JPS6093647A (en) Reproducing optical system control means of optical type disc player
JP3545361B2 (en) Optical pickup device
US20030048704A1 (en) Optical information reading apparatus with super-resolution cut-off filter
JP2002015435A (en) Method and device for regulating astigmatism of optical pickup unit
JP2795233B2 (en) Optical head device
JP3545360B2 (en) Optical pickup device
JP2628972B2 (en) Optical recording device
JP2886230B2 (en) Optical head and focus error detecting device using the same
JP2000348365A (en) Optical pickup device
JP3810055B2 (en) Optical disk device
KR100237888B1 (en) Optical pickup device for a different kind of optical disk
JP3986521B2 (en) Optical disk device
JP3685797B2 (en) Optical disk device