JPH03107738A - Beam shape measuring instrument of scanning optical system - Google Patents

Beam shape measuring instrument of scanning optical system

Info

Publication number
JPH03107738A
JPH03107738A JP24492189A JP24492189A JPH03107738A JP H03107738 A JPH03107738 A JP H03107738A JP 24492189 A JP24492189 A JP 24492189A JP 24492189 A JP24492189 A JP 24492189A JP H03107738 A JPH03107738 A JP H03107738A
Authority
JP
Japan
Prior art keywords
polygon mirror
dimensional sensor
sensor
rotating polygon
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24492189A
Other languages
Japanese (ja)
Inventor
Nobuo Oguma
小熊 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP24492189A priority Critical patent/JPH03107738A/en
Publication of JPH03107738A publication Critical patent/JPH03107738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the resolution without using any objective lens which causes a measurement error while a rotary polygon mirror is rotated by arranging a two-dimensional sensor at the image formation position of a projection beam passed through an ftheta lens from the rotary polygon mirror. CONSTITUTION:The two-dimensional sensor 4 is installed at the image formation position P and the sensor 4 is fitted to a support member 5 while enabled to swing vertically in the rotating direction of the rotary polygon mirror 2. Then a beam (a) which is generated by a laser light source 1 is reflected by the polygon mirror 2 and passed through the ftheta lens 3 to form a light image at the image formation point P. A motor 6 which rotates the polygon mirror 2 and the member 5 which swings the sensor 4 vertically in the rotating direction are driven through a controller 10 by a microcomputer 8 which operates in specific relation with picture elements of the sensor 4. In the starting period of measurement, the lateral picture element pitch is divided by an integer and a shift in position by the equally divided length is made in order to totalize the quantity of brightness of each picture element of the sensor 4, thereby measuring the distribution shape of the quantity of brightness of the projection beam.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、走査光学系における 装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention is directed to a scanning optical system. It is related to the device.

ビーム形状測定 〔従来の技術〕 従来、回転多面鏡からの走査ビームの輝度形状を二次元
センサにより測定する場合、回転多面鏡の回転を静止し
ており、回転多面鏡を測定可能な位置に静止することが
難しい。
Beam shape measurement [Conventional technology] Conventionally, when measuring the brightness shape of a scanning beam from a rotating polygon mirror using a two-dimensional sensor, the rotation of the rotating polygon mirror is stopped; difficult to do.

しかも、回転多面鏡の回転を静止してビームの輝度形状
を測定する手段として、各々の画素での、iI調値を計
測し、各画素と諧調値とから補間曲線を算出し、61幅
(約13.5%)、半値幅(約50%)の各ビーム径か
らビームの形状を算出している(第5図)。
In addition, as a means of measuring the brightness shape of the beam while stopping the rotation of the rotating polygon mirror, the iI tone value at each pixel is measured, and an interpolation curve is calculated from each pixel and the tone value, and the 61 width ( (about 13.5%) and half-width (about 50%) (Fig. 5).

この場合、1画素の大きさが分解能となり、これがビー
ムの形状測定の精度に影響を与える。精度を向上するた
めには、分解能を小さくする必要があり、このため、第
6図に示すように、ビームの結像点Pと二次元センサS
との間に、対物レンズLを配置し、ビームを拡大して分
解能を小さくして測定精度を向上している。Fはrθレ
ンズである。
In this case, the size of one pixel is the resolution, which affects the accuracy of beam shape measurement. In order to improve accuracy, it is necessary to reduce the resolution, and for this reason, as shown in Fig. 6, the beam focal point P and the two-dimensional sensor S
An objective lens L is disposed between the two to expand the beam and reduce the resolution to improve measurement accuracy. F is an rθ lens.

(発明が解決しようとする課題) このような従来の対物レンズを使用したビーム形状測定
装置においては、使用される対物レンズの性能によって
、輝度形状が異なって測定される欠点を有している。
(Problems to be Solved by the Invention) A beam shape measuring device using such a conventional objective lens has a drawback that the luminance shape is measured differently depending on the performance of the objective lens used.

しかも、回転多面鏡を一定位置に静止することは、回転
多面鏡が空気軸受に支持されていることから難しい。
Moreover, it is difficult to keep the rotating polygon mirror stationary at a fixed position because the rotating polygon mirror is supported by an air bearing.

本発明は、回転多面鏡、fθレンズから射出されるビー
ム輝度の測定するに際して、回転多面鏡を回転した状態
で、しかも測定誤差の要因となる対物レンズを使用しな
いで分解能を向上できる手段を提供することを目的とす
るものである。
The present invention provides a means for improving resolution when measuring the beam brightness emitted from a rotating polygon mirror and an fθ lens while the rotating polygon mirror is being rotated and without using an objective lens that causes measurement errors. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記目的を達成するために、回転多面鏡から
fθレンズを経た射出ビームの結像位置に二次元センサ
を配置すると共に、回転多面鏡を駆動するモータと、二
次元センサを支持し、回転多面鏡の回転方向に対して二
次元センサを直角の方向に揺動する支持部材とを設け、
二次元センサ上の画素に対して回転多面鏡が回転方向に
縦の画素ピッチを走査する時間に、二次元センサは垂直
方向に横の画素ピッチの整数倍だけの振幅をするように
、回転多面鏡の回転方向の移動と二次元センサの垂直方
向の揺動をマイクロコンピュータにより制御し、かつ測
定開始時期は横の画素ピッチを整数等分し、その等分し
た長さずらした位置に順次変更し、二次元センサの各画
素の輝度量を累計して射出ビームの輝度量の分布形状を
測定することを特徴とするものである。
In order to achieve the above object, the present invention disposes a two-dimensional sensor at the imaging position of the emitted beam from the rotating polygon mirror through the fθ lens, and also supports a motor that drives the rotating polygon mirror and the two-dimensional sensor. , a support member that swings the two-dimensional sensor in a direction perpendicular to the rotational direction of the rotating polygon mirror;
During the time when the rotating polygon mirror scans the vertical pixel pitch in the rotation direction with respect to the pixels on the two-dimensional sensor, the two-dimensional sensor The rotational movement of the mirror and the vertical swing of the two-dimensional sensor are controlled by a microcomputer, and the measurement start time is determined by dividing the horizontal pixel pitch into equal integers, and sequentially changing the position by shifting the length of the equal division. The present invention is characterized in that the luminance amount of each pixel of the two-dimensional sensor is accumulated to measure the distribution shape of the luminance amount of the emitted beam.

[作 用〕 本発明の構成により、対物レンズを用いることなく、分
解能を小さくし、測定精度を向上させ、射出ビームの輝
度量の分布形状を正確に測定することができる。
[Function] With the configuration of the present invention, it is possible to reduce the resolution, improve measurement accuracy, and accurately measure the distribution shape of the luminance amount of the emitted beam without using an objective lens.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図において、レーザ光源1により発生したビームa
は、回転多面鏡2で反射し、fθレンズ3を経て結像点
Pに光像を作る。
In FIG. 1, a beam a generated by a laser light source 1
is reflected by the rotating polygon mirror 2, passes through the fθ lens 3, and forms an optical image at the imaging point P.

本発明では、前記結像点Pに二次元センサ4を設置し、
該二次元センサ4は回転多面1′12の回転方向(Y方
向)に対して垂直方向(Z方向)に揺動できるように支
持部材5に取付けられている。
In the present invention, a two-dimensional sensor 4 is installed at the imaging point P,
The two-dimensional sensor 4 is attached to a support member 5 so as to be able to swing in a direction (Z direction) perpendicular to the direction of rotation (Y direction) of the rotating polygon 1'12.

二次元センサ4には、A/D変換装置7、マイクロコン
ピュータ8が接続され、マイクロコンピュータ8には、
デイスプレィ9が連結されている。
An A/D converter 7 and a microcomputer 8 are connected to the two-dimensional sensor 4, and the microcomputer 8 includes:
A display 9 is connected.

回転多面鏡2の回転はモータ6により駆動される。The rotation of the rotating polygon mirror 2 is driven by a motor 6.

本発明において、回転多面鏡2を回転するモータ6と二
次元センサ4を回転方向に垂直に揺動する支持部材5と
は、二次元センサ4の画素に対して所定の関連で作動す
るように、マイクロコンピュータ8によりコントローラ
10を介して、モータ6及び支持部材5を駆動する。
In the present invention, the motor 6 that rotates the rotating polygon mirror 2 and the support member 5 that swings the two-dimensional sensor 4 perpendicularly to the rotation direction operate in a predetermined relationship with respect to the pixels of the two-dimensional sensor 4. , the motor 6 and the support member 5 are driven by the microcomputer 8 via the controller 10.

第2図には、(a)において二次元センサ4の画素40
1.402.・・・の縦方向ピッチLIに対して回転多
面鏡2の回転方向の移動に伴う測定状態を示し、測定開
始時期は二次元センサ4の画素401の端部に射出ビー
ムの中心P。を当てた位置とし、各測定時間Tは画素の
縦方向ピッチし、の長さの整数倍、実施例では一倍に設
定されている。
In FIG. 2, a pixel 40 of the two-dimensional sensor 4 is shown in (a).
1.402. . . , the measurement state is shown as the rotating polygon mirror 2 moves in the rotational direction with respect to the vertical pitch LI of . The measurement time T is set to be an integer multiple of the length of the pixels in the vertical direction, and is set to be one time in the embodiment.

前記にような回転多面鏡2の回転に対して、二次元セン
サ4は支持部材5により垂直方向に揺動される。第2図
(b)には、二次元センサ4の揺動と画素ピッチとの関
連を示しており、横方向に配列された二次元センサ4の
画素411,412.・・・を縦軸にとり、その画素の
横方向ピッチはL2で示されている。
In response to the rotation of the rotating polygon mirror 2 as described above, the two-dimensional sensor 4 is swung in the vertical direction by the support member 5. FIG. 2(b) shows the relationship between the swinging of the two-dimensional sensor 4 and the pixel pitch, showing the pixels 411, 412, . . . of the two-dimensional sensor 4 arranged in the horizontal direction. ... is taken as the vertical axis, and the horizontal pitch of the pixels is indicated by L2.

二次元センサ4の垂直方向の揺動幅りは、画素の横方向
ピッチL2の整数倍に設定され、この実施例では、画素
の横方向ピッチL2の二倍とし、第2図(a)の測定開
始時期に相当する位置が一方の揺動端S0であり、この
位置S0から二次元センサ4が揺動幅りだけ他方向に移
動すると、回転多面鏡2の回転方向への移動により、射
出ビームの中心P0は揺動幅りの端部に相当する位置S
Iに至る。
The vertical swing width of the two-dimensional sensor 4 is set to an integral multiple of the horizontal pitch L2 of the pixels, and in this embodiment, it is set to twice the horizontal pitch L2 of the pixels, as shown in FIG. 2(a). The position corresponding to the measurement start time is one swing end S0, and when the two-dimensional sensor 4 moves in the other direction by the swing width from this position S0, the injection The center P0 of the beam is at a position S corresponding to the end of the swing width
Leading to I.

第2図(a)で示した測定時間Tが、第2図(b)では
二次元センサ4の揺動幅りを移動する時間(位置S0か
ら位置S、への移動時間)に相当する。
The measurement time T shown in FIG. 2(a) corresponds to the time for moving the two-dimensional sensor 4 through the swing width (movement time from position S0 to position S) in FIG. 2(b).

すなわち、射出ビームの中心P0が、回転多面鏡2の回
転と二次元センサ4の揺動により、測定開始時期から二
次元センサ4の画素の縦方向ピッチし、の整数倍(実施
例では一倍)に相当する測定時間Tによって移動し、し
かもこの測定時間Tに対応して、二次元センサ4は画素
の横方向ピッチL2の整数倍の長さの陽動幅りを移動す
る。この測定時間Tは、二次元センサ4の揺動サイクル
時間の二分の−に相当する。
That is, due to the rotation of the rotating polygon mirror 2 and the swinging of the two-dimensional sensor 4, the center P0 of the emitted beam changes from the measurement start time to the vertical pitch of the pixels of the two-dimensional sensor 4, which is an integer multiple (one time in the example). ), and corresponding to this measurement time T, the two-dimensional sensor 4 moves through a positive movement width that is an integral multiple of the lateral pitch L2 of the pixels. This measurement time T corresponds to -half of the swing cycle time of the two-dimensional sensor 4.

前記のような二次元センサ4の画素ピッチに対応した測
定においては、第3図(a)に示される輝度測定値が得
られるが、本発明では、一画素を数等分し、測定開始時
期を前記数等分した位置に順次ずらすことによって、分
解能を向上することができる。
In the measurement corresponding to the pixel pitch of the two-dimensional sensor 4 as described above, the luminance measurement value shown in FIG. The resolution can be improved by sequentially shifting to the positions divided into the above-mentioned number of equal parts.

実施例では、二次元センサ4の画素の縦方向ピッチL1
を四等分し、最初の測定開始時期を画素の縦方向ピッチ
LLの左端からとし、次の測定開始時期を、第2図(a
)に示すように、画素の縦方向ピッチL1の左端から四
分の−、Δaだけ右側にずらした画素の位置とし、ここ
に結像中心点P1を合わせ、更に次の測定開始時期を、
画素の縦方向ピッチL1の左端から二分の−(Δaの二
倍)四分の三(Δaの二倍)と順次右側にずらすことに
よって、測定精度2分解能を向上させ、第3図(b)に
示される輝度測定値を得ることができる。
In the embodiment, the vertical pitch L1 of pixels of the two-dimensional sensor 4 is
is divided into four equal parts, the first measurement start time is set from the left end of the vertical pixel pitch LL, and the next measurement start time is set as shown in Fig. 2 (a).
), the position of the pixel is shifted to the right by -4/Δa from the left end of the vertical pixel pitch L1, the imaging center point P1 is aligned here, and the next measurement start time is set as follows.
By sequentially shifting the vertical pitch L1 of the pixels from the left end to half - (twice Δa) and three-quarters (twice Δa) to the right, the measurement accuracy 2 resolution is improved, as shown in Figure 3 (b). The brightness measurements shown in can be obtained.

二次元センサの画素ピッチし、をΔaずつ移動し、L、
/Δaの回数測定するが、一画素は必要とする分解能に
よって数回〜数千回にわたり繰り返し測定し、各画素の
輝度量(階調値)をA/D変換装置7.マイクロコンピ
ュータ8によす各画素位置での輝度量(階調値)を累計
し、補間計算により射出ビームの形状、すなわちe−1
幅(約13.5%)、半値幅(約50%)からビームの
形状を算出し、測定結果をデイスプレィ9に表示する。
The pixel pitch of the two-dimensional sensor is moved by Δa, L,
/Δa, one pixel is repeatedly measured several to several thousand times depending on the required resolution, and the luminance amount (gradation value) of each pixel is measured by the A/D converter 7. The microcomputer 8 accumulates the amount of brightness (gradation value) at each pixel position, and calculates the shape of the emitted beam by interpolation calculation, that is, e-1
The shape of the beam is calculated from the width (approximately 13.5%) and the half width (approximately 50%), and the measurement results are displayed on the display 9.

精度良く測定するためには、L1/Δaの値が整数にな
るように設定することが望ましい。また縦方向の画素ピ
ッチL1と横方向の画素ピッチL2とが等しい二次元セ
ンサを使用することによって分解能は等しくすることが
できる。
In order to measure with high accuracy, it is desirable to set the value of L1/Δa to be an integer. Further, by using a two-dimensional sensor in which the pixel pitch L1 in the vertical direction and the pixel pitch L2 in the horizontal direction are equal, the resolution can be made equal.

第4図には、本発明の他の実施例を示しており、前記実
施例と異なる点は、レーザ光源1からのビームaが、回
転多面鏡2.fθレンズ3によりビームal  、ax
  ta3と走査され、その各ビームal  ya2 
 ya3の結像位置に、二次元センサ4a、4b、4c
をそれぞれ配置し、各二次元センサ4a、4b、4cを
それぞれ揺動する支持部材5a、5b、5cに支持した
ことである。
FIG. 4 shows another embodiment of the present invention, which differs from the previous embodiment in that the beam a from the laser light source 1 is transmitted to the rotating polygon mirror 2. Beams al and ax are formed by the fθ lens 3
ta3 and each of its beams al ya2
Two-dimensional sensors 4a, 4b, 4c are placed at the imaging position of ya3.
The two-dimensional sensors 4a, 4b, and 4c are supported by swinging support members 5a, 5b, and 5c, respectively.

各ビームa+  wax  !a3は前述したと同様に
、回転多面鏡の回転、二次元センサの揺動を同期させて
、ビームの輝度形状を測定することができる。
Each beam a+wax! As described above, in a3, the brightness shape of the beam can be measured by synchronizing the rotation of the rotating polygon mirror and the swinging of the two-dimensional sensor.

〔効 果〕〔effect〕

本発明の構成により、回転多面鏡を回転した状態でビー
ムの輝度形状を測定することができ、光軸合わせの必要
がなく、光像を直接二次元センサで測定することにより
、対物レンズを不要とし、ビーム形状がレンズ性能に影
響されることなく、しかも分解能を良くし高精度の輝度
分布測定ができる効果を有する。
With the configuration of the present invention, it is possible to measure the brightness shape of the beam while the rotating polygon mirror is rotated, eliminating the need for optical axis alignment, and by directly measuring the optical image with a two-dimensional sensor, there is no need for an objective lens. This has the effect that the beam shape is not affected by lens performance, and that the resolution is improved and brightness distribution measurement can be performed with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のビーム形状測定装置の実施例を示す概
略説明図、 第2図(a)、Φ)は二次元センサの画素の縦方向ピッ
チ、横方向ピッチに対する射出ビームの関係を示すグラ
フ、 第3図(a)、Φ)は画素ピッチに対応する一回の輝度
測定値と画素ピッチを分割して数回の測定を累計した輝
度測定値を示すグラフ、第4図は本発明のビーム形状測
定装置の他の実施例を示す概略説明図、 第5図は従来のビーム形状測定装置による輝度測定値を
示すグラフ、 第6図は従来のビーム形状測定装置を示す概略説明図で
ある。 1・・・レーザ光源、2・・・回転多面鏡、3・・・f
θレンズ、4 * 4 a 、4 b s 4 c ・
・・二次元センサ、401.402,411,412・
・・画素、L、、L2・・・画素ピッチ、T・・・測定
時間、D・・・揺動幅、5゜5a、5b、5c・・・揺
動支持部材、6・・・モータ、7・・・A/D変換装置
、8・・・マイクロコンピュータ、9・・・デイスプレ
ィ、10・・・コントローラ。
FIG. 1 is a schematic explanatory diagram showing an embodiment of the beam shape measuring device of the present invention, and FIG. 2 (a), Φ) shows the relationship of the emitted beam to the vertical pitch and horizontal pitch of the pixels of the two-dimensional sensor. Graphs, Fig. 3(a), Φ) are graphs showing one luminance measurement value corresponding to the pixel pitch and a luminance measurement value obtained by dividing the pixel pitch and summing up several measurements, and Fig. 4 is a graph showing the luminance measurement value obtained by dividing the pixel pitch and summing up several measurements. 5 is a graph showing brightness measurement values by a conventional beam shape measuring device. FIG. 6 is a schematic explanatory diagram showing a conventional beam shape measuring device. be. 1... Laser light source, 2... Rotating polygon mirror, 3... f
θ lens, 4 * 4 a, 4 b s 4 c ・
・Two-dimensional sensor, 401.402,411,412・
... Pixel, L,, L2... Pixel pitch, T... Measurement time, D... Swing width, 5°5a, 5b, 5c... Swing support member, 6... Motor, 7... A/D converter, 8... Microcomputer, 9... Display, 10... Controller.

Claims (1)

【特許請求の範囲】[Claims] 回転多面鏡からfθレンズを経た射出ビームの結像位置
に二次元センサを配置すると共に、回転多面鏡を駆動す
るモータと、二次元センサを支持し、回転多面鏡の回転
方向に対して二次元センサを直角の方向に揺動する支持
部材とを設け、二次元センサ上の画素に対して回転多面
鏡が回転方向に縦の画素ピッチを走査する時間に、二次
元センサは垂直方向に横の画素ピッチの整数倍だけの振
幅をするように、回転多面鏡の回転方向の移動と二次元
センサの垂直方向の揺動をマイクロコンピュータにより
制御し、かつ測定開始時期は横の画素ピッチを整数等分
し、その等分した長さずらした位置に順次変更し、二次
元センサの各画素の輝度量を累計して射出ビームの輝度
量の分布形状を測定することを特徴とする走査光学系に
おけるビーム形状測定装置。
A two-dimensional sensor is disposed at the imaging position of the emitted beam from the rotating polygon mirror through the fθ lens, and a motor that drives the rotating polygon mirror and a two-dimensional sensor are provided to support the two-dimensional sensor in the rotation direction of the rotating polygon mirror. A support member that swings the sensor in a direction perpendicular to the sensor is provided, and during the time when the rotating polygon mirror scans the vertical pixel pitch in the rotation direction with respect to the pixels on the two-dimensional sensor, the two-dimensional sensor swings vertically and horizontally. The rotational movement of the rotating polygon mirror and the vertical swing of the two-dimensional sensor are controlled by a microcomputer so that the amplitude is an integer multiple of the pixel pitch, and the horizontal pixel pitch is set to an integer at the start of measurement. In a scanning optical system, the distribution shape of the luminance amount of the emitted beam is measured by sequentially changing the positions shifted by the equally divided length and summing the luminance amount of each pixel of the two-dimensional sensor. Beam shape measuring device.
JP24492189A 1989-09-22 1989-09-22 Beam shape measuring instrument of scanning optical system Pending JPH03107738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24492189A JPH03107738A (en) 1989-09-22 1989-09-22 Beam shape measuring instrument of scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24492189A JPH03107738A (en) 1989-09-22 1989-09-22 Beam shape measuring instrument of scanning optical system

Publications (1)

Publication Number Publication Date
JPH03107738A true JPH03107738A (en) 1991-05-08

Family

ID=17125957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24492189A Pending JPH03107738A (en) 1989-09-22 1989-09-22 Beam shape measuring instrument of scanning optical system

Country Status (1)

Country Link
JP (1) JPH03107738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011278A (en) * 2012-06-28 2014-01-20 Ricoh Co Ltd Plane emission laser unit, optical scanner, and image formation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014011278A (en) * 2012-06-28 2014-01-20 Ricoh Co Ltd Plane emission laser unit, optical scanner, and image formation apparatus

Similar Documents

Publication Publication Date Title
US10706562B2 (en) Motion-measuring system of a machine and method for operating the motion-measuring system
KR940003917B1 (en) Apparatus for measuring three-dimensional curved surface shapes
JPH0431043B2 (en)
JP2004286598A (en) Displacement gauge and displacement measuring method
US4813782A (en) Method and apparatus for measuring the floating amount of the magnetic head
JP2002257528A (en) Three-dimensional shape measuring device by phase shift method
JP2021056351A (en) Optical device, projector, and method for controlling optical device
US3744915A (en) Photoelectric length measuring apparatus
US20080037032A1 (en) Method and apparatus for contact free measurement of periodically moving objects
JPH1114357A (en) Automatic tracking device of surveying equipment
JP2008145139A (en) Shape measuring device
JPH03107738A (en) Beam shape measuring instrument of scanning optical system
JP2003042736A (en) Three-dimensional measuring method and device thereof
JP2001183117A (en) Instrument and method for measuring surface shape
JP2006258557A (en) Optical interferometer and shape measuring device using it
JP2004286533A (en) Height measuring method and its apparatus
JP2702750B2 (en) Laser beam scanning device
JP2668663B2 (en) Shape measuring device
US20220171182A1 (en) Method and processing unit for activating at least one drive unit of at least one deflection unit of a microscanner device
JP4176899B2 (en) Scanning position measuring method and apparatus in scanning optical system
JP3150773B2 (en) Polygon mirror measuring device
JPH11237211A (en) Image measuring equipment and its control equipment
JPH0421109Y2 (en)
JPS6182113A (en) Measuring method of optical fine displacement
JPH0460433A (en) Measuring method of curve in scanning optical system