JPH03107704A - Film thickness variation measuring instrument - Google Patents

Film thickness variation measuring instrument

Info

Publication number
JPH03107704A
JPH03107704A JP24548389A JP24548389A JPH03107704A JP H03107704 A JPH03107704 A JP H03107704A JP 24548389 A JP24548389 A JP 24548389A JP 24548389 A JP24548389 A JP 24548389A JP H03107704 A JPH03107704 A JP H03107704A
Authority
JP
Japan
Prior art keywords
film
light
thickness
dispersed
swelling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24548389A
Other languages
Japanese (ja)
Inventor
Kazuo Okamoto
一夫 岡本
Kazuyuki Tate
和幸 舘
Naruaki Okuda
匠昭 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP24548389A priority Critical patent/JPH03107704A/en
Publication of JPH03107704A publication Critical patent/JPH03107704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To evaluate variation in the thickness of a filmy body continuously and speedily by detecting reflected light beams, reflected by small piece bodies which are irradiated with a light source at a specific angle and dispersed in the filmy body, by a photodetector. CONSTITUTION:The filmy body 2 which has many light-reflective small bodies 3 dispersed in a light-transmissive substrate with variable thickness is irradiated with the light source 4 at an angle. The photodetector 5 is provided at a specific position about the filmy body 2 and detects reflected light beams reflected by the small piece bodies 3 which are irradiated with the light source 4 and dispersed in the filmy body 2. When the thickness varies owing to swelling, the difference between reflected light beams detected by the photodetector 5 before and after the variation is inputted to an arithmetic means consisting of a microcomputer, etc., to find variation in the dispersion state of the small piece bodies 3 dispersed in the substrate of the filmy body 2 which varies in thickness, thereby operating the quantity of the variation in the thickness of the filmy body 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜厚変化測定装置に関し、さらに詳しくは、塗
膜、薄いフィルム体、薄いシート体等の膜状体が種々の
原因によって膨張したり収縮したりするという膜厚変化
の現象を光学的手段によって測定するための膜厚変化測
定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a film thickness change measuring device, and more specifically, the present invention relates to a film thickness change measuring device, and more specifically, it is a method for measuring film thickness changes that occur when film-like objects such as paint films, thin films, and thin sheets expand due to various causes. The present invention relates to a film thickness change measuring device for measuring film thickness change phenomena such as shrinkage and shrinkage by optical means.

〔従来の技術〕[Conventional technology]

膜状体、特に高分子材料からなる膜状体は、水(又は水
蒸気)や有機溶媒等を吸収して膨潤したり、あるいはこ
れらの成分が膜状体から蒸発又は揮散したりして、しば
しば膜厚の変化を起こし、不具合を招(場合がある。例
えば、自動車のボデー表面に形成されるメタリック塗膜
に関して、そのベース塗膜がクリヤコート層の有機溶剤
成分を吸収して膨潤し、そのためメタリック塗膜の光沢
や色調等が変化して塗装欠陥を引き起こすことがある。
Membranes, especially membranes made of polymeric materials, often absorb water (or water vapor), organic solvents, etc. and swell, or these components evaporate or volatilize from the membrane. This may cause changes in film thickness, leading to defects (for example, when it comes to metallic paint films formed on the surface of automobile bodies, the base paint film absorbs the organic solvent components of the clear coat layer and swells, resulting in The gloss and color tone of the metallic paint film may change, causing paint defects.

従って、メタリック塗膜の研究現場や製造現場ではこの
ような膨潤現象を予測したり対策を講じたりするために
、適切な膨潤評価技術の確立が望まれている。
Therefore, in research and manufacturing sites for metallic coatings, it is desired to establish an appropriate swelling evaluation technique in order to predict such swelling phenomena and take countermeasures.

かかる要求に対し、従来の技術としては、膜状体の膨潤
量をマイクロメータやダイヤルゲージで直接に測定した
り、膨潤に基づく重量の増加を精密天秤等で測定して膨
潤量に換算するという技術がある。
In response to such demands, conventional techniques include directly measuring the amount of swelling of the membrane with a micrometer or dial gauge, or measuring the increase in weight due to swelling with a precision balance and converting it into the amount of swelling. There is technology.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記のようにゲージや天秤等を用いて測定する方
法では、膜状体を、それが実際に使用される状態(例え
ば、メタリック塗膜が自動車のボデー表面に形成された
状態)のままで、かつ膜状体を破壊したり損傷させたり
することなく測定することは困難であり、−船釣には別
途に作製したテストピースについて測定を行うこととな
る。このため、使用状態に即した評価が得られず、信頼
性に欠ける。
However, in the above-mentioned method of measuring using a gauge, balance, etc., the film-like body is measured in the state in which it is actually used (for example, in the state in which a metallic paint film is formed on the surface of an automobile body). , and it is difficult to measure without destroying or damaging the membranous body, and - for boat fishing, measurements must be made on a separately prepared test piece. For this reason, it is not possible to obtain an evaluation based on the usage conditions, resulting in a lack of reliability.

また、評価の対象である膜状体が他の膜状体や付着物と
一体化している場合(例えばメタリック塗膜におけるベ
ース塗膜層にはクリヤコート層が塗り重ねられている。
Furthermore, when the film-like body to be evaluated is integrated with other film-like bodies or deposits (for example, a clear coat layer is overlaid on the base paint layer in a metallic paint film).

)には、その全体の厚さや重量が測定されることになり
、正確な評価が得られない。そして、正確な評価を期す
るためには、評価対象である膜状体の破壊や損傷を伴う
ことなく他の膜状体や付着物を除去する必要があるが、
このような操作は相当の困難を伴う。
), its entire thickness and weight are measured, making it impossible to obtain an accurate evaluation. In order to ensure accurate evaluation, it is necessary to remove other membranous bodies and deposits without destroying or damaging the membranous body that is the subject of evaluation.
Such operations involve considerable difficulty.

さらに、上記の従来技術では、測定の都度テストピース
を膨潤現象の系から取り出すので、その時点で現象の進
行が中断されることとなり、経時的な連続評価には不向
きである。一方、膜状体の膨潤を評価するにあたり、絶
対的な膨潤量(膨潤の開始時と終了時との差)だけでな
く、膨潤挙動の評価(膨潤進行状態の継時的観察)を行
いたい場合も多い。しかし上記の従来技術では一回毎の
測定に相当の時間を要し、これに反して膜状体の膨潤は
例えば30分程度の比較的短い時間の内に急速に進行す
ることが多いので、同一のテストピースについて継時的
な連続評価を行おうとしても、時間的に追従し切れない
Furthermore, in the above-mentioned conventional technology, the test piece is removed from the swelling phenomenon system each time a measurement is performed, so the progress of the phenomenon is interrupted at that point, making it unsuitable for continuous evaluation over time. On the other hand, when evaluating the swelling of a membranous material, it is necessary to evaluate not only the absolute amount of swelling (difference between the start and end of swelling) but also the swelling behavior (observation of the progress of swelling over time). There are many cases. However, with the above-mentioned conventional technology, it takes a considerable amount of time for each measurement, and on the other hand, the swelling of the membranous material often progresses rapidly within a relatively short period of time, for example, about 30 minutes. Even if you try to perform continuous evaluation on the same test piece over time, it will not be possible to keep up with the time.

そこで本発明は、膜状体の厚さ変化を連続的にかつ迅速
に評価でき、また膜状体の重層構造物等においてもその
内の特定の膜状体のみの膜厚変化の評価が可能で、しか
も使用状態に即した評価が得られる信頼性のある評価技
術を提供することを課題とする。
Therefore, the present invention enables continuous and rapid evaluation of changes in the thickness of a membrane-like body, and also enables evaluation of changes in the thickness of only a specific membrane-like body in a multilayered structure of membrane bodies. The object of the present invention is to provide a reliable evaluation technique that allows evaluations to be made in accordance with usage conditions.

そして本願発明者らは、膜状体がその基質中に偏平な小
片体をランダムに分散させてなる場合、その膜状体が膨
潤や収縮等によって膜厚変化を起こすと、種々の配向で
分散していたそれぞれの小片体が、膨潤の際にはより急
傾斜となるように、また収縮の際にはより緩傾斜となる
ように配向変化を起こす点に着目し、多数の小片体の配
向変化量をマクロに把握すれば統計的演算処理によって
膜状体の膜厚変化を測定できることを知って、本願発明
を完成した。
The inventors of the present application have discovered that when a film-like material is made up of flat small pieces randomly dispersed in its matrix, when the film-like material changes in thickness due to swelling or contraction, the film-like material is dispersed in various orientations. We focused on the fact that each small piece changes its orientation so that it becomes more steeply sloped when it swells, and becomes more gently sloped when it contracts. The present invention was completed based on the knowledge that changes in the film thickness of a membrane-like body can be measured by statistical calculation if the amount of change is understood in a macroscopic manner.

〔本願発明の説明〕[Description of the claimed invention]

(第1発明の構成) 上記の課題を解決するための第1発明の構成は、光透過
性の厚さの変化が可能な基質中に、光反射性の小片体が
多数分散している膜状体に対して角度をなして光を照射
する光源と、前記膜状体に対して特定の位置に配設され
、光源から照射され、前記膜状体に分散した小片体によ
って反射された反射光を検出する検出手段と、前記膜状
体の厚さが変化した時の変化の前後における前記検出手
段によって検出された反射光の変化を演算することによ
り、厚さが変化した膜状体の基質中に分散した小片体の
分散態様の変化を求めることによって膜状体の膜厚変化
量を演算する演算手段とから成る膜厚変化測定装置であ
る。
(Configuration of the first invention) The configuration of the first invention for solving the above problems is a film in which a large number of light-reflecting small pieces are dispersed in a light-transmitting substrate whose thickness can be changed. A light source that irradiates light at an angle to the film-like body, and a reflection that is irradiated from the light source and reflected by the small pieces dispersed in the film-like body, which is arranged at a specific position with respect to the film-like body. A detection means for detecting light and a change in reflected light detected by the detection means before and after the change in thickness of the film-like body are calculated, thereby detecting the change in the thickness of the film-like body. This is a film thickness change measuring device comprising calculation means for calculating the amount of film thickness change of a film-like body by determining a change in the dispersion mode of small pieces dispersed in a substrate.

(第1発明の作用、効果) 上述の構成より成る第1発明は、膜状体の基質が膨潤そ
の他の理由により厚さが変化すると、その基質中に分散
している小片体の基質中の分散態様、特に角度が変化す
るので、光源から照射された反射光の小片体による反射
態様が変化することにより反射光量の変化として検出手
段により検出し、演算手段により反射光量の変化に基づ
き膜状体の厚さの変化を測定するものであり、簡単な装
置により、精度の高い測定を可能にする。
(Operations and Effects of the First Invention) The first invention having the above-mentioned structure is characterized in that when the thickness of the substrate of the membranous body changes due to swelling or other reasons, the thickness of the matrix of the small pieces dispersed in the matrix changes. Since the dispersion mode, especially the angle, changes, the detection means detects the change in the reflected light amount due to the change in the reflection mode of the reflected light emitted from the light source by the small pieces, and the calculation means detects the film shape based on the change in the reflected light amount. It measures changes in body thickness, and enables highly accurate measurements using a simple device.

次に、本第1発明の厚さ変化の測定原理について述べる
Next, the principle of measuring thickness change according to the first invention will be described.

膜状体の基質中に多数の小片体を分散させておくと、膜
厚変化が起こったとき、その変化量に対応して小片体が
配向変化を起こす。この状態を第1図(a)〜(C)に
基づいてさらに詳しく説明する。
If a large number of small pieces are dispersed in the matrix of a film-like body, when a change in film thickness occurs, the small pieces will change their orientation in response to the amount of change. This state will be explained in more detail based on FIGS. 1(a) to (C).

第1図(a)に示すように、鋼板等の基体l上に形成さ
れた厚さh+の膜状体2の基質中に多数の小片体3(偏
平な薄片体であるが、図では直線で表す。
As shown in FIG. 1(a), a large number of small pieces 3 (flat thin pieces, but shown in straight lines in the figure) are present in the matrix of a film-like body 2 with a thickness Expressed as

)が分散されている。この膜状体2が膨潤等によって第
1図(b)に示すように厚さh2になったとき、多数の
小片体3はそれぞれ厚さの増大量Δh (=b2 hl
)に応じて急傾斜となる方向へ配向変化を起こす。いま
、第1図(C)に示すように、長さlの小片体3が膨潤
前の状態においてX軸に対して角度θ1で配向し、その
y軸方向の高さがalであったとする。そしてこの小片
体3が膨潤後の状態においてX軸に対して角度θ2で配
向し、そのy軸方向の高さがa2になったとする。この
場合、前記膜状体2の膨潤率h r (=hg / h
、)および膨潤量Δh c=h、−h、 )はそれぞれ
次の(1)式および(2)式で与えられる。
) are distributed. When this membrane-like body 2 becomes thick h2 as shown in FIG. 1(b) due to swelling etc., the large number of small pieces 3 each have an increase in thickness Δh (=b2 hl
), the orientation changes in the direction of a steeper slope. Now, as shown in Fig. 1(C), suppose that the small piece 3 of length l is oriented at an angle θ1 with respect to the X axis in the state before swelling, and its height in the y axis direction is al. . It is assumed that this small piece 3 is oriented at an angle θ2 with respect to the X-axis in the state after swelling, and its height in the y-axis direction is a2. In this case, the swelling rate h r (=hg/h
, ) and the swelling amount Δh c=h, -h, ) are given by the following equations (1) and (2), respectively.

h r = a 2 / a + =s inθ2/sinθ+    −−−−(1)Δ
h=に+  (s i nθ、−5inθ1)・・(2
)なお、(2)式においてに1は膜状体2の傾斜度の初
期値θ1に応じて定まる既知の定数である。
h r = a 2 / a + = sin θ2/sin θ+ −−−−(1) Δ
h=to+(s i nθ, -5inθ1)...(2
) In equation (2), 1 is a known constant determined according to the initial value θ1 of the degree of inclination of the film-like body 2.

以上のように、特定の小片体2の角度θ1から角度θ2
への配向変化量を知れば、膜状体2の膨潤率hrまたは
膨潤量Δhを与えることができる。
As described above, from the angle θ1 of the specific piece body 2 to the angle θ2
If the amount of change in orientation is known, the swelling rate hr or swelling amount Δh of the membrane 2 can be determined.

さて、本願発明において用いる小片体は、通常は極めて
微小なものであり、1個の小片体に着目してその配向や
配向変化量を測定することは事実上困難である。しかし
多数の光反射性の小片体を分散させ、これらの小片体の
全体的な配向変化を光学的手段によってマクロに測定す
ることで上記の困難を解消できる。
Now, the small pieces used in the present invention are usually extremely minute, and it is practically difficult to focus on one small piece and measure its orientation and the amount of change in orientation. However, the above-mentioned difficulties can be overcome by dispersing a large number of light-reflecting particles and macroscopically measuring changes in the overall orientation of these particles using optical means.

〔第1発明のその他の発明の説明3 次に第1発明をさらに具体的にした他の発明について述
べる。
[Explanation 3 of Other Inventions of the First Invention Next, other inventions that make the first invention more specific will be described.

第1発明の構成におけるハードウェア部分の一例を簡略
化して示す第2図に基づいて説明すると、基体l上に形
成された膜状体2に対して光源4より発した入射光αを
照射し、所定の反射方向に固定した受光器5によって小
片体による反射光βの強さを測定する。光源4は常に同
−入射点λを指向しつつ、該当入射点λを中心とする円
弧線tに沿ってガイドレール(図示を省略する。)上を
移動できるように構成されている。いま仮に、膜状体2
中の多数の小片体のうち、水平に配向しているものが最
も多いとすると、光源4を円弧線を沿いに移動させなが
ら反射光βの強さを受光器5で連続的に測定したとき、
光源4が第2図の実線で示す位置にあるときに正反射方
向の反射光βの測定値がピークを示す筈である。そして
膜状体2が膨潤を起こして、上記の水平に配向していた
小片体がそれぞれ立ち上がる方向に配向変化を起こすと
、例えば第2図の想像線で示す位置に光源4が来たとき
に反射光βの測定値がピークを示すようになる。このよ
うに、反射光βの測定値がピークを示すような光源4の
移動位置を膜状体2の膨潤の進行とともに連続的にトレ
ースすれば、実質的に単一の小片体の配向変化をトレー
スするのと同じ結果を得る。即ち、第2図において受光
器5の固定角度が入射点λ上の法線yに対してθβの角
度にあり、膨潤前に反射光βの測定値がピークを示すよ
うな光源4の位置が法線yに対してθα膨潤後に反射光
βの測定値がピークを示すような光源4の位置が法線y
に対してθα2であるとすると、前記第1図における角
度θ2、θ2はそれぞれ次の(3)式および(4)式で
与えられる。
An explanation will be given based on FIG. 2 which shows an example of the hardware part in the configuration of the first invention in a simplified manner. , the intensity of the reflected light β by the small piece is measured by the light receiver 5 fixed in a predetermined reflection direction. The light source 4 is configured to be able to move on a guide rail (not shown) along an arc line t centered at the incident point λ while always pointing at the same incident point λ. For now, membranous body 2
Assuming that most of the small pieces inside are oriented horizontally, when the intensity of the reflected light β is continuously measured with the light receiver 5 while the light source 4 is moved along the arc line, ,
When the light source 4 is at the position shown by the solid line in FIG. 2, the measured value of the reflected light β in the specular reflection direction should show a peak. When the membranous body 2 swells and the horizontally oriented small pieces change their orientation in the direction in which they stand up, for example, when the light source 4 comes to the position shown by the imaginary line in FIG. The measured value of reflected light β begins to show a peak. In this way, if the moving position of the light source 4 at which the measured value of reflected light β shows a peak is continuously traced as the swelling of the film-like body 2 progresses, it is possible to substantially detect the change in the orientation of a single piece. I get the same result as tracing. That is, in FIG. 2, the fixed angle of the light receiver 5 is at an angle θβ with respect to the normal y on the incident point λ, and the position of the light source 4 is such that the measured value of the reflected light β shows a peak before swelling. The position of the light source 4 where the measured value of the reflected light β shows a peak after θα swelling with respect to the normal y is the normal y
Assuming that θα2 is the angle θ2 and θ2 in FIG. 1, the angles θ2 and θ2 in FIG. 1 are given by the following equations (3) and (4), respectively.

θ、=I/2(θβ−θα、)  、、、  (3)θ
2=1/2 (θβ−θα2)  、、、  (41以
上の点から、第3図に示すような回路構成を備えたマイ
クロコンピュータ等の演算手段を用いれば、第2図に示
す光学系によって膜状体2の膨潤率hrや膨潤量Δhを
測定できる。第3図において入力デバイスとは、反射光
βがピークである様な光源4の角度θα1やθα2を検
出して演算手段に入力するデバイスである。第1演算回
路とは前記θα1、θα2、θβの値に基づき、(3)
式、(4)式によって前記θ1、θ2の値を演算する回
路である。さらに、第2演算回路とは前記θ1、θ2の
値に基づき(1)式、(2)式によって前記h r %
Δhの値を演算する回路である。hr、Δhの値はデイ
スプレィに表示される。
θ,=I/2(θβ−θα,) ,,, (3)θ
2=1/2 (θβ−θα2) ,, (From the above 41 points, if a calculation means such as a microcomputer with a circuit configuration as shown in Fig. 3 is used, the optical system shown in Fig. 2 can be used. It is possible to measure the swelling rate hr and the amount of swelling Δh of the membrane-like body 2. In FIG. The first arithmetic circuit is based on the values of θα1, θα2, and θβ, (3)
This circuit calculates the values of θ1 and θ2 using equations (4) and (4). Furthermore, the second arithmetic circuit calculates the h r % by equations (1) and (2) based on the values of θ1 and θ2.
This is a circuit that calculates the value of Δh. The values of hr and Δh are displayed on the display.

一方、第4図に示すような光学系によっても膜状体の膨
潤を評価できる。即ち、第4図において、基体1上に形
成された膜状体2に対し、光源4から発した大斜光αが
照射され、多数の小片体による反射光が所定の位置に設
けられた2個の受光器5により測定される。入射光αの
入射点λ上の法線yに対し、例えば、光源4は30°、
2個の受光器5はそれぞれ正方向と負方向とにそれぞれ
60°の角度に設けられている。かかる光学系において
は、小片体の配向が水平に近い程、正方向の反射光β1
が相対的に強く、負方向の反射光β2が相対的に弱い。
On the other hand, the swelling of the film-like body can also be evaluated using an optical system as shown in FIG. That is, in FIG. 4, a large oblique light α emitted from a light source 4 is irradiated onto a film-like body 2 formed on a base 1, and reflected light from a large number of small pieces is reflected by two pieces provided at predetermined positions. It is measured by the photoreceiver 5 of. For example, the light source 4 is at 30° with respect to the normal y on the incident point λ of the incident light α,
The two light receivers 5 are provided at an angle of 60° in the positive direction and the negative direction, respectively. In such an optical system, the closer the orientation of the small pieces is to the horizontal, the more the reflected light β1 in the positive direction
is relatively strong, and the reflected light β2 in the negative direction is relatively weak.

そして小片体の全体的な配向が立ち上がる方向へ変化す
るにつれて反射光β、が次第に弱まり、反射光β、が次
第に強まる。従って、膜状体の膨潤時における小片体の
配向変化量Δθ(=θ2−θI)は次の(5)式で与え
られる。
As the overall orientation of the small pieces changes in the upward direction, the reflected light β gradually weakens and the reflected light β gradually becomes stronger. Therefore, the amount of change in the orientation of the small pieces Δθ (=θ2−θI) when the membrane-like body swells is given by the following equation (5).

Δθ” K 2  ・Lβ2/Lβ1  ・・・ (5
)上記の(5)式においてLβl、Lβ2はそれぞれ反
射光β1、β2の測定値であり、k2は経験的に知り得
る定数である。この(5)式を前記(1)式、(2)式
に代入して前記膨潤率hr、膨潤量Δhを求め得る。こ
の場合にも、第1演算回路が(5)式に基づく演算を行
うものである点を除けば、その演算手段は第3図に示す
ものと同様に構成される。
Δθ” K 2 ・Lβ2/Lβ1 ... (5
) In the above equation (5), Lβl and Lβ2 are the measured values of the reflected lights β1 and β2, respectively, and k2 is a constant that can be known empirically. By substituting this equation (5) into the equations (1) and (2), the swelling ratio hr and the swelling amount Δh can be determined. In this case as well, the calculation means is constructed in the same manner as shown in FIG. 3, except that the first calculation circuit performs calculations based on equation (5).

以上の本願第1発明のその他の発明において、膜状体の
膨潤率hrや膨潤量Δhまでを演算して表示することが
最も望ましいが、例えば、後述する実施例のように、小
片体の配向変化のみを知り、それ以後の演算を実施しな
くても膜状体の膨潤評価を充分に行い得る場合もある。
In the other inventions of the first invention described above, it is most desirable to calculate and display the swelling rate hr and swelling amount Δh of the film-like body. In some cases, it is possible to sufficiently evaluate the swelling of a membranous body by knowing only the change and without performing any subsequent calculations.

以上の作用、効果を有する本願発明において、膜厚変化
の前後の時点にわたる経時的な連続測定を行うと、膜状
体の膨潤挙動等の評価も行うことができる。そして光学
的測定装置であるため結果は瞬時にして得られるので、
膜状体の膜厚変化が短時間に急速に進行する場合でも測
定操作が時間的に追従できなくなることはない。
In the present invention having the above-mentioned functions and effects, if continuous measurement over time is performed over time before and after the change in film thickness, it is also possible to evaluate the swelling behavior of the film-like body. And since it is an optical measuring device, results can be obtained instantly.
Even if the film thickness of the film-like body changes rapidly in a short period of time, the measurement operation will not be unable to follow the change in time.

また、本発明の装置は測定対象である膜状体に光線を作
用させるだけなので、膜状体をその使用状態に即して、
しかも非破壊、非接触で評価できる。このため信頼性の
ある評価が得られる。
In addition, since the device of the present invention only applies a light beam to the membrane-like object to be measured, it can be used to
Moreover, it can be evaluated non-destructively and without contact. Therefore, reliable evaluation can be obtained.

さらに本発明の装置は、測定対象である膜状体が他の膜
状体や付着物と一体化している場合にも、これらを除去
しないままで(本来の重層構造の状態で)、当該膜状体
の膜厚変化のみを測定し評価することができる。
Furthermore, even when the film-like object to be measured is integrated with other film-like objects or deposits, the device of the present invention can measure the film without removing these objects (in the state of the original multilayer structure). It is possible to measure and evaluate only the change in film thickness of the body.

なお、実際の測定にあたっては、膜状体の表面や、膜状
体が鋼板等の基体上に形成されている場合における基体
表面による反射光が測定にかかってしまう可能性がある
。しかしこれらの反射光は膜状体の厚さ変化の前後にわ
たって不変であるため、測定値の変化に干渉する因子と
はならない。
Note that in actual measurements, there is a possibility that the measurement will be affected by light reflected by the surface of the film-like body or the surface of the base body when the film-like body is formed on a base body such as a steel plate. However, since these reflected lights remain unchanged before and after changes in the thickness of the film-like body, they do not become a factor that interferes with changes in measured values.

(第2発明の構成および作用、効果) 次に、前記第1発明をさらに具体化した第2発明につい
て、その構成および作用、効果を説明する。
(Structure, operation, and effect of the second invention) Next, the structure, operation, and effect of the second invention, which further embodies the first invention, will be explained.

前記の「膜状体」とは、薄いシート状のものを言い、軟
質のものでも硬質のものでも良い。かかる膜状体として
、例えば、各種の基体(自動車のボデー、建物の壁部等
)の表面に形成される塗膜の他、包装用シート材や各種
用途に用いる薄板体等を挙げることができる。
The above-mentioned "membrane-like material" refers to a thin sheet-like material, and may be either a soft material or a hard material. Examples of such film-like bodies include coating films formed on the surfaces of various substrates (automobile bodies, building walls, etc.), as well as packaging sheet materials and thin plates used for various purposes. .

前記の「膜状体基質」とは、膜状体のマトリックスを構
成する物質を言う。従って膜状体基質は、膜状に成形可
能で、ある程度以上の透光性があり、かつ何らかの原因
によって膜状体としての厚さ変化を起こす物質であれば
良い。
The above-mentioned "membrane-like substance matrix" refers to a substance that constitutes the matrix of the membranous body. Therefore, the membrane substrate may be any material as long as it can be formed into a membrane, has a certain degree of light transmission, and causes a change in thickness as a membrane for some reason.

膜状体の厚さ変化の現象は、その原因の如何を問わない
。例えば、ベース塗膜がクリヤ塗料の成分を吸収して膨
潤する現象、塗膜層から揮発性成分が揮散して収縮する
現象、吸湿性の薄膜材が空気の湿度変化に応じて吸湿に
よる膨潤や乾燥による収縮を起こす現象等を挙げ得る。
The phenomenon of thickness change of the membranous body does not matter what the cause is. For example, the base paint film absorbs the components of the clear paint and swells, the volatile components evaporate from the paint film layer and shrink, and the hygroscopic thin film material swells due to moisture absorption in response to changes in air humidity. Examples include the phenomenon of shrinkage due to drying.

更に、これらの膜厚変化の評価を通じて、膜状体の重量
あるいは質Iの増減を間接的に評価することも可能であ
る。
Furthermore, through evaluation of these changes in film thickness, it is also possible to indirectly evaluate changes in the weight or quality I of the film-like body.

前記の「光反射性の小片体」とは、光を反射する偏平な
小片体を言う。例えば、メタリックベース塗膜中に分散
されるメタル片を挙げることができるが、その他にも、
雲母片のようにある程度以上の光反射性と若干の光透過
性とを併せ持つものでも良い。小片体は、膜状体基質中
に分散させるものであるため、その平面方向の直径が膜
状体の厚さに比して過大なものは好ましくない。
The above-mentioned "light-reflecting small piece" refers to a flat small piece that reflects light. Examples include metal flakes dispersed in metallic base coatings, but there are also other
It may also be a material that has both a certain degree of light reflection and some light transmission, such as mica flakes. Since the small pieces are to be dispersed in the membrane matrix, it is not preferable that the diameter in the planar direction is too large compared to the thickness of the membrane.

光透過性の膜状体基質中に光反射性の小片を分散させて
なる膜状体を形成するにあたっては、手作業により、あ
るいは適当な混練、撹拌装置を用いて膜状体基質中に小
片を分散させ、これをハケやスプレー装置等を用いて基
体表面上に塗装したり、成形ロール等を用いてシート状
に成形したりすることができる。
To form a film by dispersing light-reflecting particles in a light-transmitting film matrix, disperse the small pieces into the film matrix by hand or using an appropriate kneading or stirring device. It can be dispersed and painted onto the surface of the substrate using a brush or spray device, or it can be formed into a sheet using a forming roll or the like.

次に前記の「光線」としては、平行光線であって、統計
的に有意義な数の分散小片体が含まれるような照射範囲
の幅をもったものが望ましい。しかし、照射範囲の幅が
特定された散乱光線でも使用可能である。光線の強さや
波長には特に制約がなく、また膜状体に対する光線の照
射角度も限定されない。このような光線の照射範囲の幅
や照射方向を設定するにあたり、光線を発する光源と膜
状体との間に、光線の拡散、収束用のレンズや光線の進
行方向を反転させるための反射鏡等を設置しても良い。
Next, the above-mentioned "light beam" is preferably a parallel light beam having a width of the irradiation range such that a statistically significant number of dispersed particles are included. However, it is also possible to use scattered light with a specified width of the irradiation range. There are no particular restrictions on the intensity or wavelength of the light beam, and there are no limitations on the irradiation angle of the light beam on the film-like body. In setting the width and direction of the irradiation range of such light rays, a lens for diffusing and converging the rays and a reflecting mirror for reversing the direction of travel of the rays are installed between the light source that emits the light rays and the film-like body. etc. may be installed.

小片体による反射光の測定は、受光器を用いて行う。こ
こに受光器とは、小片体による反射光を捕捉して、その
反射光の強さを読み取ることができるデバイスであれば
良い。
The light reflected by the small piece is measured using a light receiver. Here, the light receiver may be any device that can capture the light reflected by the small piece and read the intensity of the reflected light.

第4図のような光学系における受光器による反射光の測
定において、膜状体や基体の表面による正反射光が測定
にかかることを特に避けたい場合には、受光器をこのよ
うな正反射方向から2°〜30′程度以上ズラせた方向
に設置すれば良い。
When measuring reflected light by a light receiver in an optical system like the one shown in Figure 4, if you want to avoid specularly reflected light from the surface of a film or base material, It may be installed in a direction shifted by about 2° to 30' or more from the direction.

〔実施例〕〔Example〕

次に本願発明の一実施例を説明する。 Next, one embodiment of the present invention will be described.

本実施例は、自動車のボデー表面に形成されるメタリッ
ク塗膜のベース塗膜層について、n−ブタノール、トル
エンおよびクリヤ塗料による膨潤挙動を第4図に示す光
学系によって評価したものである。なお、n−ブタノー
ル、トルエンはいずれもクリヤ塗料の成分として一般的
に用いられているものである。
In this example, the swelling behavior of the base paint layer of a metallic paint film formed on the surface of an automobile body by n-butanol, toluene, and a clear paint was evaluated using the optical system shown in FIG. 4. Note that n-butanol and toluene are both commonly used as components of clear paints.

まず、自動車ボデー用鋼板の表面に、予めメタル片を分
散させたメタリックベース塗料(関西ペイント製マジク
ロン・・・商標)をスプレー塗装してメタリックベース
塗膜層を形成した。
First, a metallic base coating layer was formed on the surface of a steel plate for an automobile body by spray painting a metallic base coating material (Magicron, trade name, manufactured by Kansai Paint Co., Ltd.) in which metal pieces had been dispersed in advance.

このようなベース塗膜層資料を3列準備し、これらに対
してn−ブタノール、トルエンおよびクリヤ塗料(関西
ペイント製マジクロンクリャ・・・商標)をそれぞれド
クターブレードを用いて塗布し、室温で放置した。
Three rows of such base paint layer materials were prepared, and n-butanol, toluene, and clear paint (Magicron Clear, trademarked by Kansai Paint Co., Ltd.) were respectively applied to these using a doctor blade, and the materials were left at room temperature. .

そして、上記のn−ブタノール、トルエンおよびクリヤ
塗料を塗布した直後から25分又は30分間について、
膜厚変化測定装置によってベース塗膜層の膨潤挙動を連
続的に評価した。
Then, for 25 or 30 minutes immediately after applying the above n-butanol, toluene and clear paint,
The swelling behavior of the base coating layer was continuously evaluated using a film thickness change measuring device.

第4図において、試料は上記のように自動車ボデー用鋼
板1の表面にメタル片を分散させたベース塗膜層2を形
成したものであり、かつベース塗膜層2上にはn−ブタ
ノール、トルエン又はクリヤ塗料からなるクリヤコート
材料6が塗布されている。光源4は試料の表面に対する
法線yに対し30°傾いた方向より一定幅の平行光線で
ある入射光αを試料3に対して照射するように設置され
ている。法線yに対し、前記光源7と同じ側へ60°傾
いた方向には第1の受光器5が、また光源7に対する反
対側へ60°傾いた方向には第2の受光器5がそれぞれ
設置されている。これらの受光器5.5として村上色彩
技術研究新製の色差計GCD−100用デイテクターを
用いた。そして受光器5.5はいずれも前記の入射光α
の試料に対する入射部λを指向して設置されている。
In FIG. 4, the sample is one in which a base coating layer 2 in which metal pieces are dispersed is formed on the surface of a steel plate 1 for an automobile body as described above, and n-butanol, n-butanol, A clear coat material 6 made of toluene or clear paint is applied. The light source 4 is installed so as to irradiate the sample 3 with incident light α, which is a parallel beam of constant width, from a direction inclined by 30 degrees with respect to the normal y to the surface of the sample. The first light receiver 5 is located in a direction tilted by 60 degrees to the same side as the light source 7 with respect to the normal y, and the second light receiver 5 is located in a direction tilted by 60 degrees to the opposite side to the light source 7. is set up. As these light receivers 5.5, detectors for a color difference meter GCD-100 manufactured by Murakami Color Technology Research Co., Ltd. were used. The photoreceiver 5.5 receives the above-mentioned incident light α.
It is installed with the incident part λ facing the sample.

第5図〜第7図は、ベース塗膜層2上にそれぞれn−ブ
タノール、トルエン又はクリヤ塗料を塗布した前記の各
試料についてのR(Lβ2/Lβの経時変化を示したも
のである。各図において横軸にはクリヤコート材料6塗
布後の経過時間を分単位で示し、また縦軸にはRの値を
示す。各図において、n−ブタノール、トルエン又はク
リヤ塗) 料からなるクリヤコート材料6の塗布直後からRの値が
著しく下がっており、クリヤコート材料6の吸収による
ベース塗膜層5の膨潤が急速に進行している様子が良く
評価できた。そして第6図におけるR値の下がり方が特
に急激で下げ幅も大きいことから、トルエンが特にベー
ス塗膜層5の膨潤を引き起こし易いことも評価できた。
Figures 5 to 7 show the changes in R (Lβ2/Lβ) over time for each of the above-mentioned samples in which n-butanol, toluene, or clear paint was applied on the base coating layer 2, respectively. In the figures, the horizontal axis shows the elapsed time in minutes after application of the clear coat material 6, and the vertical axis shows the value of R. In each figure, the clear coat made of n-butanol, toluene, or clear paint is used. The value of R decreased significantly immediately after the application of Material 6, and it was well evaluated that the swelling of the base coating layer 5 due to the absorption of Clear Coat Material 6 was progressing rapidly. Furthermore, since the R value in FIG. 6 decreased particularly rapidly and the amount of decrease was large, it was also evaluated that toluene was particularly likely to cause swelling of the base coating layer 5.

次に、第5図〜第7図において、2分〜7分経過頃から
Rの値が下げ止まり、上昇に転じて、以後は初期値より
やや低い平衡値に向かって漸近する上昇カーブを示して
いる。このようなR値の経時変化から、前記の膨潤プロ
セスが終了した後はクリヤコート材料6やそのベース塗
膜層への吸収分の揮散が優勢となり、ベース塗膜層が収
縮して行くと言う、発明者らの推理と良(合致した評価
結果が得られた。
Next, in Figures 5 to 7, the value of R stops decreasing after 2 minutes to 7 minutes, starts to rise, and thereafter shows an increasing curve that asymptotically approaches an equilibrium value that is slightly lower than the initial value. There is. From such changes in the R value over time, it is said that after the above-mentioned swelling process is completed, the volatilization of the clear coat material 6 and its absorbed components into the base coating layer becomes dominant, causing the base coating layer to shrink. , evaluation results were obtained that were in good agreement with the inventors' reasoning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(C)は本願発明の前提となる
メタル片の配向変化の原理を示す図、第2図、第4図は
本願発明のハードウェア部分の例を簡略化して示す図、
第3図は本願発明のソフトウェア部分のフローチャート
、第5図〜第7図は実施例における3種類のクリヤコー
ト材料を用いた場合のRの値の経時変化を示すグラフで
ある。
Figures 1 (a), (b), and (C) are diagrams showing the principle of changing the orientation of metal pieces, which is the premise of the present invention, and Figures 2 and 4 are simplified examples of the hardware portion of the present invention. A diagram showing the
FIG. 3 is a flowchart of the software portion of the present invention, and FIGS. 5 to 7 are graphs showing changes over time in the value of R when three types of clear coat materials are used in Examples.

Claims (1)

【特許請求の範囲】[Claims]  光透過性の厚さの変化が可能な基質中に、光反射性の
小片体が多数分散している膜状体に対して角度をなして
光を照射する光源と、前記膜状体に対して特定の位置に
配設され、光源から照射され前記膜状体に分散した小片
体によって反射された反射光を検出する検出手段と、前
記膜状体の厚さが変化した時の変化の前後における前記
検出手段によって検出された反射光の変化を演算するこ
とにより、厚さが変化した膜状体の基質中に分散した小
片体の分散態様の変化を求めることによって膜状体の膜
厚変化量を演算する演算手段とから成ることを特徴とす
る膜厚変化測定装置。
a light source that irradiates light at an angle to a film-like body in which a large number of light-reflecting particles are dispersed in a substrate whose thickness can be changed; a detection means disposed at a specific position in the membrane body for detecting reflected light irradiated from a light source and reflected by the small pieces dispersed in the membrane body; Changes in the film thickness of the film-like body are determined by calculating the change in the reflected light detected by the detection means in the step 1 and determining the change in the dispersion mode of the small pieces dispersed in the substrate of the film-like body whose thickness has changed. 1. A film thickness change measuring device comprising: calculation means for calculating a quantity.
JP24548389A 1989-09-21 1989-09-21 Film thickness variation measuring instrument Pending JPH03107704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24548389A JPH03107704A (en) 1989-09-21 1989-09-21 Film thickness variation measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24548389A JPH03107704A (en) 1989-09-21 1989-09-21 Film thickness variation measuring instrument

Publications (1)

Publication Number Publication Date
JPH03107704A true JPH03107704A (en) 1991-05-08

Family

ID=17134332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24548389A Pending JPH03107704A (en) 1989-09-21 1989-09-21 Film thickness variation measuring instrument

Country Status (1)

Country Link
JP (1) JPH03107704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510520A (en) * 2006-11-20 2010-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for generating bi-directional reflection distribution function of gonio-appearance material with limited measurement data
US20110150407A1 (en) * 2009-12-18 2011-06-23 Beamon Hubert B Rotary Locking Apparatus for Fiber Optic Equipment Trays and Related Methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010510520A (en) * 2006-11-20 2010-04-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for generating bi-directional reflection distribution function of gonio-appearance material with limited measurement data
US20110150407A1 (en) * 2009-12-18 2011-06-23 Beamon Hubert B Rotary Locking Apparatus for Fiber Optic Equipment Trays and Related Methods

Similar Documents

Publication Publication Date Title
US4748329A (en) Method for on-line thickness monitoring of a transparent film
Ogieglo et al. In situ ellipsometry studies on swelling of thin polymer films: A review
EP0397388B1 (en) Method and apparatus for measuring thickness of thin films
US6805899B2 (en) Multi-measurement/sensor coating consolidation detection method and system
US6052191A (en) Coating thickness measurement system and method of measuring a coating thickness
JPH0627742B2 (en) Assay method and apparatus therefor
JPH04501175A (en) Surface measurement device and method using ellipsometry
US11867595B2 (en) X-ray reflectometry apparatus and method thereof for measuring three dimensional nanostructures on flat substrate
JPS58154602A (en) Method and apparatus for measuring film thickness of surface of tin-free steel
US11579099B2 (en) X-ray reflectometry apparatus and method thereof for measuring three dimensional nanostructures on flat substrate
Horn et al. Plasmon spectroscopy: methods, pitfalls and how to avoid them
EP2577265B1 (en) Apparatus and method for locating the centre of a beam profile
JPH03107704A (en) Film thickness variation measuring instrument
CN113466140A (en) Micro-lens polarization effect calibration method in low-light-spot ellipsometer
Spirk et al. Current opportunities and challenges in biopolymer thin film analysis—Determination of film thickness
WO2014038601A1 (en) Device for measuring distribution of coating film surface roughness
JP3873120B2 (en) Thin film thickness measurement method
Mayo et al. Apparatus for the study of macromolecular adsorption
JP2003503685A (en) Layer thickness measurement method and equipment
JPH09115973A (en) Inspecting method for foreign substance
Holoubek Light scattering and reflectance of optically heterogeneous polymers in multiple scattering regime
JP2001513880A (en) Method for measuring components of a coating on a moving substrate
KR950015551A (en) Manufacturing method and apparatus for manufacturing semiconductor integrated circuit device
RU2158897C1 (en) Method testing thickness of film in process of its deposition and device for its realization
JP3269772B2 (en) Non-destructive refractive index measuring method and apparatus