JPH03107504A - Fluid leak preventing device for axial flow turbine - Google Patents

Fluid leak preventing device for axial flow turbine

Info

Publication number
JPH03107504A
JPH03107504A JP24215689A JP24215689A JPH03107504A JP H03107504 A JPH03107504 A JP H03107504A JP 24215689 A JP24215689 A JP 24215689A JP 24215689 A JP24215689 A JP 24215689A JP H03107504 A JPH03107504 A JP H03107504A
Authority
JP
Japan
Prior art keywords
bucket
fluid
cover
bucket cover
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24215689A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yamazaki
義昭 山崎
Takeshi Sato
武 佐藤
Yoshio Kano
芳雄 鹿野
Norio Yasugadaira
安ケ平 紀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24215689A priority Critical patent/JPH03107504A/en
Publication of JPH03107504A publication Critical patent/JPH03107504A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a leak loss so as to enhance turbine stage efficiency by leading fluid in the inlet of a stationary blade to the vicinity of the downstream end in a peripheral axial direction of a bucket cover to eject the fluid toward the upstream in the axial direction. CONSTITUTION:Static diaphragm outer and inner rings 3 and 4 hold a stationary blade 2. A bucket 1 is disposed downstream of the corresponding stationary blade 2. A bucket cover 5 is attached to the tip end of the bucket 1. A seal fin 7 is embedded in the diaphragm outer ring 3 located outside of the bucket cover 5. With this arrangement, a passage 9 communicated from the upstream of the stationary blade 2 toward the outlet of the bucket 1 is formed in the diaphragm outer ring 3. An annular nozzle 10 is interposed between the disphragm outer ring 3 and a cover 8. High pressure steam is ejected from the annular nozzle 10 toward the seal fin 7, thereby preventing any lead of fluid.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は軸流流体機械のバケットカバー外周面とダイヤ
フラム外輪の内面との半径方向間隙がらの漏洩防止装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a leakage prevention device for a radial gap between the outer peripheral surface of a bucket cover and the inner surface of a diaphragm outer ring of an axial fluid machine.

〔従来の技術〕[Conventional technology]

タービンは、ダイヤフラムに装着された複数枚の静翼を
通過した流れが、ロータに装着された複数枚の動翼を通
過する際に有用な仕事をするものであり、この動翼には
、半径方向先端の周方向に環状のバケットカバーが装着
されている。このバケットカバーは、各動翼の先端に設
けたテノンに嵌合される開口をもち、嵌合後に開口を貫
く各ケノンを金づちで鋏ぬることによって固定されてい
る。また、バケットカバーは、動翼内での加速流の半径
方向流れを強制することになり、このため、タービン作
動流体の一部が、動翼とパケットカバにより画成された
流路を通ることなく、静翼を通過した後に半径方向に流
され、バケットカバー外周面を軸方向に流れる漏流を発
生している。この漏流は有用な仕事をしない流れであり
、タービン構造体では、タービン効率を高めるために、
タービンにおける動翼の半径方向先端周囲からの漏流を
抑制するためにラビリンスシール構造がとられており、
最近でも漏流を最少にする手段が絶えず探求されている
。しかし、ラビリンスシールを構造では漏れ量を減少す
ることができるが、これを無くすことは不可能である。
A turbine performs useful work when the flow that has passed through multiple stator blades attached to a diaphragm passes through multiple moving blades attached to a rotor. An annular bucket cover is attached to the circumferential direction of the tip. This bucket cover has an opening into which a tenon provided at the tip of each rotor blade is fitted, and after fitting, each canon passing through the opening is fixed by hammering out each canon with a hammer. The bucket cover also forces a radial flow of accelerated flow within the rotor blades, so that a portion of the turbine working fluid passes through the flow path defined by the rotor blades and the packet cover. Instead, after passing through the stationary blades, the leakage flow flows in the radial direction and flows in the axial direction on the outer circumferential surface of the bucket cover. This leakage flow is a flow that does not perform useful work, and in the turbine structure, in order to increase turbine efficiency,
A labyrinth seal structure is used to suppress leakage from around the radial tips of rotor blades in turbines.
Nowadays, means to minimize leakage are constantly being sought. However, although the labyrinth seal structure can reduce the amount of leakage, it is impossible to eliminate it.

これを改良する方法として、ソ連特許第5U1188・
337・A号に記載のように、静翼」−流のダイヤフラ
ム外周から静翼出口(動翼入口)のダイヤフラム外周に
連絡する通路を設け、静翼上流の圧力の高い流体を動翼
入口側バケットカバー外周上に導き、バケットカバー外
周上に導き、バケットカバー外周」二を軸方向に流れる
漏流を減少させる方法がとられている。
As a method to improve this, Soviet Patent No. 5U1188
As described in No. 337-A, a passage is provided that connects the diaphragm outer periphery of the stator blade flow to the diaphragm outer periphery of the stator blade outlet (rotor blade inlet), and the high pressure fluid upstream of the stator blade is directed to the rotor blade inlet side. A method is used to reduce the leakage flow that flows in the axial direction on the outer circumference of the bucket cover by guiding it onto the outer circumference of the bucket cover.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、動翼とバケットカバーにより画成され
た流路を通ることなく、静翼を通過した後に、半径方向
に流され、バケットカバー外周」二を軸方向に流れる漏
流を減少させるが、静翼」1流から導いた流体も含めて
バケットカバー外周上を軸方向に流れる漏流を無(する
までには至っていなかった。
The above conventional technology reduces the leakage flow that flows in the radial direction after passing through the stator blades without passing through the flow path defined by the rotor blades and the bucket cover, and flows in the axial direction around the outer circumference of the bucket cover. However, it has not yet been possible to eliminate the leakage flow that flows in the axial direction on the outer circumference of the bucket cover, including the fluid led from the first flow of the stator blade.

本発明の目的は、バケットカバーの外周上を軸方向下流
側に流れる漏流をほぼ雰として、パケット内への流量を
相対的に増加して有効な仕事とし、タービン効率を向上
する軸流タービンの流体漏洩防止装置を提供することに
ある。
An object of the present invention is to provide an axial flow turbine that uses leakage flow flowing axially downstream on the outer periphery of a bucket cover to relatively increase the flow rate into the packet to perform effective work and improve turbine efficiency. An object of the present invention is to provide a fluid leakage prevention device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、静翼上流のダイヤフラム外
周から動翼出口のダイヤフラム外周に連通ずる流路を設
け、この流路の出口端に環状ノズルを形成し、静翼上流
の圧力の高い流体を環状ノズルよりシールフィン間隙部
に噴出し、流体がバケットカバー外周上を下流側より上
流側に流れるようにしたものである。
In order to achieve the above objective, a flow path is provided that communicates from the outer periphery of the diaphragm upstream of the stator blade to the outer periphery of the diaphragm at the outlet of the rotor blade, and an annular nozzle is formed at the outlet end of this flow path to allow the high-pressure fluid upstream of the stator blade to flow. is ejected from an annular nozzle into the seal fin gap so that the fluid flows over the outer circumference of the bucket cover from the downstream side to the upstream side.

〔作用〕[Effect]

軸流タービンでは、作動流体は静翼を通過する時に圧力
が速度エネルギに変換されて、速度が早くなり動翼に衝
動仕事をし、動翼を通過する時にさらに圧力が低くなり
、速度を早めて流出し反動仕事をする。従って、作動流
体の圧力は静翼入口が一番高く、静翼出口、動翼出口と
低くなる。−4− 方、静翼入口の高圧蒸気をバイパス通路を通して動翼出
口に噴流として流出させると、静圧は動翼出口圧力と等
しくなるが、全圧は動翼内で仕事をしていないので、バ
イパス流路での摩擦損失を考慮しても静翼出口圧力より
高くなる。従って、この噴流をバケツ1−カバーの外周
面とシールフィンとの隙間に噴出すると、静翼出口の圧
力に打勝ってシールフィン部を動翼出口の下流側から静
翼出口の上流側に動翼内の主流と逆向きに流すことがで
きる。
In an axial flow turbine, when the working fluid passes through the stationary blades, the pressure is converted into velocity energy, which increases the speed and performs impulse work on the rotor blades.As it passes through the rotor blades, the pressure further decreases, increasing the speed. It flows out and does reaction work. Therefore, the pressure of the working fluid is highest at the inlet of the stator blade, and becomes lower at the outlet of the stator blade and the rotor blade. -4- On the other hand, if high-pressure steam at the stator blade inlet flows out as a jet to the rotor blade outlet through the bypass passage, the static pressure becomes equal to the rotor blade outlet pressure, but the total pressure is not doing work inside the rotor blade, so , even if friction loss in the bypass flow path is taken into consideration, the pressure will be higher than the stator blade outlet pressure. Therefore, when this jet is ejected into the gap between the outer peripheral surface of the bucket 1 cover and the seal fin, it overcomes the pressure at the stator blade outlet and moves the seal fin part from the downstream side of the rotor blade outlet to the upstream side of the stator blade outlet. It is possible to flow in the opposite direction to the main flow inside the wing.

これにより、バケットカバー外周面を仕事をしないで軸
方向下流に流れる漏流をほとんど無すことができる。
This makes it possible to almost eliminate leakage flowing downstream in the axial direction without applying any work to the outer circumferential surface of the bucket cover.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。第1図は実施例の要部を示す断面図であり、静止
ダイヤフラム外輪3と内軸4は周方向に配置された複数
個の静翼2登保持している。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a sectional view showing a main part of the embodiment, in which a stationary diaphragm outer ring 3 and an inner shaft 4 hold two plurality of stationary blades arranged in the circumferential direction.

回転可能な複数個の動翼1は対応する静翼2に対して流
れの下流側位置に配置されている。
A plurality of rotatable rotor blades 1 are arranged downstream of the corresponding stationary blades 2 in the flow direction.

動翼1の先端は出口側の径が大きいために傾斜しており
、この傾斜した先端にはバケットカバー5が設けられ、
これによって複数の動翼1が連結されている。すなわち
、バケツ1〜カバー5は周方向に複数個の開口をもち、
動翼1の外端から突起しているテノン6がこれらの開口
を貫通して外方へ突出された後、テノン6は鋏められて
いる。
The tip of the moving blade 1 is inclined because the diameter on the outlet side is large, and a bucket cover 5 is provided at this inclined tip.
This connects the plurality of rotor blades 1. That is, the bucket 1 to the cover 5 have a plurality of openings in the circumferential direction,
After the tenons 6 protruding from the outer ends of the rotor blades 1 pass through these openings and project outwards, the tenons 6 are pinched.

バケットカバー5は、外周の軸方向下流端部に半径の−
様な平面部11が形成されている。この外周のダイヤプ
ラム外輪には、シールフィン7が植込まれている。また
、ダイヤフラム外輪3には静翼2の上流側から動翼出口
部に連通ずる流路9が設けられ、さらに、カバー8とダ
イヤフラム外輪3との間に環状ノズル10を形成してい
る。
The bucket cover 5 has a radius of -
A flat portion 11 having a similar shape is formed. A seal fin 7 is embedded in the outer diaphragm ring on the outer periphery. Further, the diaphragm outer ring 3 is provided with a flow path 9 communicating from the upstream side of the stationary blade 2 to the rotor blade outlet, and furthermore, an annular nozzle 10 is formed between the cover 8 and the diaphragm outer ring 3.

第1図のシール部の拡大図を第2図に示す。本図では、
カバー8とダイヤフラム外輪3とで形成されている環状
ノズル1oの幅1はパケットカバ外周の平面部11とシ
ールフィン7で形成される間隙8より若干小さく、しか
も、環状ノズル10は平面部11に対して噴流が内向き
になるように形成されている。
FIG. 2 shows an enlarged view of the seal portion in FIG. 1. In this diagram,
The width 1 of the annular nozzle 1o formed by the cover 8 and the diaphragm outer ring 3 is slightly smaller than the gap 8 formed by the flat part 11 on the outer periphery of the packet cover and the seal fin 7. On the other hand, the jet stream is formed inward.

これにより、静翼入口の高圧蒸気は流路9を通って環状
ノズル10に導かれ、環状ノズル1oよリシールフィン
7の間隙部に向って噴出される。
As a result, the high-pressure steam at the inlet of the stationary blade is guided to the annular nozzle 10 through the flow path 9, and is ejected from the annular nozzle 1o toward the gap between the reseal fins 7.

噴出された蒸気は矢印の流線で示すようにシールフィン
7の間隙δを通って動翼入口側に流れる。
The ejected steam passes through the gap δ between the seal fins 7 and flows toward the rotor blade inlet side as indicated by the streamlines of arrows.

ここで、シールフィン7の上流側(動翼入口側)の圧力
は環状ノズル10の出口部(動翼出口側)圧力より高い
が、噴流の全圧はシールフィン7の」1流側より高いの
で、噴流の運動エネルギにより噴流をシールフィン7の
上流側に導くことができる。この結果、圧力の高いシー
ルフィン7の上流側から圧力の低いシールフィン7の下
流側への流体漏洩を防止することができる。
Here, the pressure on the upstream side (rotor blade inlet side) of the seal fin 7 is higher than the pressure at the outlet part of the annular nozzle 10 (rotor blade outlet side), but the total pressure of the jet is higher than that on the first flow side of the seal fin 7. Therefore, the jet can be guided to the upstream side of the seal fin 7 by the kinetic energy of the jet. As a result, fluid leakage can be prevented from the upstream side of the seal fins 7 where the pressure is high to the downstream side of the seal fins 7 where the pressure is low.

第3図は、本実施側における効果を説明するための膨張
線図である。まず、従来の動翼先端からの漏洩流体は鎖
線で示すような膨張をする。すなわち、静翼2の先端入
口部の流体は圧力POで0点の状態にあり、静翼内で加
速され圧力PNでa′点の状態となる。漏洩流は主流よ
り分流され=7 てシールフィン入口部に導かれるために、静翼出口で保
有していた運動エネルギは熱エネルギになりb点の状態
となる。さらに、シールフィン7の間隙部で動翼出口側
の圧力PBまで膨張してC′の状態になるが、この噴流
はシールフィン出口部で渦となりd点の状態となる。従
って漏洩する流体は仕事をせず、熱落差でLE’の損失
となる。
FIG. 3 is an expansion diagram for explaining the effects of this implementation. First, fluid leaking from the tip of a conventional rotor blade expands as shown by the chain line. That is, the fluid at the tip inlet of the stator vane 2 is at a zero point with a pressure PO, and is accelerated within the stator vane and reaches a state at a' point with a pressure PN. Since the leakage flow is diverted from the main stream and guided to the seal fin inlet, the kinetic energy held at the stationary blade outlet becomes thermal energy, resulting in the state at point b. Furthermore, the jet flow expands to the pressure PB on the rotor blade outlet side in the gap between the seal fins 7 and reaches the state C', but this jet becomes a vortex at the seal fin outlet and reaches the state at point d. Therefore, the leaking fluid does not perform any work, resulting in a loss of LE' due to the heat drop.

一方、本実施例では、実線で示すような膨張をする。静
翼2の先端入口部の0点の状態の流体は環状ノズル10
の出口部でa点の状態となる。この噴流はシールフィン
間隙部を通ってシールフィン上流側に流れ、PNまで圧
力が回復してb点の状態となる。このバイパス流は主流
といっしょになって動翼内を流れて0点の状態となり、
熱落差UEだけ仕事をする。従って、損失は熱落差LE
となり、従来構造に比べて熱落差でUEだけ損失を少な
くすることができる。この結果より、本発明は低圧蒸気
タービンのように動翼先端の反動度が高くなる段落はど
効果が大きい。
On the other hand, in this embodiment, expansion is performed as shown by the solid line. The fluid at the 0 point at the tip inlet of the stationary blade 2 flows through the annular nozzle 10.
The state at point a is reached at the exit. This jet flow passes through the seal fin gap and flows upstream of the seal fin, and the pressure is restored to PN, resulting in the state at point b. This bypass flow flows inside the rotor blade together with the main flow and reaches a zero point state.
Only the heat drop UE works. Therefore, the loss is the heat drop LE
Therefore, compared to the conventional structure, the loss due to the thermal drop can be reduced by the UE. From this result, the present invention has a large effect in the stage where the degree of reaction at the tip of the rotor blade is high, as in a low-pressure steam turbine.

第4図は本発明の他の実施例であり、シールフインコ3
の先端は傾斜しており、カバー12との間に斜めな環状
ノズル14を形成している。本実施例では噴流がカバー
5の外周面に対して傾斜するので漏洩防止力は、若干、
小さくなるが、第1図及び第2図の実施例に比べて反動
度が若干低い段落に有効である。
FIG. 4 shows another embodiment of the present invention, in which the sealing parakeet 3
The tip of the nozzle is inclined, forming an oblique annular nozzle 14 between the cover 12 and the cover 12. In this embodiment, since the jet stream is inclined with respect to the outer peripheral surface of the cover 5, the leakage prevention force is slightly reduced.
Although it is smaller, it is effective for a stage where the degree of recoil is slightly lower than that of the embodiments shown in FIGS. 1 and 2.

[発明の効果〕 本発明は、バケツ1へカバー外周からの流体漏洩防止装
置において、静翼入口側流体をバケットカバー外周軸方
向下流端部の近傍に導き、軸方向上流側に噴出させるこ
とにより、漏洩損失を減少させ、特に、動翼先端反動度
が高い低圧蒸気タービン等ではタービン段落効率を1〜
2%向上させることができる。
[Effects of the Invention] The present invention provides a device for preventing fluid leakage from the outer periphery of the cover to the bucket 1 by guiding the fluid on the inlet side of the stator blade to the vicinity of the downstream end of the outer periphery of the bucket cover in the axial direction and ejecting it to the upstream side in the axial direction. , reduce leakage loss, and increase the turbine stage efficiency from 1 to 1, especially in low-pressure steam turbines with high rotor blade tip reaction.
It can be improved by 2%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の流体漏洩防止装置の一実施例の部分断
面図、第2図は第1図の部分拡大図、第3図は本発明の
詳細な説明する膨張線図、第4図は本発明の他の実施例
の部分断面図である。 1 動翼、2 ・静翼、3 ・ダイヤフラム外輪、5・
・・バケットカバー、 7・・シールフィン、 ・カバ
Fig. 1 is a partial sectional view of an embodiment of the fluid leakage prevention device of the present invention, Fig. 2 is a partially enlarged view of Fig. 1, Fig. 3 is an expansion line diagram explaining the present invention in detail, and Fig. 4. FIG. 3 is a partial cross-sectional view of another embodiment of the present invention. 1. Moving blade, 2. Stationary blade, 3. Diaphragm outer ring, 5.
・・Bucket cover, 7.・Seal fin, ・Cover

Claims (1)

【特許請求の範囲】 1、バケットカバーの外側に位置するダイヤフラム外輪
の壁面にシールフィンを備えた軸流タービンの流体漏洩
防止装置において、前記バケットカバーの外周軸方向下
流端部に環状ノズルを形成し、前記ダイヤフラム外輪に
静翼入口と前記環状ノズルを連通する流路を設けたこと
を特徴とする軸流タービンの流体漏洩防止装置。 2、前記シールフィンに対応した前記バケットカバーの
外周で、流体が前記軸流タービンの下流側から上流側に
流れるようにしたことを特徴とする請求の範囲第1項に
記載の軸流タービンの流体漏洩防止装置。
[Scope of Claims] 1. In a fluid leakage prevention device for an axial flow turbine that includes a seal fin on the wall surface of a diaphragm outer ring located outside a bucket cover, an annular nozzle is formed at the downstream end of the outer periphery of the bucket cover in the axial direction. A fluid leakage prevention device for an axial turbine, characterized in that a flow path communicating between a stator blade inlet and the annular nozzle is provided in the diaphragm outer ring. 2. The axial flow turbine according to claim 1, wherein fluid flows from the downstream side to the upstream side of the axial flow turbine at an outer periphery of the bucket cover corresponding to the seal fin. Fluid leak prevention device.
JP24215689A 1989-09-20 1989-09-20 Fluid leak preventing device for axial flow turbine Pending JPH03107504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24215689A JPH03107504A (en) 1989-09-20 1989-09-20 Fluid leak preventing device for axial flow turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24215689A JPH03107504A (en) 1989-09-20 1989-09-20 Fluid leak preventing device for axial flow turbine

Publications (1)

Publication Number Publication Date
JPH03107504A true JPH03107504A (en) 1991-05-07

Family

ID=17085161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24215689A Pending JPH03107504A (en) 1989-09-20 1989-09-20 Fluid leak preventing device for axial flow turbine

Country Status (1)

Country Link
JP (1) JPH03107504A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267042A2 (en) * 2001-06-14 2002-12-18 Mitsubishi Heavy Industries, Ltd. Shrouded gas turbine blade
US8147180B2 (en) * 2007-10-03 2012-04-03 Kabushiki Kaisha Toshiba Axial flow turbine and stage structure thereof
EP2320028A3 (en) * 2009-11-05 2014-03-26 General Electric Company Steampath flow separation reduction system
EP3290650A1 (en) * 2016-08-29 2018-03-07 Mitsubishi Hitachi Power Systems, Ltd. Low-pressure steam turbine diffuser for reducing shock losses

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267042A2 (en) * 2001-06-14 2002-12-18 Mitsubishi Heavy Industries, Ltd. Shrouded gas turbine blade
EP1267042B1 (en) * 2001-06-14 2012-12-26 Mitsubishi Heavy Industries, Ltd. Shrouded gas turbine blade
US8147180B2 (en) * 2007-10-03 2012-04-03 Kabushiki Kaisha Toshiba Axial flow turbine and stage structure thereof
EP2320028A3 (en) * 2009-11-05 2014-03-26 General Electric Company Steampath flow separation reduction system
EP3290650A1 (en) * 2016-08-29 2018-03-07 Mitsubishi Hitachi Power Systems, Ltd. Low-pressure steam turbine diffuser for reducing shock losses
KR20180025139A (en) * 2016-08-29 2018-03-08 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Turbine
CN107795344A (en) * 2016-08-29 2018-03-13 三菱日立电力系统株式会社 Turbine

Similar Documents

Publication Publication Date Title
US6164655A (en) Method and arrangement for sealing off a separating gap, formed between a rotor and a stator, in a non-contacting manner
US9476315B2 (en) Axial flow turbine
US8727713B2 (en) Rotor oscillation preventing structure and steam turbine using the same
US7971882B1 (en) Labyrinth seal
JP2007321721A (en) Axial flow turbine stage and axial flow turbine
JP6216643B2 (en) Turbomachine with swirl prevention seal
US10619490B2 (en) Turbine rotor blade arrangement for a gas turbine and method for the provision of sealing air in a turbine rotor blade arrangement
JP2015086872A (en) Microchannel exhaust for cooling and/or purging gas turbine segment gaps
CA2927037C (en) Rotor assembly with scoop
CA2927035C (en) Rotor assembly with wear member
US6264425B1 (en) Fluid-flow machine for compressing or expanding a compressible medium
JPS62214232A (en) Turbine driven by exhaust gas from internal combustion engine
KR102465616B1 (en) Guide vane assembly for a rotary machine and methods of assembling the same
JP2011106474A (en) Axial flow turbine stage and axial flow turbine
US5997249A (en) Turbine, in particular steam turbine, and turbine blade
KR102272728B1 (en) Steam turbine and methods of assembling the same
EP0097608B1 (en) Turbine wheel having buckets or blades machined into the outer circumference of the wheel
US11136897B2 (en) Seal device and turbomachine
US11702947B2 (en) Rotating machine
JP2004011553A (en) Axial flow type turbo machine
JPH03107504A (en) Fluid leak preventing device for axial flow turbine
JP2018040282A (en) Axial flow turbine and diaphragm outer ring thereof
JP7145774B2 (en) rotating machinery
JP3943738B2 (en) Axial turbine nozzle and axial turbine
JP7130575B2 (en) axial turbine