JPH03107481A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH03107481A
JPH03107481A JP24517289A JP24517289A JPH03107481A JP H03107481 A JPH03107481 A JP H03107481A JP 24517289 A JP24517289 A JP 24517289A JP 24517289 A JP24517289 A JP 24517289A JP H03107481 A JPH03107481 A JP H03107481A
Authority
JP
Japan
Prior art keywords
substrate
electrode
counter electrode
substrate electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24517289A
Other languages
Japanese (ja)
Inventor
Akio Matsuda
彰夫 松田
Masabumi Tanabe
田辺 正文
Toshio Hayashi
俊雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP24517289A priority Critical patent/JPH03107481A/en
Publication of JPH03107481A publication Critical patent/JPH03107481A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformize a plasma distribution and to execute the plasma treatment uniformly at a high speed by enclosing the side between a counter electrode and a substrate electrode with a deposition preventive plate, ejecting gas from the ejection ports formed in the counter electrode and providing an annular discharge passage around the substrate electrode. CONSTITUTION:The etching gas is ejected from the ejection ports of the counter electrode 5 to a space 21. An electric current is passed to an inner electromagnet 18 and an outer electromagnet 19 to form axisymmetrical magnetic fields around the central axis of the substrate electrode 6. The high density plasma of the etching gas is formed in the space 21 when a high-frequency electric power is impressed from an RF power source 17 to the substrate electrode 6. The products generated by the etching and the etching gas which does not contribute to the etching are discharged through the annular discharge passage 23 around the substrate electrode 16 and are discharged through the clearance 28 with a baffle 27 of an annular chamber 25 from a discharge port 2. The space 21 is enclosed axisymmetrically by the deposition preventive plate 22 and the stable discharge is generated therein.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ドライエツチング装置、プラズマCVD装置
、アッシング装置等として使用されるプラズマ処理装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plasma processing apparatus used as a dry etching apparatus, a plasma CVD apparatus, an ashing apparatus, and the like.

(従来の技術) 従来、第1図及び第2図示のように、エツチング室aに
、アニス電位の平板状の対向電極すとRF電源Cに接続
された平板状の基板電極dとを互に平行に設け、該基板
電極dの前面に設けたエツチング処理される基板eに向
けてエツチングガスを噴出する多数の噴出口を対向電極
fに形成した枚葉式のエツチング装置が知られている。
(Prior Art) Conventionally, as shown in FIGS. 1 and 2, in an etching chamber a, a flat counter electrode at an anis potential and a flat substrate electrode d connected to an RF power source C are connected to each other. A single-wafer type etching apparatus is known in which a counter electrode f is provided with a number of jetting ports arranged in parallel and jetting etching gas toward a substrate e to be etched, which is provided in front of the substrate electrode d.

これの基板電極dはエツチング室aにスペーサーシール
ドgを介して取付けられ、基板eは仕切バルブhを介し
て外部から該エツチング室aに搬入される。この装置に
於て、排気口iから該エツチング室a内を真空排気した
のちガス導入用バルブjを開いて対向電極すからエツチ
ングガスを噴出させ乍らRF電電源上り基板電極dに高
周波電力を印加すると、エツチングガスは高周波電力に
より画電極す、d間でプラズマ状態となり、活性化され
たイオン、ラジカルにより基板eがエツチングされ、こ
れに伴ない発生するエツチング生成物等゛は、排気ガス
として排気口iから排出される。kは環状の防着板、I
は発光スペクトルモニター、真空計等が設けられるセン
サーポートである。
The substrate electrode d is attached to the etching chamber a via a spacer shield g, and the substrate e is carried into the etching chamber a from the outside via a partition valve h. In this apparatus, after the etching chamber a is evacuated from the exhaust port i, a gas introduction valve j is opened to eject etching gas from the counter electrode, and high-frequency power is applied to the upstream substrate electrode d of the RF power source. When the etching gas is applied, the high-frequency power turns the etching gas into a plasma state between the picture electrodes and d, and the substrate e is etched by the activated ions and radicals. It is discharged from the exhaust port i. k is an annular adhesion prevention plate, I
is a sensor port where an emission spectrum monitor, vacuum gauge, etc. are installed.

また、該基板電極の背後に磁石を設けて基板電極の前面
に磁場を発生させるようにしたマグネトロンエツチング
装置も知られており(特開昭57−IL4935号公報
)、この形式のものでは磁場により基板電極の前面に高
密度プラズマが発生するのでエツチング速度が向上する
Additionally, a magnetron etching device is known in which a magnet is provided behind the substrate electrode to generate a magnetic field in front of the substrate electrode (Japanese Patent Laid-Open No. 57-IL4935). Etching speed is improved because high-density plasma is generated in front of the substrate electrode.

更に基板電極の背後でなく、対向電極の背後に磁石を設
け、対向電極の前面に高密度プラズマを発生させ、基板
の均一なエツチングを目指すようにしたものも知られて
いる(特開昭8l−43427)。
Furthermore, there is also known a method in which a magnet is provided not behind the substrate electrode but behind the counter electrode, and high-density plasma is generated in front of the counter electrode, aiming at uniform etching of the substrate (Japanese Patent Application Laid-Open No. 1989-81). -43427).

更にスパッタリング装置に於て、ターゲットの背後に、
内外2重の環状の電磁石を設けて成膜を制御することも
行なわれている(特開昭61−162866 )。
Furthermore, in sputtering equipment, behind the target,
It has also been proposed to control film formation by providing a double ring-shaped electromagnet inside and outside (Japanese Patent Laid-Open No. 61-162866).

(発明が解決しようとする課題) 近時、高集積半導体デバイス製造のための微細加工にお
いて、プロセスのドライ化が進み、エツチング、CVD
、アッシング等にプラズマを使用するプロセスが多用さ
れるようになってきており、パターンの制御精度、再現
性、均−性等のエツチング特性を向上させるために基板
を1枚ずつ処理する枚葉処理が行なわれるようになって
きている。この枚葉処理の能率を向上させるためには、
プラズマ処理の高速化が必須でづ ある。
(Problem to be solved by the invention) In recent years, dry processes have been progressing in microfabrication for manufacturing highly integrated semiconductor devices, and etching, CVD
Processes that use plasma are increasingly being used for ashing, etc., and single-wafer processing, in which substrates are processed one by one, is used to improve etching characteristics such as pattern control accuracy, reproducibility, and uniformity. is increasingly being carried out. In order to improve the efficiency of this single leaf processing,
Speeding up plasma processing is essential.

プラズマ処理を高速化するには、磁場を使用すればよい
が、磁場のみを制御してプラズマ分布を均一化すること
は非常に困難であった。その原因は、第1図及び第2図
に見られるように、プラズマ処理装置のエツチング室a
のような真空処理室には、真空計、エツチング終点検出
器、膜厚計等を取付けるためのセンサーポートIが設け
られ、該真空処理室内に設けられる防着板kに、各ポー
トに対応する開孔部mを形成する必要があり、更には防
着板の排気口iや基板の搬送口jに対応する個所にも開
孔部mを形成しなければならず、これらの開孔部mのた
めに、高周波電力を基板電極dに印加したときに電位分
布が不均一化し、或はガスの流れが片寄り、その結果プ
ラズマが部分的に集中することが原因と考えられ、例え
ばエツチングの場合、基板の面内均一性が非常に悪くな
ってしまう不都合を生ずる。
Although a magnetic field can be used to speed up plasma processing, it has been extremely difficult to make the plasma distribution uniform by controlling only the magnetic field. The cause of this is, as shown in Figs. 1 and 2, the etching chamber a of the plasma processing equipment.
A vacuum processing chamber such as the one shown in FIG. It is necessary to form an opening m, and it is also necessary to form an opening m at a location corresponding to the exhaust port i of the adhesion prevention plate and the transfer port j of the substrate, and these openings m This is thought to be caused by the fact that when high-frequency power is applied to the substrate electrode d, the potential distribution becomes uneven, or the gas flow becomes uneven, resulting in local concentration of plasma. In this case, the in-plane uniformity of the substrate becomes extremely poor.

本発明は、プラズマ分布を均一化し、基板に対するプラ
ズマ処理を高速且つ均一に行なえるプラズマ処理装置を
提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a plasma processing apparatus that can uniformize plasma distribution and perform plasma processing on a substrate quickly and uniformly.

(課題を解決するための手段) 本発明では、真空処理室内に、アース電位又はフロート
電位の円板状の対向電極とRF電源に接続された円板状
の基板電極とを互に平行に設け、該基板電極面に設けた
基板へ向けてガスを噴出する多数の噴出口を該対向電極
面に形成したものに於て、該対向電極の背、後に、内外
2重の環状の軸対称の電磁石を設け、対向電極と基板電
極とで挾まれた空間の側方をプラズマの拡散を防ぐ環状
の防着板で囲み、該対向電極面に形成される噴出口を軸
対称に配置し、該基板電極と該防着板との間に環状の排
気通路を形成することにより、前記目的を達成するよう
にした。
(Means for Solving the Problems) In the present invention, a disk-shaped counter electrode at ground potential or float potential and a disk-shaped substrate electrode connected to an RF power source are provided in parallel with each other in a vacuum processing chamber. , in which a large number of jetting ports for ejecting gas toward the substrate provided on the surface of the substrate electrode are formed on the surface of the counter electrode, an annular axially symmetrical ring with double inner and outer layers is provided on the back of the counter electrode. An electromagnet is provided, the side of the space sandwiched between the counter electrode and the substrate electrode is surrounded by an annular adhesion prevention plate that prevents plasma diffusion, and the jet ports formed on the counter electrode surface are arranged axially symmetrically. The above object is achieved by forming an annular exhaust passage between the substrate electrode and the adhesion prevention plate.

本発明の好ましい構成では、該防着板の一部に、基板搬
送用の開閉口、及び、或は、蜂の巣状の小孔が形成され
、基板電極が対向電極に対して接近離反自在に設けられ
る。
In a preferred configuration of the present invention, an opening/closing opening for substrate transfer and/or a honeycomb-shaped small hole are formed in a part of the adhesion prevention plate, and the substrate electrode is provided so as to be able to move toward and away from the counter electrode. It will be done.

(作 用) 真空処理室内の基板電極上に基板を載せ、対向電極の噴
出口からガスをシャワー状に噴出させ、対向電極の背後
の電磁石に通電して該対向電極の前面に磁界を発生させ
た状態で基板電極にl?F電力を印加する。これにより
該ガスは真空処理室内が10””torr台の圧力であ
っても対向電極と基板電極との間で高密度プラズマ状態
となり、そのプラズマ中で発生したイオン、ラジカル等
が基板に突入してその表面をエツチング或はアッシング
し、或はプラズマ中で活性化されたガスが基板の表面に
付着してCVDによる薄膜が形成される。エツチング或
はアッシングに伴ない発生する生成物や余分のガスは排
気口から外部へ排除される。
(Operation) A substrate is placed on the substrate electrode in the vacuum processing chamber, gas is ejected in a shower form from the outlet of the counter electrode, and an electromagnet behind the counter electrode is energized to generate a magnetic field in front of the counter electrode. In this state, connect the substrate electrode with l? Apply F power. As a result, the gas becomes a high-density plasma between the counter electrode and the substrate electrode even if the pressure inside the vacuum processing chamber is on the order of 10'' torr, and ions, radicals, etc. generated in the plasma rush into the substrate. The surface is etched or ashed, or a gas activated in plasma is attached to the surface of the substrate to form a thin film by CVD. Products and excess gas generated during etching or ashing are exhausted to the outside through the exhaust port.

該対向電極の背後には、内外2重の環状の軸対称の電磁
石が設けられているので、該対向電極の表面の磁場分布
は中心軸対称性を持つようになり、対向電極と基板電極
の間の空間の側方を防着板で囲むことにより異常放電を
起さずに安定した放電が得られ、対向電極に軸対称に配
置した噴出口から均一にガスが吹き出すと共に該基板電
極と防着板の間の環状の排気通路から排気ロヘガスが排
出されるので、ガスの流れの片寄りがなくなり、均一に
分布したプラズマを両電極間に発生させ得、基板の面内
均−性の良いプラズマ処理が行なえる。
Behind the counter electrode, an annular axially symmetrical electromagnet with two layers inside and outside is provided, so that the magnetic field distribution on the surface of the counter electrode has central axis symmetry, and the distance between the counter electrode and the substrate electrode is By surrounding the sides of the space between them with anti-adhesive plates, stable discharge can be obtained without causing abnormal discharge, and gas is uniformly blown out from the ejection ports arranged axially symmetrically on the opposing electrode, and the anti-adhesive plate connects to the substrate electrode. Since the exhaust gas is discharged from the annular exhaust passage between the substrates, the gas flow is not unevenly distributed, and evenly distributed plasma can be generated between the two electrodes, resulting in plasma processing with good in-plane uniformity of the substrate. can be done.

(実施例) 本発明の実施例を図面第3図及び第4図に示すエツチン
グ装置に適用した場合を説明すると、これらの図面に於
て符号(1)は真空ポンプに接続される排気口(2)と
開閉自在の仕切バルブ(3)を備えた基板搬送口(4)
とが設けられた円形の真空処理室、(5) (6)は該
真空処理室(1)の上下に互に間隔を存して平行に設け
られた円板状の対向電極と基板電極を示す。
(Embodiment) To explain the case where the embodiment of the present invention is applied to the etching apparatus shown in FIGS. 3 and 4, the reference numeral (1) in these drawings is an exhaust port ( 2) and a substrate transfer port (4) equipped with a partition valve (3) that can be opened and closed.
(5) and (6) are circular vacuum processing chambers (5) and (6) having disk-shaped counter electrodes and substrate electrodes which are provided in parallel with each other at a distance above and below the vacuum processing chamber (1). show.

該対向電極(5)はアース電位又はフロートされ、その
表面を石英、アルミナ、陽極酸化アルミニウムなどの絶
縁材表面電極材(7)で覆い、スペーサーシールド(8
)を介して真空処理室(1)に取付けられ、該対向電極
(5)の表面側に、該真空処理室(1)の外部のガス導
入用バルブ(9)を備えたガス管(IQに接続される凹
部avを設けるようにした。該表面電極材(7)には該
凹部G1)に連通ずる多数の噴出口■を軸対称になるよ
うに形成し、ガス管a■を介して導入されるエツチング
ガスは凹部(11)内に設けた多孔のガス導入口用バッ
ファ(131を通り、噴出口(+21から均一に吹き出
すようにした。
The counter electrode (5) is grounded or floated, and its surface is covered with an insulating surface electrode material (7) such as quartz, alumina, anodized aluminum, etc., and a spacer shield (8) is placed on the counter electrode (5).
) is attached to the vacuum processing chamber (1) via a gas pipe (IQ) equipped with a valve (9) for introducing gas outside the vacuum processing chamber (1) on the surface side of the counter electrode (5) A recess av to be connected is provided.A large number of jet ports (2) communicating with the recess (G1) are formed in the surface electrode material (7) in an axially symmetrical manner, and the gas is introduced via a gas pipe (a). The etching gas to be etched passed through a porous gas inlet buffer (131) provided in the recess (11) and was uniformly blown out from the ejection port (+21).

また基板電極(6)は、真空処理室(1)の底部を室内
へ凹入させて形成した台部aΦにスペーサーシールド(
+5)を介して取付けられ、該基板電極(6)の表面に
石英等の絶縁材の表面電極材qeを施し、真空処理室(
1)の外部のI?P電源a7)に接続した。
Further, the substrate electrode (6) is attached to a spacer shield (
+5), a surface electrode material qe of an insulating material such as quartz is applied to the surface of the substrate electrode (6), and a vacuum processing chamber (
1) External I? P power supply a7).

(18G9)は該対向電極(5)の背後に設けた内外2
重の環状の軸対称の電磁石で、その内側の電磁石(18
1の環状内と、内外の電磁石ae (191間及び外側
の電磁石(+91の外周とにヨーク[相]を設け、各電
磁石aa aglへの電流を夫々別個に制御出来るよう
にした。
(18G9) is the inner and outer 2 provided behind the counter electrode (5).
A heavy annular axially symmetrical electromagnet with an inner electromagnet (18
A yoke [phase] is provided between the inner and outer electromagnets ae (191) and the outer periphery of the outer electromagnet (+91), so that the current to each electromagnet aa agl can be controlled separately.

該対向電極(5)と基板電極(6)とで挾まれた空間■
の側方を石英、アルミナ、陽極酸化アルミニウム等の絶
縁材防着板■で環状に囲み、画電極(5)(ωと防着板
■とで真空処理室(1)内に区画された略円形の空間■
を形成し、基板電極(6)と防着板■との間に環状の排
気通路■を形成させ、空間■内のガスは該排気通路■を
介して排気口(2)から外部へ排出されるようにした。
A space sandwiched between the counter electrode (5) and the substrate electrode (6) ■
The side of the electrode (5) (ω) is surrounded by an anti-adhesion plate (■) made of insulating material such as anodized aluminum in an annular shape, and the picture electrode (5) (ω) and the anti-adhesion plate (2) are divided into the vacuum processing chamber (1). circular space■
An annular exhaust passage (■) is formed between the substrate electrode (6) and the adhesion prevention plate (■), and the gas in the space (■) is exhausted to the outside from the exhaust port (2) via the exhaust passage (■). It was to so.

■は基板電極(6)の外周シールドで、適当な手段で真
空処理室(1)に取付けられる。空間σ内からのガスは
、排気通路■を通り、真空処理室(1)の台部aΦの外
周に形成される環状室■へ流入し、排気口(2)から排
出されるが、該環状室■内に第5図及び第6図に見られ
るようなねじ■を緩めて上下動出来る複数の衝立て■を
設け、該衝立て■の先端と真空処理室(1)の壁面との
すきま■を調節することにより排気口(2)に近い個所
も遠い個所も略同量の排気が行なわれるようにした。
(2) is the outer circumferential shield of the substrate electrode (6), which is attached to the vacuum processing chamber (1) by appropriate means. The gas from within the space σ passes through the exhaust passage (■), flows into the annular chamber (■) formed around the outer periphery of the platform aΦ of the vacuum processing chamber (1), and is exhausted from the exhaust port (2). A plurality of screens ■, which can be moved up and down by loosening the screws ■ shown in Figures 5 and 6, are installed inside the chamber ■, and the gaps between the tips of the screens ■ and the wall of the vacuum processing chamber (1) are By adjusting (2), approximately the same amount of exhaust air is emitted from locations near and far from the exhaust port (2).

該防着板■の基板搬送口(4)と対応する個所を真空処
理室(1)の外部から導入した昇降装置ωに取付けられ
た開閉板Qで構成し、プラズマ処理される基板■を仕切
バルブ(3)を開いて基板搬入口(4)から基板電極(
6)上に、搬入し或は搬出する際に、該開閉板■を昇降
装置ωで下降させると搬送用の開閉口■が防着板■に形
成され、そこを通って基板■が出し入れされ、プラズマ
処理中は該開閉口■を閉じ、基板電極(6)と防着板と
の距離を一様化して電位分布の均一化を図るようにした
The part of the anti-adhesion plate (■) corresponding to the substrate transfer port (4) is constructed with an opening/closing plate Q attached to a lifting device ω introduced from outside the vacuum processing chamber (1), and the substrate (■) to be plasma processed is partitioned. Open the valve (3) and insert the substrate electrode (
6) When carrying in or out, when the opening/closing plate (■) is lowered by the lifting device ω, an opening/closing opening (■) for transportation is formed in the anti-adhesion plate (■), through which the substrate (■) can be taken in and taken out. During the plasma treatment, the opening/closing port (2) was closed to equalize the distance between the substrate electrode (6) and the adhesion prevention plate, thereby making the potential distribution uniform.

該空間■内のプラズマ処理中の状況を、真空処理室(1
)のセンサーポート■に設けた例えば真空計やエツチン
グの終点を検出する終点検出器、或は膜厚計で測定する
必要があるが、防着板■を通してこうした測定を可能と
するために、防着板■の該センサーポート■に対応する
個所に透孔■を形成して、そこに孔径3 mm以下の蜂
の巣状にプラズマ等が透過しない程度の多数の小孔■を
形成した防着板■と同材質のセンサーポート用蓋■を嵌
め、センサーポート■がら該小孔■を通して空間0内の
状況を測定出来るようにし、防着板■の軸対称性を維持
し、空間0内で異常放電のない安定した放電を行なえる
ようにした。
The situation during plasma processing in the space
) It is necessary to measure with a vacuum gauge, an end point detector to detect the end point of etching, or a film thickness meter installed at the sensor port ■ of the etching plate ■. Adhesion prevention plate ■ with a through hole ■ formed in the location corresponding to the sensor port ■ of the attachment plate ■, and a large number of small holes ■ with a hole diameter of 3 mm or less in a honeycomb shape that does not allow plasma etc. to pass through. Insert the sensor port cover ■ made of the same material as the sensor port ■ so that the situation inside space 0 can be measured through the small hole ■, maintain the axial symmetry of the anti-adhesion plate ■, and prevent abnormal discharge inside space 0. This makes it possible to perform stable discharge without any problems.

その動作を説明すると、仕切バルブ(3)及び開閉口■
を開いて外部から基板■を基板電極(6)上に運び込み
、仕切バルブ(3)及び開閉口■を閉じたのち、排気口
(2)から真空処理室(1)内を排気し、ガス導入用バ
ルブ(9)を開いてエツチングガスを対向電極(5)の
噴出口aDからシャワー状に空間■へ噴出させ、真空処
理室(1)内を10−’torr台に調整する。次いで
内側の電磁石aεへ4A、外側の電磁石(+9)へ7A
の電流を流すと、基板電極(6)の前面に第7図示の曲
線Aで示すような基板電極(6)の中心軸を中心に軸対
称の磁場が形成され、RF電源(171から高周波電力
を基板電極(6)に印加すると、該空間Q内にエツチン
グガスの高密度プラズマが形成される。エツチングガス
はプラズマ中に於てイオン、ラジカルに電離され、これ
らが基板■へ突入し、該基板■が高速でエツチングされ
る。エツチングにより生じた生成物やエツチングに寄与
しなかったエツチングガスは、基板 1 電極aeの周囲の環状の排気通路■を通り、環状室■衝
立でのとのすきま■を介して排気口(2)から外部へ排
除される。
To explain its operation, the partition valve (3) and opening/closing port■
After opening the opening and carrying the substrate ■ onto the substrate electrode (6) from the outside, and closing the partition valve (3) and opening and closing port ■, the inside of the vacuum processing chamber (1) is evacuated from the exhaust port (2), and gas is introduced. The etching gas is ejected from the ejection port aD of the counter electrode (5) into the space (1) in the form of a shower, and the inside of the vacuum processing chamber (1) is adjusted to a level of 10-'torr. Then 4A to the inner electromagnet aε, 7A to the outer electromagnet (+9)
When a current of When is applied to the substrate electrode (6), a high-density plasma of etching gas is formed in the space Q.The etching gas is ionized into ions and radicals in the plasma, and these rush into the substrate The substrate (2) is etched at high speed. The products generated by etching and the etching gas that did not contribute to the etching pass through the annular exhaust passage (2) around the substrate (1) electrode ae, and are removed from the gap between the annular chamber (1) and the screen (2). (2) is exhausted to the outside from the exhaust port (2).

該空間■は防着板■により軸対称に囲まれており、プラ
ズマに影響を与えるような開口部や基板電極(6)の電
位分布を乱すような開口部がないので、該空間σ内で、
安定した放電が発生し、エツチングガスの流れも対向電
極(5)の軸対称の噴出口(121から均一に噴出し、
環状の排気通路■に流れ込み、プラズマ分布を乱すこと
がなく、第8図の曲線Bで示すように、基板■を均一性
良くしかも高速でエツチングを行なえる。第8図の曲線
Cは第1図示の従来の装置によりエツチングを行なった
ときの基板の面内エツチング分布である。
The space (■) is surrounded by the anti-adhesion plate (■) axially symmetrically, and there are no openings that would affect the plasma or disturb the potential distribution of the substrate electrode (6). ,
A stable discharge occurs, and the etching gas flows uniformly from the axially symmetrical jet ports (121) of the counter electrode (5).
It flows into the annular exhaust passage (2), does not disturb the plasma distribution, and as shown by curve B in FIG. 8, the substrate (2) can be etched with good uniformity and at high speed. Curve C in FIG. 8 is the in-plane etching distribution of the substrate when etching is performed using the conventional apparatus shown in FIG.

ガス管00にアッシング用ガスを流せば、基板■の均一
なアッシングを行なえ、またCVD用ガスを流せば基板
■に均一なプラズマCVDによる成膜を行なえる。
By flowing an ashing gas through the gas pipe 00, uniform ashing can be performed on the substrate (2), and by flowing a CVD gas, a uniform film can be formed on the substrate (2) by plasma CVD.

第9図は真空処理室(1)内に基板電極(6)を適当 
2 な昇降手段により昇降させ、対向電極(5)に対して接
近離反自在としたもので、この場合、基板電極(6)の
下降位置に対応した個所に基板搬送口(4)が設けられ
るので、防着板■に第3図示のような基板■の搬出入用
の開閉口のが不要になる。
Figure 9 shows the placement of the substrate electrode (6) in the vacuum processing chamber (1).
2. It can be raised and lowered by a lifting means to freely approach and move away from the counter electrode (5). In this case, the substrate transfer port (4) is provided at a location corresponding to the lowered position of the substrate electrode (6). , it becomes unnecessary to have an opening/closing opening for loading/unloading the board (2) as shown in the third figure on the adhesion prevention plate (2).

GDはアースシールドである。GD is Earth Shield.

(発明の効果) 以上のように本発明のプラズマ処理装置は、対向電極の
背後に内外2重の環状の軸対称の電磁石を設は対向電極
と平行する基板電極との間の空間の側方を軸対称性の防
着板で囲み、対向電極に形成した軸対称の噴出口からガ
スを噴出させるようにし、基板電極の周囲に環状の排気
通路を設けるようにしたので、ガス流が均一化されると
共に放電が安定してプラズマ分布が均一化され、基板に
均一性の良いプラズマ処理を高速で施せる等の効果があ
る。
(Effects of the Invention) As described above, the plasma processing apparatus of the present invention has an annular axially symmetrical electromagnet with double inner and outer layers behind the counter electrode. is surrounded by an axially symmetrical adhesion-prevention plate, and the gas is ejected from the axially symmetrical nozzles formed on the opposing electrode, and an annular exhaust passage is provided around the substrate electrode, making the gas flow uniform. At the same time, the discharge is stabilized, the plasma distribution is made uniform, and the substrate can be subjected to high-speed plasma processing with good uniformity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のプラズマ処理装置の裁断側図面、第2図
は第1図の■−■線断面図、第3図は本発明のプラズマ
処理装置の実施例の截断側面図、第4図及び第5図は第
3図のIV−IV線及びv−v線断面図、第6図は第5
図のVl−Vl線部分の側面図、第7図は基板電極上の
水平磁場分布図、第8図は基板の面内エツチング分布図
、第9図は本発明の他の実施例の截断側面図である。 (1)・・・真空処理室 (6)・・・基板電極 (171・・・RF電源 ■・・・空 間 の・・・排気通路 (至)・・・小 孔 (5)・・・対向電極 ■・・・噴出口 aε(Ig)・・・電磁石 の・・・防着板 ■・・・開閉口 特  許  出  願  人 代     理     人 日本真空技術株式会社 北   村   欣   − 外3名 娘
Fig. 1 is a cut side view of a conventional plasma processing apparatus, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, Fig. 3 is a cut side view of an embodiment of the plasma processing apparatus of the present invention, and Fig. 4 5 is a sectional view taken along the IV-IV line and v-v line in FIG. 3, and FIG.
FIG. 7 is a horizontal magnetic field distribution diagram on the substrate electrode, FIG. 8 is an in-plane etching distribution diagram of the substrate, and FIG. 9 is a cut side view of another embodiment of the present invention. It is a diagram. (1)...Vacuum processing chamber (6)...Substrate electrode (171...RF power source...Space...Exhaust passage (to)...Small hole (5)... Counter electrode ■... Ejection port aε (Ig)... Electromagnet... Anti-adhesive plate ■... Opening/closing mouth patent application filed by Akira Kitamura of Hito Nippon Vacuum Technology Co., Ltd. - Other 3 daughters

Claims (4)

【特許請求の範囲】[Claims] 1.真空処理室内に、アース電位又はフロート電位の円
板状の対向電極とRF電源に接続された円板状の基板電
極とを互に平行に設け、該基板電極面に設けた基板へ向
けてガスを噴出する多数の噴出口を該対向電極面に形成
したものに於て、該対向電極の背後に、内外2重の環状
の軸対称の電磁石を設け、対向電極と基板電極とで挾ま
れた空間の側方をプラズマの拡散を防ぐ環状の防着板で
囲み、該対向電極面に形成される噴出口を軸対称に配置
し、該基板電極と該防着板との間に環状の排気通路を形
成したことを特徴とするプラズマ処理装置。
1. In a vacuum processing chamber, a disk-shaped counter electrode at ground potential or float potential and a disk-shaped substrate electrode connected to an RF power source are provided in parallel with each other, and a gas is directed toward the substrate provided on the surface of the substrate electrode. In the case where a large number of ejection ports are formed on the surface of the counter electrode, a double ring-shaped axially symmetrical electromagnet is provided behind the counter electrode, and the electromagnet is sandwiched between the counter electrode and the substrate electrode. The side of the space is surrounded by an annular adhesion prevention plate that prevents plasma diffusion, the ejection ports formed on the opposing electrode surface are arranged axially symmetrically, and an annular exhaust gas is provided between the substrate electrode and the adhesion prevention plate. A plasma processing apparatus characterized in that a passage is formed.
2.前記防着板の一部に基板の搬送用の開閉口を設けた
ことを特徴とする請求項1に記載のプラズマ処理装置。
2. 2. The plasma processing apparatus according to claim 1, wherein a part of the adhesion prevention plate is provided with an opening/closing opening for transporting the substrate.
3.前記防着板の一部に、対向電極と基板電極とで挾ま
れた空間内の状態を該防着板の外側から測定するために
、プラズマを拡散させない程度の蜂の巣状の小孔を形成
したことを特徴とする請求項1に記載のプラズマ処理装
置。
3. In order to measure the state in the space sandwiched between the counter electrode and the substrate electrode from the outside of the deposition prevention plate, a honeycomb-shaped small hole was formed in a part of the deposition prevention plate to an extent that did not allow plasma to diffuse. The plasma processing apparatus according to claim 1, characterized in that:
4.前記基板電極は対向電極に対して接近離反自在に設
けられることを特徴とする請求項1に記載のプラズマ処
理装置。
4. 2. The plasma processing apparatus according to claim 1, wherein the substrate electrode is provided so as to be able to move toward and away from the counter electrode.
JP24517289A 1989-09-22 1989-09-22 Plasma treating device Pending JPH03107481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24517289A JPH03107481A (en) 1989-09-22 1989-09-22 Plasma treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24517289A JPH03107481A (en) 1989-09-22 1989-09-22 Plasma treating device

Publications (1)

Publication Number Publication Date
JPH03107481A true JPH03107481A (en) 1991-05-07

Family

ID=17129678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24517289A Pending JPH03107481A (en) 1989-09-22 1989-09-22 Plasma treating device

Country Status (1)

Country Link
JP (1) JPH03107481A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283143A (en) * 1994-04-06 1995-10-27 Canon Sales Co Inc Substrate retainer and film forming/etching device
WO2000075972A1 (en) * 1999-06-02 2000-12-14 Tokyo Electron Limited Vacuum processing apparatus
JP2011021264A (en) * 2009-07-17 2011-02-03 Ulvac Japan Ltd Film deposition system
JP2018022899A (en) * 2017-09-01 2018-02-08 東京エレクトロン株式会社 Plasma processing device and plasma processing method
US10074545B2 (en) 2014-04-09 2018-09-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283143A (en) * 1994-04-06 1995-10-27 Canon Sales Co Inc Substrate retainer and film forming/etching device
WO2000075972A1 (en) * 1999-06-02 2000-12-14 Tokyo Electron Limited Vacuum processing apparatus
JP4547119B2 (en) * 1999-06-02 2010-09-22 東京エレクトロン株式会社 Vacuum processing equipment
JP2011021264A (en) * 2009-07-17 2011-02-03 Ulvac Japan Ltd Film deposition system
US10074545B2 (en) 2014-04-09 2018-09-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
JP2018022899A (en) * 2017-09-01 2018-02-08 東京エレクトロン株式会社 Plasma processing device and plasma processing method

Similar Documents

Publication Publication Date Title
KR101056219B1 (en) Showerhead and Substrate Processing Unit
US8366828B2 (en) Shower head and substrate processing apparatus
JP4602532B2 (en) Plasma processing equipment
KR100223394B1 (en) Plasma treating device
US7585386B2 (en) Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
JP4256587B2 (en) Reduced impedance chamber
JP2001023955A (en) Plasma processing apparatus
JPH07142449A (en) Plasma etching system
KR100221048B1 (en) Sputtering apparatus
KR20010099597A (en) Physical vapor processing of a surface with non-uniformity compensation
JPH03107481A (en) Plasma treating device
JP3583294B2 (en) Plasma emission device and plasma processing device
JPS63141318A (en) Gas evacuating device for sample treatment
JP2006344701A (en) Etching device and etching method
JP4180896B2 (en) Plasma processing equipment
JPH06216078A (en) Equipment and method for capacitive coupling discharge processing of wafer
US6179974B1 (en) Apparatus and methods for sputtering
JP2978857B2 (en) Plasma etching equipment
TWI538048B (en) A plasma processing apparatus and a processing gas supply structure thereof
JP4546667B2 (en) Dry etching method
JP2001220668A (en) Substrate treating apparatus, substrate treating method and thin film device produced by using the same
JPH03126881A (en) Magnetron etching device
JP3037795B2 (en) Processing equipment
JP3686563B2 (en) Semiconductor device manufacturing method and plasma processing apparatus
JP3364131B2 (en) Plasma processing equipment