JPH03107451A - Formation of conductive metallic film - Google Patents

Formation of conductive metallic film

Info

Publication number
JPH03107451A
JPH03107451A JP24526589A JP24526589A JPH03107451A JP H03107451 A JPH03107451 A JP H03107451A JP 24526589 A JP24526589 A JP 24526589A JP 24526589 A JP24526589 A JP 24526589A JP H03107451 A JPH03107451 A JP H03107451A
Authority
JP
Japan
Prior art keywords
conductive metal
metal film
film
deposited film
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24526589A
Other languages
Japanese (ja)
Inventor
Yasuyuki Itai
板井 康之
Ichiro Imai
一郎 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Cement Co Ltd
Original Assignee
Sumitomo Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Cement Co Ltd filed Critical Sumitomo Cement Co Ltd
Priority to JP24526589A priority Critical patent/JPH03107451A/en
Publication of JPH03107451A publication Critical patent/JPH03107451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal

Abstract

PURPOSE:To increase the adhesive strength of a metallic deposited film to the surface of ceramics by forming a deposited film of conductive metal on the surface of ceramics by a sputtering deposited film forming method and then carrying out heating treatment under specific temp. conditions. CONSTITUTION:A deposited film is formed on the surface of oxide ceramics, such as Al2O3 and ZrO2, to 5-30mum thickness by a sputtering method by using a conductive metal consisting of a metal, such as Pt, Au, Ag, Mo, W, and Ti, or an alloy thereof. Since the adhesive strength between the ceramics and the metallic deposited film is low and the possibility of the peeling of the metallic deposited film is brought about at this time, heating is performed in the air or in an inert-gas atmosphere of N2, Ar, etc., at 500-1200 deg.C, or 800-900 deg.C in the case when the deposited metallic film is composed of Pt, etc. By the above procedure, the adhesive strength between the ceramic material and the deposited film of conductive metal or alloy on the ceramic material can be improved and the peeling of the deposited film can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミックスの表面にスパッタリング堆積膜
形成法を用いて、セラミックスの表面に高い付着強度を
有する導電性金属膜を形成する導電性金属膜形成方法に
関する。
Detailed Description of the Invention [Industrial Application Field] The present invention provides a conductive metal film that forms a conductive metal film with high adhesion strength on the surface of ceramics using a sputtering deposition film formation method on the surface of ceramics. This invention relates to a film forming method.

〔従来の技術および発明が解決しようとする課題〕従来
、セラミックスの表面に導電性金属膜を形成する方法と
してスパッタリング法、イオンブレーティング法、蒸着
法等の堆積膜形成法が用いられている。
[Prior Art and Problems to be Solved by the Invention] Conventionally, deposited film forming methods such as sputtering, ion blasting, and vapor deposition have been used to form conductive metal films on the surfaces of ceramics.

スパッタリング堆積膜形成法を用いてセラミックスの表
面に導電性金属膜を形成する場合、導電性金属膜の膜厚
はスパッタリング処理時間に比例するので任意の膜厚に
することができる。しかしながら、スパッタリングの処
理時間を長くして膜厚を厚くする手法では、導電性金属
膜とセラミックスとの付着力が低く、膜を引掻くと導電
性金属膜の一部に剥離が生じてしまう。また、一般に、
(2) 膜厚を308以上に厚くすると膜自体の強度が低下して
膜が脆くなる恐れがある。
When a conductive metal film is formed on the surface of a ceramic using a sputtering deposition film formation method, the thickness of the conductive metal film is proportional to the sputtering treatment time, so it can be made to have an arbitrary thickness. However, in the method of increasing the film thickness by increasing the sputtering processing time, the adhesion between the conductive metal film and the ceramic is low, and when the film is scratched, part of the conductive metal film peels off. Also, in general,
(2) If the film thickness is increased to 308 mm or more, the strength of the film itself may decrease and the film may become brittle.

従って、従来は、導電性金属膜に高い付着強度が必要と
される箇所へは、スパッタリング法により膜厚の厚い導
電性金属膜を適用することが難しかった。また、膜厚の
厚い導電性金属膜を形成する場合には付着強度の低下に
よる剥離等の障害を回避するため取扱いに特別の注意が
必要であった。
Therefore, conventionally, it has been difficult to apply a thick conductive metal film by sputtering to locations where the conductive metal film requires high adhesion strength. Further, when forming a thick conductive metal film, special care has been required in handling to avoid problems such as peeling due to a decrease in adhesion strength.

本発明の目的は、上記従来技術の問題点に鑑み、高い付
着強度を有する比較的膜厚の厚い導電性金属膜をセラミ
ックス表面に形成する方法を提供することにある。
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, an object of the present invention is to provide a method for forming a relatively thick conductive metal film having high adhesion strength on a ceramic surface.

〔課題を解決するための手段(1)〕 本発明の導電性金属膜形成法は、セラミックスの表面に
スパッタリング堆積膜形成法により導電性金属膜を形成
し、次いでこの膜を500℃〜1200℃の温度で加熱
処理することを特徴とする。
[Means for Solving the Problems (1)] The method for forming a conductive metal film of the present invention involves forming a conductive metal film on the surface of ceramics by a sputtering deposition film formation method, and then heating the film at 500°C to 1200°C. It is characterized by heat treatment at a temperature of .

(3) 〔作 用〕 本発明の方法によれば、セラミックスの表面にスパッタ
リング堆積膜形成法により形成した膜厚の厚い導電性金
属膜を加熱処理することによって、導電性金属膜とセラ
ミックスとの相互作用によりその付着強度が向上する。
(3) [Function] According to the method of the present invention, by heat-treating a thick conductive metal film formed on the surface of a ceramic by a sputtering deposition film formation method, the connection between the conductive metal film and the ceramic is improved. The interaction improves the bond strength.

かくして、膜厚が厚く高い付着強度を有する導電性金属
膜を得ることができる。
In this way, a conductive metal film having a large thickness and high adhesion strength can be obtained.

〔課題を解決するための手段(2)〕 スパッタリング堆積膜を形成する基体となるセラミック
スは格別限定されないが、主としてアルミナ(la03
)および/またはジルコニア(ZrO,)からなる酸化
物系セラミックスが好ましく用いられる。
[Means for solving the problem (2)] Ceramics that serve as the substrate for forming the sputtering deposited film are not particularly limited, but are mainly made of alumina (LA03
) and/or zirconia (ZrO, ) are preferably used.

導電性金属としては、白金、金、銀、タングステン、チ
タン、モリブデンおよびこれらの合金が用いられる。導
電性金属をセラミックス表面にスパッタリングにより堆
積せしめて膜を形成する方法自体は常用される方法によ
って行うことができ(4) る。すなわち、導電性金属で構成されたターゲットを有
するスパッタリング装置内に不活性ガスを導入して10
−3〜10−’ )−ルに調圧後、高電圧を印加してス
パッタリングを行いセラミックス表面に導電性金属膜を
形成する。一般に、膜厚は5p〜30jm程度とする。
As the conductive metal, platinum, gold, silver, tungsten, titanium, molybdenum, and alloys thereof are used. The method of depositing a conductive metal on a ceramic surface by sputtering to form a film can be performed by a commonly used method (4). That is, an inert gas is introduced into a sputtering apparatus having a target made of a conductive metal.
-3 to 10-') After adjusting the pressure, a high voltage is applied and sputtering is performed to form a conductive metal film on the ceramic surface. Generally, the film thickness is about 5p to 30jm.

スパッタリング堆積膜を形成した後、大気中または窒素
ガスその他の不活性ガス雰囲気中で500〜1.200
℃、好ましくは800〜900℃に加熱する。
500 to 1.200 in air or nitrogen gas or other inert gas atmosphere after forming the sputtering deposited film.
℃, preferably 800-900℃.

加熱温度が500℃未満では付着強度の向上効果が得ら
れず、また、加熱温度が1.200℃を超えると膜欠陥
、例えば、セラミックスチップの吸着ガスに由来すると
考えられるボイドが発生する。好適な加熱温度は導電性
金属に依存するが、例えば白金膜の場合は800〜90
0℃が好ましい。加熱時間は、一般に、0.5〜2時間
である。
If the heating temperature is less than 500° C., no effect of improving adhesion strength will be obtained, and if the heating temperature exceeds 1.200° C., film defects, such as voids that are thought to originate from the adsorbed gas of the ceramic chip, will occur. The suitable heating temperature depends on the conductive metal, but for example, in the case of a platinum film, it is 800 to 90°C.
0°C is preferred. The heating time is generally 0.5 to 2 hours.

〔実施例〕〔Example〕

本発明の導電性金属膜形成法の一実施例として、スパッ
タリング堆積膜形成法を用いてアルミナセ(5) ラミックスチップの表面に直径2m0、膜厚15角の白
金金属膜を形成し、大気中で加熱処理した場合について
説明する。
As an example of the conductive metal film forming method of the present invention, a platinum metal film with a diameter of 2 m0 and a film thickness of 15 squares was formed on the surface of an alumina (5) ceramic chip using a sputtering deposition film forming method. The case of heat treatment will be explained below.

アルミナセラミックスチップと白金(Pt;99.99
%)のターゲットをそれぞれ用意した。次いで、このア
ルミナセラミックスチップ表面を超音波洗浄し、白金金
属膜が2111111径になるようにマスキングした後
、スパッタリング装置に装着した。スパッタリング装置
内を圧力I Xl0−6)−ルの高真空に脱気した後、
アルゴンガスを導入してI Xl0−’トールに調圧し
、このような状態で逆放電させ5分間保持し、アルミナ
チップの表面をエツチングした。次いで、前記白金(P
t)製ターゲットによりlkwの出力で4時間のスパッ
タリングを行ない、前記アルミナチップの表面に直径2
mm、膜厚15μの白金金属膜を形成し、さらにこの結
果得られた白金金属膜を有するアルミナセラミックスチ
ップを酸化炉にて加熱処理を行った。
Alumina ceramic chips and platinum (Pt; 99.99
%) targets were prepared for each. Next, the surface of this alumina ceramic chip was subjected to ultrasonic cleaning, masked so that the platinum metal film had a diameter of 2111111, and then installed in a sputtering device. After degassing the inside of the sputtering apparatus to a high vacuum of pressure IXl0-6),
Argon gas was introduced and the pressure was adjusted to IX10-' torr, and reverse discharge was maintained in this state for 5 minutes to etch the surface of the alumina chip. Next, the platinum (P
Sputtering was performed for 4 hours using a target made of T.
A platinum metal film with a thickness of 15 μm and a thickness of 15 μm was formed, and the resulting alumina ceramic chip having the platinum metal film was heat-treated in an oxidation furnace.

白金金属膜の加熱処理温度を変化させ、アルミナセラミ
ックスと白金金属膜との付着強度を測定(6) した。
The adhesion strength between the alumina ceramics and the platinum metal film was measured by varying the heat treatment temperature of the platinum metal film (6).

第1図は、本実施例で使用した白金金属膜の付着強度試
験片の説明図である。同図に示すように、アルミナセラ
ミックステップ1に白金金属膜2を形成し加熱処理した
後、白金金属膜2に円柱形状金属3をろう付けし白金金
属膜の付着強度試験片を作成した。付着強度試験の方法
としては、アルミナセラミックステップ1を固定し、円
柱形状金属3を引っ張り試験機にて引っ張ることにより
アルミナセラミックスチップと白金金属膜との付着強度
を測定した。
FIG. 1 is an explanatory diagram of a platinum metal film adhesion strength test piece used in this example. As shown in the figure, after a platinum metal film 2 was formed on an alumina ceramic step 1 and heat treated, a cylindrical metal 3 was brazed to the platinum metal film 2 to prepare a platinum metal film adhesion strength test piece. As a method of adhesion strength test, the alumina ceramic step 1 was fixed and the cylindrical metal 3 was pulled using a tensile tester to measure the adhesion strength between the alumina ceramic chip and the platinum metal film.

加熱処理は大気中600℃、700℃、800℃および
900℃の各温度で30分間行った。付着強度測定結果
を第2図に示す。第2図(イ)、(ロ)、(ハ)。
The heat treatment was performed in the air at temperatures of 600°C, 700°C, 800°C and 900°C for 30 minutes. The adhesion strength measurement results are shown in Figure 2. Figure 2 (a), (b), (c).

(ニ)は、それぞれ、加熱温度600℃、700℃。(d) is a heating temperature of 600°C and 700°C, respectively.

800℃および900℃に対応する付着強度(kg/φ
2 mm) (横軸)の度数分布(縦軸)(n=30)
を示す。
Adhesive strength (kg/φ) corresponding to 800℃ and 900℃
2 mm) (horizontal axis) (vertical axis) (n=30)
shows.

第2図かられかるように、特に加熱温度800℃および
900℃において良好な結果が得られる。すなわち、8
00℃での付着強度は、バラツキが多少(7) あるが、600℃5700℃で加熱処理した時と比して
付着強度が高い値に分布している。900℃での付着強
度は、800℃と同じくらいの高い値に分布しており付
着強度のバラツキも少く付着強度が安定して向上してい
る。よって、白金金属膜は、右よそ800℃〜900℃
の温度で加熱処理することが望ましいことが判る。
As can be seen from FIG. 2, particularly good results are obtained at heating temperatures of 800°C and 900°C. That is, 8
Although there is some variation in the adhesive strength at 00°C (7), the adhesive strength is distributed at higher values than when heat treated at 600°C and 5700°C. The adhesion strength at 900°C is distributed at a value as high as that at 800°C, and there is little variation in the adhesion strength, and the adhesion strength is stably improved. Therefore, the temperature of the platinum metal film is 800°C to 900°C on the right side.
It can be seen that it is desirable to perform the heat treatment at a temperature of .

なお、500℃未満の熱処理温度では付着強度の向上が
殆ど認められず、また、熱処理温度が1200℃を超え
るとアルミナセラミックスチップの吸着ガスに由来する
と考えられるボイドが発生し、付着強度を測定すること
ができなかった。
In addition, when the heat treatment temperature is less than 500°C, almost no improvement in bond strength is observed, and when the heat treatment temperature exceeds 1200°C, voids are generated, which are thought to be derived from the adsorbed gas of the alumina ceramic chip, and the bond strength is measured. I couldn't.

比較のために、加熱処理を行わず白金金属膜を形成した
ままのものも用意し、これについても同じ方法にて付着
強度試験を行った。付着強度測定結果を第2図(ホ)に
示す。
For comparison, a sample with a platinum metal film formed thereon without heat treatment was also prepared, and an adhesion strength test was also conducted on this using the same method. The adhesion strength measurement results are shown in Figure 2 (e).

これらの結果から明らかなように熱処理を施すことによ
って白金金属膜の膜厚を比較的厚くしても高い付着強度
を得ることができる。
As is clear from these results, high adhesion strength can be obtained by heat treatment even if the thickness of the platinum metal film is made relatively thick.

(8) 〔発明の効果〕 以上実施例に示されるように、本発明によればセラミッ
クスの表面に比較的膜厚が厚く、高い付着強度を有する
導電性金属膜を形成することができる。従って、本発明
により得られる製品は、厚い膜厚と高い付着強度を有す
る導電性金属膜が望まれている精密測定機器、医療用機
器、情報処理装置等の電磁波シールド等として有用であ
る。
(8) [Effects of the Invention] As shown in the Examples above, according to the present invention, a conductive metal film having a relatively thick film thickness and high adhesion strength can be formed on the surface of ceramics. Therefore, the product obtained according to the present invention is useful as an electromagnetic shield for precision measuring instruments, medical equipment, information processing equipment, etc. in which a conductive metal film having a thick film thickness and high adhesion strength is desired.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は付着強度測定用試験片の説明図である。 第2図(イ)、(ロ)、(ハ)、(ニ)はそれぞれ温度
600℃、700℃、800℃、900℃で熱処理した
ときの付着強力の度数分布を示し、同図(ホ)は熱処理
を行わなかったときの付着強力の度数分布を示し、同図
(ホ)は熱処理を行わなかったときの付着強力の度数分
布を示す図である。 (9) 5.0 10.0 ) 第 図
FIG. 1 is an explanatory diagram of a test piece for measuring adhesive strength. Figure 2 (a), (b), (c), and (d) show the frequency distribution of adhesion strength when heat treated at temperatures of 600°C, 700°C, 800°C, and 900°C, respectively; 2 shows the frequency distribution of adhesion strength when no heat treatment is performed, and (E) is a diagram showing the frequency distribution of adhesion strength when no heat treatment is performed. (9) 5.0 10.0) Figure

Claims (4)

【特許請求の範囲】[Claims] 1.セラミックスの表面にスパッタリング堆積膜形成法
により導電性金属膜を形成し、次いでこの膜を500℃
〜1200℃の温度で加熱処理することを特徴とする付
着強度の高い導電性金属膜を形成する方法。
1. A conductive metal film is formed on the surface of the ceramic by sputtering deposition film formation method, and then this film is heated at 500°C.
A method for forming a conductive metal film with high adhesion strength, characterized by heat treatment at a temperature of ~1200°C.
2.セラミックスが、主としてアルミナ(Al_2O_
3)またはジルコニア(ZrO_2)からなる酸化物系
セラミックスである請求項1記載の導電性金属膜形成方
法。
2. Ceramics are mainly made of alumina (Al_2O_
3) The method for forming a conductive metal film according to claim 1, wherein the conductive metal film is an oxide ceramic made of zirconia (ZrO_2) or zirconia (ZrO_2).
3.導電性金属膜が、導電性の良好な単一の金属もしく
は2種類以上の金属の合金からなり、その膜厚が5μm
〜30μmの範囲である請求項1または2記載の導電性
金属膜形成方法。
3. The conductive metal film is made of a single metal or an alloy of two or more metals with good conductivity, and the film thickness is 5 μm.
3. The method for forming a conductive metal film according to claim 1 or 2, wherein the conductive metal film has a thickness in the range of .about.30 .mu.m.
4.加熱処理を大気中もしくは不活性ガス中で800℃
〜900℃の温度で行う請求項1〜3のいずれかに記載
の導電性金属膜形成方法。
4. Heat treatment at 800℃ in air or inert gas
The method for forming a conductive metal film according to any one of claims 1 to 3, which is carried out at a temperature of ~900°C.
JP24526589A 1989-09-22 1989-09-22 Formation of conductive metallic film Pending JPH03107451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24526589A JPH03107451A (en) 1989-09-22 1989-09-22 Formation of conductive metallic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24526589A JPH03107451A (en) 1989-09-22 1989-09-22 Formation of conductive metallic film

Publications (1)

Publication Number Publication Date
JPH03107451A true JPH03107451A (en) 1991-05-07

Family

ID=17131110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24526589A Pending JPH03107451A (en) 1989-09-22 1989-09-22 Formation of conductive metallic film

Country Status (1)

Country Link
JP (1) JPH03107451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA016701B1 (en) * 2008-09-18 2012-06-29 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Method of deposition of multilayer corrosion resistant coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270454A (en) * 1987-04-24 1988-11-08 Hitachi Chem Co Ltd Method for metallizing of aluminum nitride substrate
JPH01136961A (en) * 1987-11-24 1989-05-30 Toyota Central Res & Dev Lab Inc Ceramic-matrix having metallic layer and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270454A (en) * 1987-04-24 1988-11-08 Hitachi Chem Co Ltd Method for metallizing of aluminum nitride substrate
JPH01136961A (en) * 1987-11-24 1989-05-30 Toyota Central Res & Dev Lab Inc Ceramic-matrix having metallic layer and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA016701B1 (en) * 2008-09-18 2012-06-29 Государственное Научное Учреждение "Физико-Технический Институт Национальной Академии Наук Беларуси" Method of deposition of multilayer corrosion resistant coating

Similar Documents

Publication Publication Date Title
US5087297A (en) Aluminum target for magnetron sputtering and method of making same
EP0152951B1 (en) Method of strengthening ceramics
US20030122453A1 (en) Elastic wave element and method for fabricating the same
JPS60235773A (en) Ceramic body bonding method
JPH03107451A (en) Formation of conductive metallic film
JPH0320457A (en) Production of alumina-coated al or al-alloy member
JPH01291401A (en) Thin film resistor and manufacture thereof
JP2972878B1 (en) Titanium-based metallic material having a thick coating of titanium oxide and method for producing the same
JP2526883B2 (en) Thin film titanium nitride-based material
JPH07180029A (en) Corrosion resistant material and its production
Vianco et al. Resistivity, adhesive strength, and residual stress measurements of thin film metallizations on single crystal quartz
JPS61194171A (en) Production of metal-ceramic laminate material deposited with boron nitride on surface of mobn film
JPH0276201A (en) Thin film resistor for strain gauge
JP2000321124A (en) Formation of vanadium oxide thin film and bolometer type infrared sensor employing vanadium oxide thin film
JP2562610B2 (en) Thin film resistor for strain gauge
JPS61197430A (en) Mold for molding optical glass element and production thereof
JP2713367B2 (en) Method for manufacturing suspended particle detector having metal deposition film
JPH03133101A (en) Platinum resistor and manufacture thereof
JPH0266150A (en) Heat shielding coating method
JPH0342683B2 (en)
JPS59192928A (en) Maximum temperature thermometer of thin film
JPS63211702A (en) Temperature sensor
JPH06137804A (en) Metal thin film resistance strain gauge
JPH01313949A (en) Improvement of bondability of aluminum thin film electrode
JPH08225919A (en) Formation of platinum thin film