JPH03107444A - Manufacture of cu-al-ni series shape memory alloy - Google Patents

Manufacture of cu-al-ni series shape memory alloy

Info

Publication number
JPH03107444A
JPH03107444A JP24685089A JP24685089A JPH03107444A JP H03107444 A JPH03107444 A JP H03107444A JP 24685089 A JP24685089 A JP 24685089A JP 24685089 A JP24685089 A JP 24685089A JP H03107444 A JPH03107444 A JP H03107444A
Authority
JP
Japan
Prior art keywords
shape memory
memory alloy
shape
alloy
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24685089A
Other languages
Japanese (ja)
Inventor
Yoshio Henmi
義男 逸見
Takahiro Takashima
高島 孝弘
Atsuyuki Miyamoto
宮本 淳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24685089A priority Critical patent/JPH03107444A/en
Publication of JPH03107444A publication Critical patent/JPH03107444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To simultaneously execute extruding and storing treatment of the extruded shape in the shape memory alloy by extruding a Cu-Al-Ni series shape memory alloy in a specified temp. range and thereafter immediately subjecting it to rapid cooling. CONSTITUTION:At the time of defining the beta solid soln. transformation temp. in a Cu-Al-Ni series shape memory alloy as Tbeta and the melting starting temp. in the alloy as Tm, the ingot of the alloy is extruded, e.g. into the shape of a wire at T deg.C, the temp. in the range satisfying Tbeta-100 deg.C<=T<=Tm-50 deg.C and is thereafter immediately subjected to rapid cooling by a water cooling method or the like. The shape memory alloy excellent in extrudability and straightness and in which the shape in a linear state free from curling caused by rolling is correctly stored can efficiently be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はCu−Al−Ni系形状記憶合金の熱間押出し
と該押出形状の記憶処理を同時に行う方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for simultaneously performing hot extrusion of a Cu-Al-Ni based shape memory alloy and memorization treatment of the extruded shape.

[従来の技術] 銅系の形状記憶合金は、現在量も広く使用されているT
i−Ni系形状記憶合金と比較すると、繰り返し動作や
耐久性などの点で劣るが、低コスト、動作温度の広さ、
並びに2方向動作等の点でT1Ni系形状記憶合金を凌
駕するところがある。銅系形状記憶合金としては、既に
実用段階にあるCu−Zn−Al系を始めとして、Cu
−Al−Ni系、Cu−Δ1−Be系、Cu−At−M
n系及びCu−A1−Fe系等が提案されているが、中
でもCu−At−Ni系合金は熱的安定性(耐熱性)あ
るいは形状記憶性能等の点から、銅系合金の中でも特に
期待が大きい。しかし、本合金系は結晶粒の粗大化が著
しく、加工性が非常に悪いため、実用化は極めて困難で
あるとされてきた。
[Prior art] Copper-based shape memory alloys include T, which is currently widely used.
Compared to i-Ni shape memory alloys, it is inferior in terms of repeated operation and durability, but it is low cost, has a wide range of operating temperatures,
In addition, it surpasses T1Ni-based shape memory alloys in terms of two-way operation and the like. Copper-based shape memory alloys include Cu-Zn-Al, which is already in practical use, and Cu.
-Al-Ni system, Cu-Δ1-Be system, Cu-At-M
n-based and Cu-A1-Fe-based alloys have been proposed, but Cu-At-Ni-based alloys are particularly promising among copper-based alloys in terms of thermal stability (heat resistance) and shape memory performance. is large. However, this alloy system has extremely coarse grains and extremely poor workability, so it has been considered extremely difficult to put it into practical use.

例えば熱間スェージ加工でも2mmφ程度が限界とされ
ており、その後の伸線や圧延では断線事故を発生するこ
とが多かった。
For example, even in hot swage processing, the limit is about 2 mmφ, and wire breakage often occurs during subsequent wire drawing and rolling.

そこで本発明者らは、Tiを配合して結晶粒の微細化を
図ることにより加工性を改善する方法を開発したり(特
開昭58−167737号公報)、或はより良好な形状
記憶特性を維持したまま加工性を改善するためにMnを
新たに加え5元系の合金を開発してきた(特開昭61−
3064号公報)。
Therefore, the present inventors developed a method to improve workability by blending Ti to refine the crystal grains (Japanese Unexamined Patent Publication No. 167737/1982), or improved shape memory properties. In order to improve workability while maintaining the same, Mn was newly added to develop a five-element alloy (Japanese Patent Application Laid-Open No. 1983-1999).
Publication No. 3064).

[発明が解決しようとする課題] しかしながらこれらの合金をもってしても工業的な意味
での冷間加工が可能になった訳ではなく、以下述べる様
な問題があった。即ち、■低温における変形抵抗が著し
く高いため、線径の細いところでは断線事故が多く、生
産コストが高くつくこと ■巻き癖の発生が著しく、品質が不安定であること(最
も多く使用されているコイルばね形状への成形では巻鮒
癖の無い真直な素線が望まれている) ■機能材料であるため、少量多品種のユーザー・ニーズ
に対応できるような生産体制が必要なこと 本発明はこの様な状況を憂慮してなされたものであって
、上記■、■の欠点を乗り越えて■の要請に答え得る様
な製造技術の確立を図って研究を行い、本発明の完成に
至った。
[Problems to be Solved by the Invention] However, even with these alloys, cold working is not possible in an industrial sense, and there are problems as described below. In other words, ■Due to extremely high deformation resistance at low temperatures, there are many wire breakage accidents in areas with small diameters, which increases production costs.■Curling is significant and quality is unstable (most commonly used wires). (When forming into a coil spring shape, a straight strand without curling is desired.) ■Since it is a functional material, a production system that can meet the needs of users who produce a wide variety of products in small quantities is required.This invention This was done in consideration of this situation, and we conducted research to establish a manufacturing technology that could overcome the drawbacks of (2) and (3) above and meet the request (2), leading to the completion of the present invention. Ta.

[課題を解決するための手段] 本発明に係る製造技術の要点は、Cu−Al−Ni系形
状記憶合金なTβ−100℃≦T≦Tm−50℃(ここ
でTβはβ固溶体変態温度、Tmは溶融開始温度を意味
する)の温度範囲で押出しを行い、押出直後に急冷する
ことにより、押出成形と、該押出形状を記憶させる処理
とを同時に行う点に存在する。
[Means for Solving the Problems] The main point of the manufacturing technology according to the present invention is that the Cu-Al-Ni shape memory alloy Tβ-100°C≦T≦Tm-50°C (here, Tβ is the β solid solution transformation temperature, Extrusion is carried out in a temperature range of (Tm means melting start temperature) and quenching is performed immediately after extrusion to perform extrusion molding and a process for memorizing the extruded shape at the same time.

[作用] 形状記憶効果はマルテンサイト変態及び逆変態が、加熱
・冷却に伴って可逆的に生じることに起因している。こ
の際銅系合金はマルテンサイト変態を起こす母相がβ固
溶体相となる必要があるため、形状記憶効果を得るには
β相の存在する温度域から急冷する熱処理(所謂記憶処
理)が必要であって、従来の記憶処理では、成形によっ
て所望の形状に固定した後、β相域以上の高温に再加熱
し、次いで急冷を行っていた。
[Operation] The shape memory effect is caused by martensitic transformation and reverse transformation occurring reversibly with heating and cooling. At this time, in copper-based alloys, the parent phase that undergoes martensitic transformation needs to become a β solid solution phase, so in order to obtain the shape memory effect, heat treatment (so-called memory treatment) is necessary to rapidly cool the alloy from the temperature range where the β phase exists. In conventional memory processing, the material is fixed in a desired shape by molding, then reheated to a high temperature above the β phase region, and then rapidly cooled.

ところで良好な形状記憶効果を得るには、母相であるβ
相が再結晶組織であることが必要であるとされている。
By the way, in order to obtain a good shape memory effect, the matrix β
It is said that it is necessary that the phase has a recrystallized structure.

この点上記従来の記憶処理方法では成形完了後β相域に
再加熱しているため、回復再結晶が確実に形成され、従
って間・題は無かフた。一方、本発明では、前述の如く
最終の加工成形と記憶処理を同時に行うため、母相が加
工の影響を受け、形状記憶特性が劣化するのではないか
という点が恐れられた。この点について本発明者らは詳
細な実験を行い、Cu−Al−Ni系合金では動的再結
晶が起こり易く、押出しのような過酷な強加工条件でも
、本発明における温度域では再結晶を起こすことが確認
され、上記の様な問題の無いことを見いだした。むしろ
逆に強加工することによって再結晶粒が均一で細かくな
り、機械的疲労などに有効であることも期待できる。
In this regard, in the conventional memory processing method described above, since the material is reheated to the β phase region after completion of molding, recovery recrystallization is reliably formed, and therefore there is no problem. On the other hand, in the present invention, as the final processing and forming and memory treatment are performed simultaneously as described above, there was a fear that the matrix would be affected by the processing and the shape memory properties would deteriorate. Regarding this point, the present inventors conducted detailed experiments and found that dynamic recrystallization easily occurs in Cu-Al-Ni alloys, and recrystallization does not occur in the temperature range of the present invention even under severe processing conditions such as extrusion. It has been confirmed that this occurs, and it has been found that there are no problems such as those mentioned above. On the contrary, strong working can make the recrystallized grains uniform and fine, which can be expected to be effective against mechanical fatigue.

以下本発明における温度範囲の設定理由について述べる
The reason for setting the temperature range in the present invention will be described below.

下限=Tβ−100℃ これを下回る温度域では再結晶が起こりにくくなると共
に、β相量が充分でなくなり形状記憶特性が劣化する。
Lower limit=Tβ-100°C In a temperature range below this, recrystallization becomes difficult to occur, and the amount of β phase becomes insufficient, resulting in deterioration of shape memory properties.

上限= Tm−50℃ これを超える温度域では、加工熱によって更に昇熱され
たときに融点以上の温度に上がる恐れがあると共に、押
出時に焼き付きを生じ品質が劣化する。
Upper limit = Tm - 50°C In a temperature range exceeding this, there is a risk that the temperature will rise above the melting point when the temperature is further increased by processing heat, and the quality will deteriorate due to seizure during extrusion.

本発明に係るC1−AI−Ni系合金の合金組成は格別
限定されず、上記熱処理によって形状記憶効果を発揮す
るものは全て本発明に含まれる。従ってCu−Al−N
iを主成分とする3元系の他、必要によりMn、Ti等
を添加したものであっても良い。
The alloy composition of the C1-AI-Ni alloy according to the present invention is not particularly limited, and any alloy that exhibits a shape memory effect by the above heat treatment is included in the present invention. Therefore, Cu-Al-N
In addition to the ternary system containing i as the main component, Mn, Ti, etc. may be added as necessary.

また本発明によって形成される形状は、線。Moreover, the shape formed by the present invention is a line.

棒、管、帯等の如何を問わず、また必要によりコルゲー
ト等の波付き形状とすることも可能である。
Regardless of whether it is a rod, tube, band, etc., it is also possible to use a corrugated shape such as a corrugated one if necessary.

[実施例] Cu−12重量%A1−5重量%Ni−2重量%Mn−
1重量%Tiの合金を溶製し、90mmφのインゴット
を得た。
[Example] Cu-12% by weight A1-5% by weight Ni-2% by weight Mn-
An alloy containing 1% by weight of Ti was melted to obtain an ingot with a diameter of 90 mm.

これを900℃で鍛造し、従来材と本発明材の履歴、形
状、記憶特性を調べた結果を第1表に示す。真直度は線
材を1.m長さに切断し第1図に示す様に横へのずれ幅
を測定して評価した。同表から分かるように本発明によ
る製品は真直度が良好でしかも直線状態の記憶を有して
おり、少量多品種の製造にも有効な手段である。
This was forged at 900°C, and the history, shape, and memory characteristics of the conventional material and the material of the present invention were investigated. Table 1 shows the results. The straightness of the wire is 1. It was evaluated by cutting it into lengths of m and measuring the width of lateral deviation as shown in FIG. As can be seen from the table, the product according to the present invention has good straightness and has a memory of straightness, and is an effective means for manufacturing a wide variety of products in small quantities.

[発明の効果] 本発明は上記の様に構成されているので真直度か良好で
巻ぎ癖がなく、しかも該直線状態形状を正しく記憶して
いるCu−へ1−Ni系形状記憶合金を効率的に製造す
ることが可能となった。
[Effects of the Invention] Since the present invention is configured as described above, the 1-Ni-based shape memory alloy can be applied to Cu which has good straightness, no curling tendency, and correctly remembers the shape of the straight state. It has become possible to manufacture efficiently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は真直度の測定方法を示す図である。 FIG. 1 is a diagram showing a method for measuring straightness.

Claims (1)

【特許請求の範囲】 Cu−Al−Ni系形状記憶合金を Tβ−100℃≦T≦Tm−50℃ (ここでTβはβ固溶体変態温度、Tmは溶融開始温度
を意味する) の温度範囲で押出しを行い、押出直後に急冷することに
より、押出成形と、該押出形状を記憶させる処理とを同
時に行うことを特徴とするCu−Al−Ni系形状記憶
合金の製造方法。
[Claims] A Cu-Al-Ni based shape memory alloy is prepared in a temperature range of Tβ-100°C≦T≦Tm-50°C (here, Tβ means β solid solution transformation temperature and Tm means melting start temperature). A method for producing a Cu-Al-Ni shape memory alloy, characterized in that extrusion molding and a process for memorizing the extruded shape are performed simultaneously by extruding and rapidly cooling immediately after extrusion.
JP24685089A 1989-09-21 1989-09-21 Manufacture of cu-al-ni series shape memory alloy Pending JPH03107444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24685089A JPH03107444A (en) 1989-09-21 1989-09-21 Manufacture of cu-al-ni series shape memory alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24685089A JPH03107444A (en) 1989-09-21 1989-09-21 Manufacture of cu-al-ni series shape memory alloy

Publications (1)

Publication Number Publication Date
JPH03107444A true JPH03107444A (en) 1991-05-07

Family

ID=17154643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24685089A Pending JPH03107444A (en) 1989-09-21 1989-09-21 Manufacture of cu-al-ni series shape memory alloy

Country Status (1)

Country Link
JP (1) JPH03107444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881367A (en) * 2015-12-15 2017-06-23 北京有色金属研究总院 A kind of Ti-Ni base memorial alloys hot extrusion lubricating method
CN110527934A (en) * 2019-10-14 2019-12-03 河北工业大学 A kind of preparation method of high-intensity high-damping CuAlMn marmem

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881367A (en) * 2015-12-15 2017-06-23 北京有色金属研究总院 A kind of Ti-Ni base memorial alloys hot extrusion lubricating method
CN110527934A (en) * 2019-10-14 2019-12-03 河北工业大学 A kind of preparation method of high-intensity high-damping CuAlMn marmem
CN110527934B (en) * 2019-10-14 2020-08-04 河北工业大学 Preparation method of high-strength high-damping CuAlMn shape memory alloy

Similar Documents

Publication Publication Date Title
JPH03107444A (en) Manufacture of cu-al-ni series shape memory alloy
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US3287180A (en) Method of fabricating copper base alloy
US3977913A (en) Wrought brass alloy
JPH03180453A (en) Production of aluminum alloy stock for cold forging
US20220205074A1 (en) Copper alloys with high strength and high conductivity, and processes for making such copper alloys
JPH0860313A (en) Production of aluminum alloy tube excellent in strength and form rollability
JPS623228B2 (en)
KR102648370B1 (en) Copper-nickel-tin alloy
JPS6135249B2 (en)
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
JPS6012421B2 (en) Manufacturing method of lead wire material
US3333990A (en) Aluminum base alloy forgings
JPS6140741B2 (en)
JPH0328342A (en) Aluminum alloy having excellent extrudability and cold workability
JP2664055B2 (en) Manufacturing method of functional alloy members
JPH0673502A (en) High carbon steel wire rod or high carbon steel wire excellent in wire drawability and its production
JP3920988B2 (en) Semi-molten forging method
JPS6120618A (en) Manufacture of rod and wire rod of shape memory alloy
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JPS6053739B2 (en) Method of manufacturing conductive wire
JPS59185766A (en) Manufacture of superelastic ni-ti alloy
JPS63243252A (en) Manufacture of high-strength conductive aluminum-alloy conductor
CA1037843A (en) Manufacture of wrought brass alloy with special properties
KR0165927B1 (en) Al-alloy processing superior strength and manufacturing method for the same