JPH03107411A - Method for refining duplex stainless steel - Google Patents

Method for refining duplex stainless steel

Info

Publication number
JPH03107411A
JPH03107411A JP1247485A JP24748589A JPH03107411A JP H03107411 A JPH03107411 A JP H03107411A JP 1247485 A JP1247485 A JP 1247485A JP 24748589 A JP24748589 A JP 24748589A JP H03107411 A JPH03107411 A JP H03107411A
Authority
JP
Japan
Prior art keywords
molten steel
stainless steel
desulfurization
duplex stainless
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1247485A
Other languages
Japanese (ja)
Other versions
JPH0696732B2 (en
Inventor
Toshiaki Yamada
統明 山田
Tooru Akemiya
朱宮 徹
Keita Nakagawa
敬太 中川
Sumitaka Shiode
塩出 純孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1247485A priority Critical patent/JPH0696732B2/en
Publication of JPH03107411A publication Critical patent/JPH03107411A/en
Publication of JPH0696732B2 publication Critical patent/JPH0696732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To refine a duplex stainless steel having superior corrosion resistance and hot workability by throwing a flux in which specific amounts of Al are mixed into a molten steel flow to carry out desulfurization treatment, adding specific amounts of Al to the molten steel, and carrying out deoxidation treatment by means of vacuum refining. CONSTITUTION:A flux in which Al ls mixed by >=5% is thrown into a molten steel flow to carry out desulfurization treatment, by which stable desulfurization is performed outside the furnace without causing erosion to the refractory inside the furnace. Subsequently, Al is added to the molten steel after desulfurization so that Al content reaches >=0.020%. Then, deoxidation treatment is carried out by circulating the above molten steel through RH vacuum refining equipment, by which deaeration is exerted and oxidized inclusions are allowed to rise to the surface to reduce the amount of dissolved oxygen in the molten steel. By this method, refining can be performed at high deoxidation rate and high desulfurization rate, and the duplex stainless steel having superior corrosion resistance and hot workability (drawing rate) can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は2相系ステンレス鋼を脱硫及び脱酸する溶製方
法に関する。 〔従来の技術〕 クロムを約12%以上含有する鋼は、鋼の表面にクロム
の酸化皮膜ができて不動態化し、ずくれた耐食性を示す
のでステンレス鋼とよばれる。ステンレス鋼は組織の上
からマルテンザイト系、フェライト系、オーステナイト
系に大別される。 近年、フェライト/オーステリーイト2相混合組織をも
つ2相系ステンレス鋼が耐応力、腐食割れ性及び面J孔
食性に優れたステンレス鋼として開発されている。 ところで、一般に大気中で精錬した溶湯は、ガス、非金
属介在物などの不純物成分によるlη染を受け、そのた
めに成品で種々の欠陥を生ずる。このためステンレス鋼
の品質を向上さセるべく鋼中のガス、非金属介在物など
の不純物の減少、成分範囲の縮小を図る必要がある。 第4図は2相系ステンレス鋼におkJる酸素含有量と孔
食発生温度との関係を示すグラフであり、縦軸には孔食
発生温度、横軸には酸素含有量(%)がとられている。 図より明らかな如く、酸素含有量が多いほど孔食発生温
度が低く、孔食が発生し易い。従って2相系ステンレス
鋼の耐食性を向上さセるためには鋼中の酸素含有率を低
下させるべく脱酸処理を行う必要がある。 また第5図は2相系ステンレス鋼にお+Jる硫黄含有量
と成品を熱間で加工した場合のクリープ試験による絞り
率との関係を示すグラフであり、縦軸には絞り率(%)
、横軸には硫黄含有量(ppm)が、とられている。図
中O印でプロソトシであるのは1000℃で熱間加工し
たもの、Δ印でプロンI・しであるのは900℃で熱間
加工したものである。 図より明らかな如く、硫黄の含有量が同程度である場合
には1000℃で加工したものの方が、900℃で加工
したものと比べて絞り率が高い。またどちらの温度で加
工した場合でも硫黄含有量が10ppm以下になると絞
り率が著しく向上し、硫黄含有量が2 ppm以下の場
合絞り率〉80%で耳割れなし、耐食性良好な成品が得
られた。従って2相系ステンレス鋼の熱間加工性(絞り
率)を向上させ良質の成品を得るためには鋼中の硫黄含
有率を低下させるべく脱硫処理を行う必要がある。 ステンレス鋼の脱硫、脱酸方法としては溶鋼を非酸化性
雰囲気下でフラックスにより脱硫する方法(特開昭53
−1620号公報)、また溶鋼を真空脱ガス槽に吹上げ
フラックスにより脱硫する方法、溶鋼を真空脱ガス処理
して脱酸する方法(特開昭55107718号公報)が
提案されている。 〔発明が解決しようとする課題〕 一般に鋼中のC3)及び
[Industrial Field of Application] The present invention relates to a method for desulfurizing and deoxidizing two-phase stainless steel. [Prior Art] Steel containing about 12% or more of chromium is called stainless steel because a chromium oxide film is formed on the surface of the steel, making it passivated and exhibiting poor corrosion resistance. Stainless steel is broadly classified into martensite, ferritic, and austenitic based on its structure. In recent years, a two-phase stainless steel having a ferrite/austerite two-phase mixed structure has been developed as a stainless steel with excellent stress resistance, corrosion cracking resistance, and surface J pitting resistance. By the way, molten metal refined in the atmosphere is generally stained by impurity components such as gas and nonmetallic inclusions, which causes various defects in the finished product. Therefore, in order to improve the quality of stainless steel, it is necessary to reduce impurities such as gas and nonmetallic inclusions in the steel and to narrow the range of its components. Figure 4 is a graph showing the relationship between the oxygen content in kJ and the temperature at which pitting corrosion occurs in duplex stainless steel, with the vertical axis representing the temperature at which pitting corrosion occurs, and the horizontal axis representing the oxygen content (%). It is taken. As is clear from the figure, the higher the oxygen content, the lower the temperature at which pitting corrosion occurs, making it easier for pitting corrosion to occur. Therefore, in order to improve the corrosion resistance of duplex stainless steel, it is necessary to perform deoxidation treatment to reduce the oxygen content in the steel. Figure 5 is a graph showing the relationship between the sulfur content in duplex stainless steel and the reduction rate determined by the creep test when the product is hot-processed, and the vertical axis shows the reduction rate (%).
, the sulfur content (ppm) is plotted on the horizontal axis. In the figure, those marked with O and showing a flat surface are hot worked at 1000°C, and those marked with Δ and showing a flat I are hot worked at 900°C. As is clear from the figure, when the sulfur content is the same, those processed at 1000°C have a higher drawing ratio than those processed at 900°C. In addition, no matter which temperature is used for processing, when the sulfur content is 10 ppm or less, the drawing ratio improves significantly, and when the sulfur content is 2 ppm or less, a product with no edge cracking and good corrosion resistance can be obtained with a drawing ratio of 80%. Ta. Therefore, in order to improve the hot workability (drawing ratio) of duplex stainless steel and obtain a high quality product, it is necessary to perform a desulfurization treatment to reduce the sulfur content in the steel. A method for desulfurizing and deoxidizing stainless steel is to desulfurize molten steel using flux in a non-oxidizing atmosphere (Japanese Patent Laid-Open No. 53
1620), a method in which molten steel is desulfurized by blowing up flux into a vacuum degassing tank, and a method in which molten steel is deoxidized by vacuum degassing treatment (Japanese Patent Laid-Open No. 55107718) has been proposed. [Problem to be solved by the invention] Generally, C3) in steel and

〔0〕の含有率は低ければ低い
ほど良質の成品が得られる。ところが、2相系ステンレ
ス鋼は高クロム鋼(クロム濃度18%以上)であり、酸
素の活量係数が著しく小さいので溶鋼中の溶存酸素が増
加し、従来の脱酸方法ではステンレス鋼中の酸素を低下
させるのが困難であった。 更に従来の脱硫方法では炉内で脱硫が行われるので炉内
の耐火物が溶損し、安定した脱硫が行えないという問題
があった。 本発明は斯かる問題を解決するためになされたものであ
り、その目的とするところは安定した脱酸処理、脱硫処
理を行い、脱酸率及び脱硫率が高く、耐食性及び熱加工
性が良好な2相系ステンレス鋼を得るための溶製方法を
提供するにある。 〔課題を解決するための手段〕 本発明の2相系ステンレス鋼の溶製方法にあっては、A
1を5%以上混合したフラックスを、溶鋼流に投入する
ことにより脱硫処理を行い、次いで溶鋼中の^lの割合
が0.020%以上となるようにAIを添加し、RH真
空精錬装置により環流することにより脱酸処理を行うこ
とを特徴とする。 〔作用〕 本発明の2相系ステンレス鋼の溶製方法にあっては、A
nを5%以上混合したフラックスを溶鋼流に投入し一、
溶鋼流のaO(activity oxygen  酸
素活量)を低下させる。これにより炉内の耐火物を溶損
させることなく炉外で安定した脱硫が行われる。 また脱硫後の溶鋼中の^lの割合が0.020%以上と
なるように^lを添加し、I?l(真空精錬装置により
環流することにより酸化された介在物を浮上させる。こ
れにより溶鋼中の溶存酸素が低下され脱酸が行われる。 〔実施例〕 以下、本発明を具体的な実施例に基づいて説明する。 本実施例の対象鋼種である2相系ステンレス鋼(WRD
P85)の化学成分は次の通りである。 上述の2相系ステンレス鋼を電気炉にて溶解させ、取鍋
からAOD炉に移し、不活性ガスなどと0□との混合ガ
スを吹き込むごとにより脱Cを行う。 またAOD法によりスラグと溶湯とを撹拌し、Crを還
元する。 ^0口処理後、AOD炉から取鍋へ出鋼中の溶湯にme
tal  Ajl!を5%以以上台したフラックスを出
鋼流にあたる様に投入し出鋼流の反応界面でのao(a
ctivity oxygen酸素活景)を低下させ脱
Sを行う。ここで八βの添加率を5%以上としたのは5
%未満ではaoを低下さ・Uる効果が十分得られないか
らである。フラックスの組成例を第2表に示す。 第2表 脱S処理後、出鋼された取鍋的溶鋼を除滓した後、溶鋼
中の5olAAの割合が0.020%以上となるように
AAを添加する。その後溶鋼中にR11真空精錬装置の
上昇管(溶鋼吸い上げ用)と下降管(排出用)とを浸漬
し、上昇管から真空槽内に溶鋼を吸い上げて脱ガスを進
行さセ、これを下降管から排出して71分間環流する。 これにより鋼中の酸素を減少せしめることができる。 上述の如く溶製された2相系ステンレス鋼の化学成分は
以下に示す如くほとんどすべての成分においてその目標
値が達成され、また(S)、  (0)の含有量が著し
く低下した。 (以 下 余 白) 第1図は本発明の脱Sフランクス(A115%以上添加
)及び従来の脱Sフランクス(Allなし)の脱S率を
示すグラフである。図より明らかな様に本発明方法のフ
ラックスを用いた場合脱S率は従来に比して11ポイン
ト〜21ポイント向上した。 第2図は成品の5olAJ量(%)とO量(ppm)と
の関係を示すグラフである。グラフより明らかな如く溶
鋼中の5olA 12が0.020%以上になるように
した場合0量を60ppm未溝にすることができる。 第3図はI?H環流時間〔分〕を20分、40分、 6
0分と変化さ・Uた場合のon (ppm )の変化を
示すグラフである。これによるとI?l+環流時間を6
0分以上とし、できるだけ長時間にするほどO量を低減
させることがわかる。 〔発明の効果〕 以上詳述した如く本発明の2相系ステンレス鋼の溶製方
法にあっては、Allを5%以上混合したフラックスを
?8鋼流に投入して脱硫を行うので、炉内の耐火物が溶
損することなく炉外で安定した脱硫が行われ、従来に比
して脱S率が向上する。 また脱硫後の溶鋼中にANの割合が0.020%以上と
なるようにA7!を添加し、R11真空精錬装置により
60分以上環流することにより脱酸が行われ、従来に比
して鋼中のO量が減少するという優れた効果を奏する。
The lower the content of [0], the higher the quality of the product. However, duplex stainless steel is a high chromium steel (chromium concentration of 18% or more) and has an extremely low oxygen activity coefficient, so dissolved oxygen in the molten steel increases, and conventional deoxidation methods remove the oxygen in the stainless steel. It was difficult to reduce the Furthermore, in the conventional desulfurization method, since desulfurization is performed in a furnace, there is a problem in that the refractories in the furnace are eroded and it is not possible to perform stable desulfurization. The present invention was made to solve such problems, and its purpose is to perform stable deoxidation and desulfurization treatments, have high deoxidation and desulfurization rates, and have good corrosion resistance and heat workability. The object of the present invention is to provide a melting method for obtaining a duplex stainless steel. [Means for Solving the Problems] In the method for producing duplex stainless steel of the present invention, A
Desulfurization treatment is performed by pouring a flux containing 5% or more of 1 into the molten steel flow, then AI is added so that the ratio of ^l in the molten steel is 0.020% or more, and the flux is processed using an RH vacuum refining device. It is characterized by performing deoxidation treatment by refluxing. [Function] In the method for producing duplex stainless steel of the present invention, A
A flux containing 5% or more of n is poured into the molten steel flow.
Decrease the aO (activity oxygen) of the molten steel flow. As a result, stable desulfurization is performed outside the furnace without damaging the refractories inside the furnace. In addition, ^l is added so that the ratio of ^l in the molten steel after desulfurization is 0.020% or more, and I? (The oxidized inclusions are brought to the surface by refluxing in the vacuum refining equipment. This reduces the dissolved oxygen in the molten steel and deoxidizes it. [Example] The present invention will be described below with reference to specific examples. The explanation will be based on duplex stainless steel (WRD), which is the target steel type of this example.
The chemical components of P85) are as follows. The above-mentioned two-phase stainless steel is melted in an electric furnace, transferred from a ladle to an AOD furnace, and decarbonized by blowing in a mixed gas of inert gas or the like and 0□. Further, the slag and molten metal are stirred by the AOD method to reduce Cr. ^0 After processing, add me to the molten metal being tapped from the AOD furnace to the ladle.
tal Ajl! A flux containing 5% or more of
S removal is performed by lowering the oxygen activity (oxygen activity). Here, the addition rate of 8β was set to 5% or more.
This is because if it is less than %, the effect of lowering and increasing the ao cannot be sufficiently obtained. Table 2 shows an example of the composition of the flux. Table 2 After the S removal treatment, the tapped molten steel in the form of a ladle is removed from the slag, and then AA is added so that the proportion of 5olAA in the molten steel is 0.020% or more. After that, the rising pipe (for sucking up molten steel) and the downcomer pipe (for discharging) of the R11 vacuum refining equipment are immersed in the molten steel, and the molten steel is sucked up from the rising pipe into the vacuum tank to proceed with degassing. Drain and reflux for 71 minutes. This makes it possible to reduce oxygen in the steel. As shown below, almost all of the chemical components of the duplex stainless steel melted as described above achieved their target values, and the contents of (S) and (0) were significantly reduced. (Margins below) FIG. 1 is a graph showing the S removal rate of the S-free Franks of the present invention (adding 115% or more of A1) and the conventional S-free Flanks (without All). As is clear from the figure, when the flux of the present invention was used, the S removal rate was improved by 11 to 21 points compared to the conventional method. FIG. 2 is a graph showing the relationship between the amount of 5olAJ (%) and the amount of O (ppm) in the finished product. As is clear from the graph, if 5olA 12 in the molten steel is set to 0.020% or more, the zero amount can be reduced to 60 ppm without grooves. Figure 3 is I? H reflux time [minutes]: 20 minutes, 40 minutes, 6
It is a graph showing the change in on (ppm) when it changes from 0 minutes. According to this I? l + perfusion time 6
It can be seen that the longer the time is set to 0 minutes or more, the more the O amount is reduced. [Effects of the Invention] As detailed above, in the method for producing duplex stainless steel of the present invention, a flux containing 5% or more of All is used. Since desulfurization is carried out by pouring into the 8 steel stream, stable desulfurization is performed outside the furnace without melting the refractories inside the furnace, and the S removal rate is improved compared to the conventional method. Also, A7! so that the proportion of AN in the molten steel after desulfurization is 0.020% or more! is added and refluxed for 60 minutes or more in an R11 vacuum refining device to perform deoxidation, which has the excellent effect of reducing the amount of O in the steel compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の脱Sフランクス(l添加)及び従
来方法の脱Sフランクス(^lなし)の脱S率を示すグ
ラフ、第2図は成品の5olA A量〔%〕とO量(p
pm )との関係を示すグラフ、第3図はRH環流時間
を変化させた場合の0ffl (ppm )の変化を示
すグラフ、 第4図は2相系ステンレス鋼における酸素
含有量と孔食発生温度との関係を示すグラフ、第5図は
2相系ステンレス鋼における硫黄含有量と成品を熱間で
加工した場合のクリープ試験の絞り率との関係を示すグ
ラフである。
Figure 1 is a graph showing the S removal rate of the S-free flanks of the present invention method (addition of 1) and the conventional method of S-free flanks (without ^L), and Figure 2 is a graph showing the 5olA A content [%] and O content of the product. (p
Figure 3 is a graph showing the change in 0ffl (ppm) when the RH reflux time is changed. Figure 4 is the graph showing the relationship between oxygen content and pitting corrosion occurrence temperature in two-phase stainless steel. FIG. 5 is a graph showing the relationship between the sulfur content in two-phase stainless steel and the reduction ratio in the creep test when the product is hot worked.

Claims (1)

【特許請求の範囲】[Claims] 1、Alを5%以上混合したフラックスを、溶鋼流に投
入することにより脱硫処理を行い、次いで溶鋼中のAl
の割合が0.020%以上となるようにAlを添加し、
RH真空精錬装置により環流することにより脱酸処理を
行うことを特徴とする2相系ステンレス鋼の溶製方法。
1. Desulfurization treatment is performed by pouring flux containing 5% or more of Al into the molten steel flow, and then the Al in the molten steel is removed.
Al is added so that the ratio of is 0.020% or more,
A method for producing two-phase stainless steel, characterized in that deoxidation treatment is performed by refluxing with an RH vacuum refining device.
JP1247485A 1989-09-22 1989-09-22 Method of melting duplex stainless steel Expired - Lifetime JPH0696732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1247485A JPH0696732B2 (en) 1989-09-22 1989-09-22 Method of melting duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1247485A JPH0696732B2 (en) 1989-09-22 1989-09-22 Method of melting duplex stainless steel

Publications (2)

Publication Number Publication Date
JPH03107411A true JPH03107411A (en) 1991-05-07
JPH0696732B2 JPH0696732B2 (en) 1994-11-30

Family

ID=17164166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1247485A Expired - Lifetime JPH0696732B2 (en) 1989-09-22 1989-09-22 Method of melting duplex stainless steel

Country Status (1)

Country Link
JP (1) JPH0696732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066394A (en) * 2009-08-18 2011-03-31 Mitsubishi Electric Corp Light source device, and method of producing the same
CN102952923A (en) * 2012-11-27 2013-03-06 南京钢铁股份有限公司 Process for smelting aluminum containing steel through calcium carbide deoxidation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011066394A (en) * 2009-08-18 2011-03-31 Mitsubishi Electric Corp Light source device, and method of producing the same
US8733995B2 (en) 2009-08-18 2014-05-27 Mitsubishi Electric Corporation Light source device with reduced optical part clouding
CN102952923A (en) * 2012-11-27 2013-03-06 南京钢铁股份有限公司 Process for smelting aluminum containing steel through calcium carbide deoxidation

Also Published As

Publication number Publication date
JPH0696732B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
CN108330245B (en) High-purity smelting method for stainless steel
CN108531807B (en) Thick-wall large-caliber X80M pipeline clean steel and smelting method
JP2575827B2 (en) Manufacturing method of ultra low carbon steel for continuous casting with excellent cleanliness
CN110093520B (en) Method for manufacturing corrosion-resistant alloy
CN113249542A (en) Smelting process for improving purity degree and impurity plastification of spring steel and spring steel
CN115247225B (en) Method for smelting UNS N06600 alloy by intermediate frequency furnace
CN113025781B (en) Method for producing low-carbon low-silicon ultralow-sulfur steel by adopting LF (ladle furnace) single-link process
JP5212581B1 (en) Method for producing high Si austenitic stainless steel
JP4656007B2 (en) Method of processing molten iron by adding Nd and Ca
JP2008101259A (en) METHOD FOR PRODUCING MOLTEN STEEL CONTAINING Zr IN ADDITION TO Cr, AND METHOD FOR INHIBITING CLOGGING OF IMMERSED NOZZLE
JPH03107411A (en) Method for refining duplex stainless steel
JPH01301814A (en) Refining method of high-cleanliness steel
KR101611671B1 (en) Method for manufacturing ferritic stainless steel
JPH09310113A (en) Refining method for highly clean stainless steel
JP3230068B2 (en) Melting method of low aluminum ultra low sulfur steel
JPH07268440A (en) Deoxidizing method of molten steel
JP2019000903A (en) Smelting method and continuous casting method of steel
KR101676140B1 (en) Method for refining austenite stainless steel
CN115161434B (en) Production method of low alloy steel
KR20030089955A (en) The method of decreasing nitrogen in deoxidized molten steel
JP3960728B2 (en) Chromium-containing steel slag and its processing method
JP2855334B2 (en) Modification method of molten steel slag
JP2855333B2 (en) Modification method of molten steel slag
JP2976849B2 (en) Method for producing HIC-resistant steel
JPH0639614B2 (en) Ultra-low S, ultra-low A (1) steel manufacturing method