JPH03106501A - Hot rolling device - Google Patents
Hot rolling deviceInfo
- Publication number
- JPH03106501A JPH03106501A JP1238674A JP23867489A JPH03106501A JP H03106501 A JPH03106501 A JP H03106501A JP 1238674 A JP1238674 A JP 1238674A JP 23867489 A JP23867489 A JP 23867489A JP H03106501 A JPH03106501 A JP H03106501A
- Authority
- JP
- Japan
- Prior art keywords
- heating furnace
- slab
- slabs
- rolling
- pitch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005098 hot rolling Methods 0.000 title description 3
- 238000010438 heat treatment Methods 0.000 claims abstract description 158
- 238000005096 rolling process Methods 0.000 claims abstract description 69
- 238000009749 continuous casting Methods 0.000 claims abstract description 33
- 238000003860 storage Methods 0.000 claims description 13
- 230000032258 transport Effects 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 4
- 238000012546 transfer Methods 0.000 abstract description 6
- 238000005266 casting Methods 0.000 description 21
- 230000007423 decrease Effects 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 238000000605 extraction Methods 0.000 description 14
- 230000008859 change Effects 0.000 description 9
- 239000000446 fuel Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000009826 distribution Methods 0.000 description 4
- 239000000725 suspension Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/005—Control of time interval or spacing between workpieces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/46—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
- B21B1/466—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a non-continuous process, i.e. the cast being cut before rolling
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Metal Rolling (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は熱間圧延装置に関し、特に,複数の連続鋳造機
と複数の加熱炉を含む設備から得られる熱片を圧延する
システムに関する,
[従来の技術]
連続鋳造機から出たスラブを圧延する従来の装置につい
ては、例えば特開昭59−101205号公報及び特開
昭50−131652号公報に開示されている.
この種の装置においては、連続鋳造機から出たスラブを
,加熱炉に通して所定の圧延温度まで加熱した後で、圧
延機に搬入するように構或されている.
[Jl!明が解決しようとする課IN]熱間圧延装置で
は、連続鋳造機から出たスラブをなるべく早く加熱炉に
装入した方が、スラブの温度低下が少なく、従って加熱
炉における加熱所要時間が短縮され、加熱のエネルギー
も節約できる.
ところで,連続鋳造機の稼働率の変動や圧延製品受注量
の変動に対応するためには、連続鋳造機の稼働率が高い
時には、圧延機や加熱炉の処理能力を越える量のスラブ
を生産する必要がある.そこで従来より、連続鋳造機か
ら出たスラブを,熱片と冷片とに振り分け,熱片はその
まま加熱炉に搬入し加熱した後で圧延機に通し、冷片は
一担所定のスラブ置場に蓄積し、必要な圧延量が増大し
た時に,冷片を加熱したものを,熱片と並行して圧延処
理している。また、熱片と冷片の両方を加熱して圧延す
る時には,熱片と冷片とを交互に加熱炉に装入して処理
している.
しかしながら、複数の連続鋳造機を利用する場合に,一
部の連続鋳造機が休止すると,鋳造機全体の稼働率が大
幅に変化し、スラブの加熱炉への供給量が大きく変化す
る.熱片と冷片とを一定のピッチで交互に加熱炉に装入
する場合には、例えば鋳造ピッチの減少(鋳造機の休止
等)によって,熱片スラプの装入タイミングで今回装入
すべき熱片が炉の入側に到着していないと、加熱炉内に
空きを作らざるを得す、加熱炉のエネルギー効率が低下
し、無駄な燃料消費が増大する。逆に,熱片スラブの装
入タイミングの前に多数のスラブが到着すると、装入前
で待機している間のスラブの温度降下が大きくなり,こ
の場合もエネルギー効率が低下する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hot rolling apparatus, and more particularly to a system for rolling hot pieces obtained from equipment including a plurality of continuous casting machines and a plurality of heating furnaces. Prior Art] A conventional device for rolling a slab produced from a continuous casting machine is disclosed in, for example, Japanese Patent Application Laid-Open Nos. 59-101205 and 1982-131652. This type of equipment is constructed so that the slab discharged from the continuous casting machine is passed through a heating furnace and heated to a predetermined rolling temperature, and then transported into the rolling mill. [Jl! Problem that Ming is trying to solve] In hot rolling equipment, the sooner the slab from the continuous casting machine is charged into the heating furnace, the lower the temperature drop of the slab will be, and therefore the time required for heating in the heating furnace will be reduced. This also saves heating energy. By the way, in order to respond to fluctuations in the operating rate of continuous casting machines and fluctuations in the amount of orders for rolled products, when the operating rate of continuous casting machines is high, it is necessary to produce slabs in quantities that exceed the processing capacity of the rolling mill and heating furnace. There is a need. Conventionally, the slabs that come out of the continuous casting machine are divided into hot slabs and cold slabs, the hot slabs are directly transported to a heating furnace and heated, and then passed through a rolling mill, while the cold slabs are sent to a designated slab storage area. When the required rolling amount increases, the cold pieces are heated and rolled in parallel with the hot pieces. Furthermore, when both hot and cold pieces are heated and rolled, the hot and cold pieces are alternately charged into a heating furnace and processed. However, when using multiple continuous casting machines, if some of the continuous casting machines are stopped, the operating rate of the entire casting machine changes significantly, and the amount of slabs supplied to the heating furnace changes significantly. When charging hot slabs and cold slabs into the heating furnace alternately at a constant pitch, for example, due to a decrease in the casting pitch (stopping the casting machine, etc.), it is necessary to charge the hot slabs this time at the timing of charging the hot slab slab. If the hot pieces do not arrive at the inlet side of the furnace, an empty space will be created in the heating furnace, the energy efficiency of the heating furnace will decrease, and wasteful fuel consumption will increase. Conversely, if a large number of slabs arrive before the hot slab charging timing, the temperature drop of the slabs while waiting before charging increases, and in this case also, energy efficiency decreases.
また、圧延機側の処理能力の変化やスラブ材質の変化に
応じて、加熱炉からスラブを抽出して圧延機に供給する
際の抽出ピッチが変化するので、加熱炉の処理能力(加
熱能力)が一定であっても該加熱炉のスラブ受入れ能力
が変化する.従って例えば、加熱炉の受入れ能力よりも
スラブ供給量が減少すると,加熱炉のエネルギー効率が
低下する。In addition, the extraction pitch when extracting slabs from the heating furnace and supplying them to the rolling mill changes according to changes in the processing capacity of the rolling mill and changes in the slab material, so the processing capacity (heating capacity) of the heating furnace changes. Even if is constant, the slab receiving capacity of the heating furnace changes. Therefore, for example, if the amount of slab supplied is less than the receiving capacity of the heating furnace, the energy efficiency of the heating furnace will decrease.
本発明は,圧延成品受注量の変動等に対応して圧延量を
調整可能にするとともに,連続鋳造機の稼働率の変動等
に伴なう加熱炉のエネルギー効率の低下を減少させるこ
とを課題とする.[課題を解決するための手段]
上記課題を解決するために、本発明においては,複数の
連続鋳造機;冷片保存領域:比較的温度の高いスラブを
所定の圧延温度に加熱する第1の加熱炉:前記冷片保存
領域から出た比較的温度の低いスラブを所定の圧延温度
に加熱する第2の加熱炉;前記連続鋳造機で得られるス
ラブを搬送して、該スラブを第1の加熱炉に搬入し,も
しくは前記冷片保存領域を介して第2の加熱炉に搬入す
る,搬送機構;前記第1の加熱炉から出たスラブ及び第
2の加熱炉から出たスラブを順次に受入れて圧延する圧
延装置;及び前記搬送機構を制御し,前記複数の連続鋳
造機から繰り出されるスラブの量と前記第1の加熱炉の
受入れ能力との大小関係、ならびに第l及び第2の加熱
炉の加熱スラブ量と前記圧延装置の圧延能力との大小関
係に応じて、第1の加熱炉にスラブを装入するピッチと
第2の加熱炉にスラブを装入するピッチとの比率を自動
的に調整する、搬送制御手段;を設ける.[作用]
本発明においては,第1の加熱炉は熱片専用の加熱炉と
して利用され、第2の加熱炉は冷片専用の加熱炉として
利用される。熱片を所定の圧延温度まで加熱するのに要
する時間と冷片を所定の圧延温度まで加熱するのに要す
る時間とは大きく異なるのでそれらを同じ炉で同時に処
理すると熱片の加熱所要時間が必要以上に長くなり無駄
が大きくなるが、熱片と冷片の加熱を各々独立した専用
の加熱炉で処理することによって、熱片と冷片の加熱を
同時に処理できる.
例えば、圧延量を一定に維持するためには、第1の加熱
炉に対する熱片スラブの装入ピッチ,及び第2の加熱炉
に対する冷片スラブの装入ピッチを各々一定にすればよ
い.しかしそのようにすると,連続鋳造機の稼働率変化
によって加熱前スラブの供給量が増大した場合,圧延設
備や加熱炉の処理能力に余裕がある時でも、鋳造直後の
温度の高いスラブを冷片に振り向けなければならず無駄
が生じる。The present invention aims to make it possible to adjust the rolling amount in response to changes in the order volume of rolled products, and to reduce the decrease in energy efficiency of the heating furnace due to changes in the operating rate of the continuous casting machine. Suppose that [Means for Solving the Problems] In order to solve the above problems, the present invention includes a plurality of continuous casting machines; a cold slab storage area; Heating furnace: A second heating furnace that heats the comparatively low-temperature slabs coming out of the cold piece storage area to a predetermined rolling temperature; A second heating furnace that transports the slabs obtained by the continuous casting machine and transfers the slabs to the first A conveyance mechanism that carries the slabs into the heating furnace or into the second heating furnace via the cold piece storage area; sequentially transports the slabs coming out of the first heating furnace and the slabs coming out of the second heating furnace; a rolling device that receives and rolls the slabs; and controls the conveyance mechanism to determine the magnitude relationship between the amount of slabs delivered from the plurality of continuous casting machines and the receiving capacity of the first heating furnace, and the first and second heating The ratio of the pitch at which slabs are charged into the first heating furnace and the pitch at which slabs are charged into the second heating furnace is automatically determined depending on the magnitude relationship between the amount of heated slabs in the furnace and the rolling capacity of the rolling device. A conveyance control means is provided to adjust the [Function] In the present invention, the first heating furnace is used as a heating furnace exclusively for hot pieces, and the second heating furnace is used as a heating furnace only for cold pieces. The time required to heat hot pieces to the specified rolling temperature and the time required to heat cold pieces to the specified rolling temperature are significantly different, so if they are processed simultaneously in the same furnace, the time required to heat the hot pieces will be longer. Although it is longer and more wasteful, by heating the hot and cold pieces in separate dedicated heating furnaces, it is possible to heat the hot and cold pieces at the same time. For example, in order to maintain a constant rolling amount, the charging pitch of hot slab slabs into the first heating furnace and the charging pitch of cold slab slabs into the second heating furnace may be made constant. However, in this case, if the supply amount of unheated slabs increases due to changes in the operating rate of the continuous casting machine, even if there is sufficient processing capacity in the rolling equipment or heating furnace, the high-temperature slabs immediately after casting will be transferred to cold slabs. This results in waste.
また、例えば連続鋳造機の稼働率変化に伴なって第1及
び第2の加熱炉のスラブ装入ピッチを変える場合には、
鋳造機の稼働率変化に応じて圧延量が大きく変化し,圧
延設備の稼働率の変化が大きいので目標圧延量の増大の
妨げになる.また、加熱処理量が圧延設備の処理能力を
上まわる時には、加熱炉前もしくは加熱炉内でスラブを
待機させなければならず、効率の低下につながる.しか
し本発明においては,連続鋳造機から繰り出されるスラ
ブの量と前記第lの加熱炉の受入れ能力との大小関係,
ならびに第1及び第2の加熱炉の加熱スラブ量と前記圧
延装置の圧延能力との大小関係に応じて、第1の加熱炉
にスラブを装入するピッチと第2の加熱炉にスラブを装
入するピッチとの比率を自動的に調整するので,例えば
第2の加熱炉のスラブ装入ピッチを一定にし,第1の加
熱炉のスラブ装入ピッチを状況に応じて変えることがで
き、鋳造機の稼働率が変化した場合でも、第lの加熱炉
内に空きができるのを防止できる.第1及び第2の加熱
炉への供給燃料を、各々の加熱炉のスラブ装入ピッチに
合わせて変更すれば、無駄な燃料消費は避けられる.
また例えば、鋳造機の稼働率の低下に伴なって,第1の
加熱炉のスラブ装入ピッチを遅くし、第2の加熱炉のス
ラブ装入ピッチは一定あるいは早くすれば,圧延装置へ
のスラブ供給量の低下率を減少させ,圧延装置の稼働率
低下を抑えることができる.
[実施例]
第l図に、本発明を一態様で実施する鋳造圧延システム
の各構成要素のレイアウトを示す.第1図を参照すると
、このシステムには、3基の連続鋳造機CCI,CG2
及びCC3が備わっている.これらの鋳造機によって生
産されるスラブは、所定の台車上に乗り、搬送設備とし
て設けられた貨車線RL 1−RL2−RL3を順に通
って圧延設備HSMに近づく.
この例では,スラブの搬送ルートには,生産された直後
の比較的温度の高いスラブ(即ち熱片)をそのまま圧延
に必要な温度まで加熱炉HHで加熱して直ちに圧延設備
HSMに送る第1のルートと、スラブ置場YDIを通っ
て一担待機し多少温度が低下したスラブ(即ち冷片)を
加熱炉HLで加熱して圧延設備HSMに送る第2のルー
トとがある。In addition, for example, when changing the slab charging pitch of the first and second heating furnaces due to changes in the operating rate of the continuous casting machine,
The rolling amount changes greatly depending on the change in the operating rate of the casting machine, and the large change in the operating rate of the rolling equipment hinders the increase in the target rolling amount. Furthermore, when the amount of heat treatment exceeds the processing capacity of the rolling equipment, the slab must be placed on standby in front of or inside the heating furnace, leading to a decrease in efficiency. However, in the present invention, the magnitude relationship between the amount of slabs fed out from the continuous casting machine and the receiving capacity of the first heating furnace,
Also, the pitch at which slabs are charged into the first heating furnace and the loading pitch at which slabs are loaded into the second heating furnace are determined depending on the magnitude relationship between the amount of heated slabs in the first and second heating furnaces and the rolling capacity of the rolling apparatus. This automatically adjusts the ratio between the slab charging pitch in the second heating furnace and the slab charging pitch in the first heating furnace depending on the situation. Even if the operating rate of the machine changes, it is possible to prevent empty spaces from forming in the first heating furnace. By changing the fuel supplied to the first and second heating furnaces in accordance with the slab charging pitch of each heating furnace, unnecessary fuel consumption can be avoided. For example, as the operating rate of the casting machine decreases, the slab charging pitch of the first heating furnace can be slowed down, and the slab charging pitch of the second heating furnace can be kept constant or fast, thereby reducing the load on the rolling equipment. It is possible to reduce the rate of decline in the slab supply amount and suppress the decline in the operating rate of the rolling mill. [Example] Figure 1 shows the layout of each component of a casting and rolling system that implements one embodiment of the present invention. Referring to Figure 1, this system includes three continuous casting machines CCI and CG2.
and CC3. Slabs produced by these casting machines ride on predetermined carts and approach the rolling facility HSM through freight lanes RL 1 - RL 2 - RL 3 provided as transport equipment in order. In this example, the slab conveyance route includes a first stage where the relatively high-temperature slab (i.e. hot slab) immediately after being produced is heated in the heating furnace HH to the temperature required for rolling, and then immediately sent to the rolling equipment HSM. There is a second route in which the slabs (i.e., cold slabs), which have passed through the slab storage yard YDI and are on standby and whose temperature has decreased somewhat, are heated in the heating furnace HL and sent to the rolling equipment HSM.
一方の加熱炉HHは熱片専用に割当てられ、他方の加熱
炉HLは冷片専用に割当てられている.即ち、熱片の加
熱所要時間と冷片の加熱所要時間とは大きく異なり1つ
の加熱炉中に両者が混在すると、時間の長い冷片の条件
を満足するように在炉時間を決定せざるを得す加熱炉の
効率が悪化するので、それを防止するために両者を独立
した加熱炉で処理している.
連続鋳造機から到着したスラブの搬送先の選択(熱片と
冷片への分配),各々の加熱炉へのスラブの装入,各々
の加熱炉からのスラブの抽出等々の搬送処理は、搬送制
御コンピュータCPUによつて自動的に制御される.
連続鋳造機から到着したスラブを熱片のまま加熱して圧
延する場合には、熱片ヤードVD2の位置で、スラブは
クレーンCLHによって搬送テーブルTBH上に移し替
えられ,該テーブルによって搬送され、加熱炉HHの一
端に装入され、それまでに装入された他の熱片とともに
加熱される.装入されてから所定の温度に達するのに必
要な時間(例えば1分間)を経過すると、スラブは加熱
炉の他端から抽出され、抽出テーブルTBOによって圧
延設備HSMまで搬送される.
連続鋳造機から到着したスラブを冷片として扱う場合に
は、該スラブは貨車線RL3上を通ってスラブ置場YD
Iに搬送される.このスラブ置場に口積されたスラブ、
即ち冷片は、必要に応じて使用される.つまり、クレー
ンCLLによって一搬材搬送テーブルTBLに移し替え
られ、該テーブル上を搬送され、加熱炉HLの一端に装
入され、それまでに装入された他の冷片とともに加熱さ
れる.装入されてから所定の温度に達するのに必要な時
間(例えば4分間)を経過すると,スラブは加熱炉の他
端から抽出され,抽出テーブルTBOによって圧延設備
HSMまで搬送される.ところで、生成されるスラブの
量や圧延速度は一定ではない.それらの変化によって加
熱炉HH中に空きができる(処理能力より処理量が少な
い)と,加熱炉のエネルギー効率が低下するので、それ
を防止して効率を上げるために、搬送制御コンピュータ
CPUは、状況に応じて加熱炉HHへの熱片の装入ピッ
チと加熱炉HLへの冷片の装入ピッチとの比率を自動的
に調整し、加熱炉HH,HLへのスラブの装入パターン
を変更する.連続鋳造機から到着したスラブのうち加熱
炉HHに装入されない余分のスラブは、冷片としてスラ
ブ置場MDIに搬送される.
例えば、圧延設備においては、仕上げ圧延温度の調整の
ために圧延速度を変更する必要があり,また成品サイズ
が変われば圧延速度が一定の場合でも圧延所要時間が変
わるので,圧延量(T/H :屯/時間)は変化する.
また,加熱炉においては、スラブの在炉時間(加熱炉内
に入っている時間)や抽出時温度を所定以上にする必要
があり、これはスラブの材質に応じて定まる.加熱炉で
の処理量(T/H)又は装入/抽出量は,その時に処理
される加熱炉内のスラブ群の中で最も時間の長いものに
合わせる必要がある.また、圧延温度に加熱したスラブ
を圧延設備の手前で長時間滞留させることはできない(
温度が下がる)ので、加熱炉HH,HLでの処理量を圧
延設備の処理能力以上にすることはできない.
更に,鋳造のスケジュールに応じて,もしくは設備のメ
ンテナンス等のために,複数の鋳造機のうちの一部を休
止させたり、各々の鋳造機の稼働率を変える場合がある
ので、生産されるスラブのffi (T/H)は変化す
る.
例えば,加熱炉HHのスラブ装入ピッチを一定にする場
合、一部の鋳造機の休止等によってスラブの到着ピッチ
が遅くなると,予定した装入タイミングで装入すべきス
ラブが存在しないので、加熱炉HH内に空き領域を作ら
ざるを得す、加熱処理量(T/H)がHHの処理能力に
比べて小さくなり、エネルギー利用効率が下がる.この
ような不都合を解消するために,搬送制御コンピュータ
CPUは、第2図に示すような制御を行なっている.
第2図を参照して説明する.ステップlでは、鋳造プロ
セス及び圧延プロセスのデータを入手する.即ち,搬送
制御コンピュータCPUは、連続鋳造機CCI,CC2
,CC3のプロセスを制御するコンピュータ(図示せず
)や圧延設備HSMのプロセスを制御するコンピュータ
(図示せず)と接続されているので,それらと通信を行
ない,各々の鋳造機の稼働状況やスラブの材質などを鋳
造プロセスのデータとして入力し,圧延速度などを圧延
プロセスのデータとして入力する.ステップ2では,各
種のパラメータを計算等によって求める.まず最初に,
連続鋳造機から出て熱片ヤードYD2に到着するスラブ
(熱片+冷片〉の量(T/H)を求める.これは、各鋳
造機のその時のスラブ製造量(T/H)と搬送所要時間
とに基いて計算により求めることができる.次に、各加
熱炉HH,HLのその時の処理量(T/H)を求める.
これは,例えば各加熱炉のスラブ装入ピッチとスラブ抽
出ピッチとの平均的な値として求めることができる.次
に,その時の圧延設備の最大圧延能力RVMを求める.
これは,その時の仕上げ圧延部の搬送速度,スラブの大
きさ及び材質に基づいて計算で求めることができる.ス
テップ3では,加熱炉HHの最大処理量(処理能力)と
スラブ装入ピッチとを比較し,後者が前者を越えないよ
うにする.スラブ装入ピッチは、KXVTAとして求め
ることができる.例えば、配分率Kが0.8の場合には
、連続鋳造機から到着したスラブのうち80%が熱片と
tて加熱炉HHに装入され、残りの20%が冷片として
スラブ置場YDIに搬送される.
ステップ4では、加熱炉HHでの処理jiHTHを熱片
到着量VTAと比較する.HTH>VTAなら、ステッ
プ8に進む.
ステップ4でHTH≦VTAなら,ステップ5に進み、
圧延設備の圧延能力RVMと加熱処理中のスラブ量HT
Tとを比較する.スラブ量HTTは、HTH+HTLで
ある.
もしもRVM≦HTTなら、加熱処理中のスラブ量が圧
延可能量に比べて過大であるので、それを小さくする必
要がある.その場合、ステップ8に進む。One heating furnace HH is assigned exclusively to hot flakes, and the other heating furnace HL is assigned exclusively to cold flakes. In other words, the heating time required for hot pieces and the time required for heating cold pieces are significantly different, and if both are mixed in one heating furnace, the furnace time must be determined to satisfy the conditions for cold pieces, which take a long time. To prevent this, the efficiency of the heating furnace deteriorates, so both are processed in separate heating furnaces. The transportation process includes selecting the destination of the slab arriving from the continuous casting machine (distribution into hot pieces and cold pieces), charging the slab to each heating furnace, and extracting the slab from each heating furnace. Automatically controlled by the control computer CPU. When a slab that has arrived from a continuous casting machine is heated and rolled as a hot piece, the slab is transferred onto a transfer table TBH by a crane CLH at the position of the hot piece yard VD2, transported by the table, and heated. It is charged into one end of the furnace HH and heated together with the other hot pieces that have been charged up to that point. After the time required for the slab to reach a predetermined temperature (for example, 1 minute) has elapsed since it was loaded, the slab is extracted from the other end of the heating furnace and conveyed to the rolling mill HSM by the extraction table TBO. When the slabs arriving from the continuous casting machine are treated as cold pieces, the slabs pass over the freight lane RL3 and are transferred to the slab storage yard YD.
Transported to I. The slabs ordered in this slab storage area,
That is, cold pieces are used as needed. That is, the cold pieces are transferred by the crane CLL to the material transfer table TBL, transported on the table, charged into one end of the heating furnace HL, and heated together with the other cold pieces charged so far. After the time required for the slab to reach a predetermined temperature (for example, 4 minutes) has elapsed after being charged, the slab is extracted from the other end of the heating furnace and transported to the rolling mill HSM by the extraction table TBO. By the way, the amount of slabs produced and the rolling speed are not constant. If a space is created in the heating furnace HH due to these changes (the throughput is less than the processing capacity), the energy efficiency of the heating furnace will decrease.In order to prevent this and increase efficiency, the transfer control computer CPU Depending on the situation, the ratio of charging pitch of hot slabs to heating furnace HH and charging pitch of cold slabs to heating furnace HL is automatically adjusted, and the charging pattern of slabs to heating furnaces HH and HL is adjusted. change. Among the slabs arriving from the continuous casting machine, the extra slabs that are not charged into the heating furnace HH are transported to the slab yard MDI as cold pieces. For example, in rolling equipment, it is necessary to change the rolling speed to adjust the finish rolling temperature, and if the product size changes, the required rolling time will change even if the rolling speed is constant. :tun/time) changes. In addition, in a heating furnace, the time the slab is in the furnace (the time it is in the heating furnace) and the temperature during extraction must be above a specified level, and this is determined by the material of the slab. The processing amount (T/H) or charging/extraction amount in the heating furnace needs to be adjusted to the one that takes the longest time among the group of slabs in the heating furnace that are being processed at that time. In addition, it is not possible to keep the slab heated to the rolling temperature for a long time before the rolling equipment (
(The temperature decreases), so the throughput in the heating furnaces HH and HL cannot exceed the throughput of the rolling equipment. Furthermore, depending on the casting schedule or for equipment maintenance, some of the multiple casting machines may be suspended or the operating rate of each casting machine may be changed, so the slabs produced may be ffi (T/H) changes. For example, when keeping the slab charging pitch of the heating furnace HH constant, if the slab arrival pitch is delayed due to suspension of some casting machines, etc., there will be no slabs to be charged at the scheduled charging timing. It is necessary to create an empty area in the furnace HH, the heat processing amount (T/H) becomes smaller than the processing capacity of the HH, and the energy usage efficiency decreases. In order to eliminate such inconveniences, the conveyance control computer CPU performs control as shown in FIG. This will be explained with reference to Figure 2. In step 1, data on the casting process and rolling process is obtained. That is, the conveyance control computer CPU controls the continuous casting machines CCI and CC2.
, CC3 process control computer (not shown) and the rolling equipment HSM process control computer (not shown) are connected, so it communicates with them and reports the operating status of each casting machine and slab slab. Input the material, etc. as casting process data, and the rolling speed, etc. as rolling process data. In step 2, various parameters are determined by calculation. First of all,
Calculate the amount (T/H) of slabs (hot slabs + cold slabs) that come out of the continuous casting machine and arrive at the hot slab yard YD2. It can be determined by calculation based on the required time.Next, the throughput (T/H) of each heating furnace HH and HL at that time is determined.
This can be determined, for example, as the average value of the slab charging pitch and slab extraction pitch of each heating furnace. Next, find the maximum rolling capacity RVM of the rolling equipment at that time.
This can be calculated based on the conveyance speed of the finish rolling section at that time, the size of the slab, and the material. In step 3, the maximum throughput (processing capacity) of the heating furnace HH is compared with the slab charging pitch to ensure that the latter does not exceed the former. The slab charging pitch can be determined as KXVTA. For example, when the distribution ratio K is 0.8, 80% of the slabs arriving from the continuous casting machine are charged as hot pieces to the heating furnace HH, and the remaining 20% are transferred as cold pieces to the slab storage YDI. will be transported to. In step 4, the processing jiHTH in the heating furnace HH is compared with the amount of heat flakes arriving VTA. If HTH>VTA, proceed to step 8. If HTH≦VTA in step 4, proceed to step 5.
Rolling capacity RVM of rolling equipment and amount of slab during heat treatment HT
Compare with T. The slab amount HTT is HTH+HTL. If RVM≦HTT, the amount of slab during heat treatment is excessive compared to the amount that can be rolled, so it is necessary to reduce it. In that case, proceed to step 8.
ステップ8では、加熱炉HHのスラブ装入ピッチPhi
(T/H)の値を小さくする.加熱炉HLのスラブ装入
ピッチは変更しない。これによって、加熱炉HHとHL
とのスラブ装入ピッチの比率が変更される。つまり、ス
テップ4から8に進んだ時には、鋳造機の稼m車の低下
に適応するように装入ピッチPhiが減少し,ステップ
5から8に進んだ時には、圧延設備側の圧延能力に適応
するように、装入ピッチPhiが減少する.
なお,装入ピッチPhiが減少すれば,加熱炉HHの加
熱能力を下げてもよいので、この場合には、加熱炉HH
で使用する燃料を減らす.
ステップ5でRVM>HTTの場合には、次のステップ
6を実行し、HTTを圧延の目標値S P V (T/
H)と比較する.そしてHTTksPVなら、ステップ
7に進む.
ステップ7では,加熱炉HHのスラブ装入ピッチPhi
(T/H)の値を大きくする.加熱炉HLのスラブ装入
ピッチは変更しない.これによって,加熱炉HHとHL
とのスラブ装入ピッチの比率が変更される.
つまり、熱片到着量VTAが加熱炉HHの現在の処理量
より太き< (HHの装入ピッチ増大可)、加熱処理量
HTTに比べて圧延能力RVMに余裕があり,しかも加
熱処理量HTTが圧延の目標量SPv未満である時には
、スラブ装入ピッチPhi゛の値を大きくする.なお、
装入ピッチPhiが増大すると、加熱炉HHの加熱能力
を上げる必要があるので,この場合には,加熱炉HHに
供給する燃料を増やす.
これによって加熱炉HHの装入ピッチが増大し加熱炉H
Hの処理量が増大し,抽出ピッチが増大し、圧延量も増
大する.
装入ピッチと抽出ピッチは、加熱炉}{H中・に空き空
間ができないように調整される.即ち,空き空間が増大
しそうな時には、抽出ピッチに比べて装入ピッチを大き
くし空き空間が小さくなる方向に調整し、空き空間が零
に近づくと装入ピッチと抽出ピッチを等し<シ,その状
態を維持する.鋳造機の休止などによって到着するスラ
ブ量が減少する時には、加熱炉HHの処理能力を落とし
,スラブの在炉時間を長くするので、装入ピッチと抽出
ピッチ(T/H)を小さく(時間的には長<)シ、スラ
ブの到着遅れによって加熱炉HH内に空きができるのを
防止する。逆に鋳造機の稼m率の増大等によって到着す
るスラブ量が増大する時には、できる限り、加熱炉HH
の処理能力を上げ、スラブの在炉時間を短<シ,装入ピ
ッチと抽出ピッチ(T/II)を大きく(時間的には短
<)シ,加熱炉前でのスラブの滞留を防止する。装入ピ
ッチが上限に達した時には、配分率Kを小さくシ,鋳造
機から到着したスラブの一部をスラブ置場MDIに送る
.
ステップ7又は8において装入ピッチPhiを調整した
場合には、ステップ9を実行する.このステップでは、
加熱炉HHに対する熱片装入ピッチPhiと加熱炉HL
に対する冷片装入ピッチPliとの比率R}ILに応じ
て、熱片と冷片との装入パターンを再設定する.
例えば,スラブのサイズ及び材質が全て同一であると仮
定すれば、比率RHLが2 : 1 (Phi, Ph
i)の時には,スラブを装入する順番は,HH,HH.
HL,I{H.HH.HL,HH,HH,・・・・とし
、比率R}ILが3/2:1の時には、スラブを装入す
る順番は、HH,HH,HL,HH,HL,HH,HH
,HL,HH,HL.HH.HH,・・・・とする.勿
論、加熱炉HHに装入するスラブは熱片であり、加熱炉
HLに装入するスラブはスラブ置場YDIから抽出した
冷片である.
ステップIOでは、ステップ9で設定された装入パター
ンに従って,加熱炉HH,HLに対するスラブの装入/
抽出を制御する.また、Kに応じて,到着したスラブの
熱片と冷片との振り分けを制御する.
第3図に、連続鋳造機CCI,CC2,CC3の稼働率
の変化に応じた加熱炉での処理量の変化の一例を示す.
なおこの例では、スラブの仕様は全て同一とし次の通り
の場合を想定した.厚み: 240mm
幅 : 1200mm
長さ:10000mm
重量: 22トン
なお説明の都合上、この例ではスラブの仕様を全て同一
としたが、実際には同一仕様のスラブが連続的に圧延さ
れることはごく稀である.また,加熱炉HH及びHLの
装入ピッチが最大の時の、スラブ1本あたりの在炉時間
は,それぞれ,約1分及び約4分とした.
第3図の例における各操業パターンでの各種数値を次の
第1表に示す.
第1表
第3図を参照すると、この例では連続鋳造機の各々の稼
働率の変化や一部の鋳造機の休止などによってスラブの
製造量が大きく変動している.しかし、第3図及び第1
表にパターン1.2及び3で区分して示すように、加熱
炉HLのスラブ装入ピッチを一定とし、加熱炉HHのス
ラブ装入ピッチを調整することによって、その変化を吸
収している.つまり、加熱炉HHに到着するスラブの量
が増える時には加熱能力を増大して装入ピッチ(時間/
本)を短くシ,加熱炉HHに到着するスラブの量が減る
時には装入ピッチを長くし加熱能力を落とす(供給燃料
を減らす)ようにしている.加熱炉HHの装入ピッチの
変動、即ちRl化の変化に応じて、前述のように,加熱
炉HH,HLにスラブを装入する順番のパターンが自動
的に変更される.これによって、加熱炉HH内に空きが
できるのが防止され,加熱炉HHでの余分な燃料の消費
が防止される.
なおこの例では、加熱炉HLの装入ピッチが一定になっ
ているが,これはスラブの材質やサイズの変更に伴なっ
て変更する必要がある.また例えば、加熱炉HHの装入
ピッチの変更に伴なって加熱炉HLに対する装入ピッチ
を変更してもよい.[効果]
以上のとおり本発明によれば、搬送制御手段(CPU)
が連続鋳造機から繰り出されるスラブの量(VTA)と
第1の加熱炉(H H)の受入れ能力との大小関係、な
らびに第1の加熱炉及び第2の加熱炉(H L)の加熱
スラブ量(HTT)と圧延装置の圧延能力・(RVM)
との大小関係に応じて,第1の加熱炉にスラブを装入す
るピッチと第2の加熱炉にスラブを装入するピッチとの
比率を自動的に調整するので,スラブ量(VTA)の変
動に伴なう第1の加熱炉内での空き空間の発生を防止で
き,加熱炉(H H)での効率の低下を避けることがで
きる.In step 8, the slab charging pitch Phi of the heating furnace HH is
Reduce the value of (T/H). The slab charging pitch of the heating furnace HL will not be changed. As a result, heating furnaces HH and HL
The ratio of the slab charging pitch to the slab charging pitch is changed. In other words, when proceeding from step 4 to step 8, the charging pitch Phi is reduced to adapt to the decrease in the running capacity of the casting machine, and when proceeding from step 5 to step 8, it is adjusted to the rolling capacity of the rolling equipment. As such, the charging pitch Phi decreases. Note that if the charging pitch Phi decreases, the heating capacity of the heating furnace HH may be lowered.
Reduce the amount of fuel used. If RVM>HTT in step 5, execute the next step 6 and change HTT to the rolling target value S P V (T/
Compare with H). If it is HTTksPV, proceed to step 7. In step 7, the slab charging pitch Phi of the heating furnace HH is
Increase the value of (T/H). The slab charging pitch of the heating furnace HL will not be changed. As a result, heating furnaces HH and HL
The ratio of slab charging pitch with In other words, the amount of hot flakes arriving VTA is larger than the current processing amount of the heating furnace HH (the charging pitch of HH can be increased), the rolling capacity RVM has a margin compared to the heating processing amount HTT, and the heating processing amount HTT is less than the target amount of rolling SPv, the value of the slab charging pitch Phi is increased. In addition,
When the charging pitch Phi increases, it is necessary to increase the heating capacity of the heating furnace HH, so in this case, the fuel supplied to the heating furnace HH is increased. As a result, the charging pitch of the heating furnace HH increases and
The amount of H processed increases, the extraction pitch increases, and the amount of rolling increases. The charging pitch and extraction pitch are adjusted so that no empty space is left in the heating furnace. That is, when the empty space is likely to increase, the charging pitch is made larger than the extraction pitch and adjusted in the direction of decreasing the empty space, and when the empty space approaches zero, the charging pitch and the extraction pitch are made equal to <sh, Maintain that state. When the amount of arriving slabs decreases due to suspension of the casting machine, etc., the processing capacity of the heating furnace HH is reduced and the slab stays in the furnace longer, so the charging pitch and extraction pitch (T/H) are reduced (in terms of time). This prevents empty spaces from forming in the heating furnace HH due to late arrival of slabs. On the other hand, when the amount of arriving slabs increases due to an increase in the operating rate of the casting machine, etc., use the heating furnace HH as much as possible.
Increase the processing capacity of the furnace, shorten the furnace time of the slab, increase the charging pitch and extraction pitch (T/II) (shorter in terms of time), and prevent the slab from stagnation in front of the heating furnace. . When the charging pitch reaches the upper limit, the distribution ratio K is reduced and a portion of the slabs arriving from the casting machine are sent to the slab storage MDI. If the charging pitch Phi is adjusted in step 7 or 8, step 9 is executed. In this step,
Hot piece charging pitch Phi for heating furnace HH and heating furnace HL
The charging pattern of hot pieces and cold pieces is reset according to the ratio R}IL of the cold piece charging pitch Pli to the cold piece charging pitch Pli. For example, assuming that the slabs are all the same size and material, the ratio RHL is 2:1 (Phi, Ph
In case i), the order in which the slabs are charged is HH, HH.
HL,I{H. HH. When the ratio R}IL is 3/2:1, the order in which the slabs are charged is HH, HH, HL, HH, HL, HH, HH.
, HL, HH, HL. HH. Let HH,... Of course, the slabs charged into the heating furnace HH are hot pieces, and the slabs charged into the heating furnace HL are cold pieces extracted from the slab storage YDI. In Step IO, according to the charging pattern set in Step 9, slabs are charged to the heating furnaces HH and HL.
Control extraction. Also, depending on K, the distribution of arriving slabs into hot and cold pieces is controlled. Figure 3 shows an example of changes in the throughput in the heating furnace in response to changes in the operating rates of the continuous casting machines CCI, CC2, and CC3.
In this example, all slab specifications were assumed to be the same, and the following cases were assumed. Thickness: 240 mm Width: 1,200 mm Length: 10,000 mm Weight: 22 tons For convenience of explanation, all slabs have the same specifications in this example, but in reality, slabs with the same specifications are rarely rolled continuously. Rare. Furthermore, when the charging pitch of the heating furnaces HH and HL was at its maximum, the in-furnace time per slab was approximately 1 minute and approximately 4 minutes, respectively. The various numerical values for each operation pattern in the example shown in Figure 3 are shown in Table 1 below. Referring to Table 1, Figure 3, in this example, the production volume of slabs fluctuates greatly due to changes in the operating rate of each continuous casting machine and suspension of some casting machines. However, Figures 3 and 1
As shown in patterns 1.2 and 3 in the table, the slab charging pitch of the heating furnace HL is kept constant, and the variation is absorbed by adjusting the slab charging pitch of the heating furnace HH. In other words, when the amount of slabs arriving at the heating furnace HH increases, the heating capacity is increased and the charging pitch (time /
When the amount of slabs arriving at the heating furnace HH decreases, the charging pitch is lengthened to reduce the heating capacity (reduce the amount of fuel supplied). As described above, the pattern of the order in which slabs are charged into the heating furnaces HH and HL is automatically changed in accordance with a change in the charging pitch of the heating furnace HH, that is, a change in Rl. This prevents empty spaces from forming in the heating furnace HH and prevents excess fuel from being consumed in the heating furnace HH. In this example, the charging pitch of the heating furnace HL is constant, but this needs to be changed as the material and size of the slab changes. Furthermore, for example, the charging pitch for the heating furnace HL may be changed in conjunction with the change in the charging pitch for the heating furnace HH. [Effect] As described above, according to the present invention, the conveyance control means (CPU)
The magnitude relationship between the amount of slabs fed out from the continuous casting machine (VTA) and the receiving capacity of the first heating furnace (H H), and the heating slabs of the first heating furnace and the second heating furnace (H L) Volume (HTT) and rolling capacity of rolling equipment (RVM)
The ratio of the pitch at which slabs are charged into the first heating furnace and the pitch at which slabs are charged into the second heating furnace is automatically adjusted according to the size relationship between the slab amount (VTA). It is possible to prevent the occurrence of empty space in the first heating furnace due to fluctuations, and it is possible to avoid a decrease in efficiency in the heating furnace (HH).
第1図は本発明を実施する一形式の鋳造圧延システムの
各構成要素のレイアウトを概略示す平面図である.
第2図は,第1図のCPUの動作の概略を示すフローチ
ャートである.
第3図は,処理量の変化の一例を示すタイムチャートで
ある.
CCI−CC3:連続鋳造機 RLI〜RL3:貨車
線HSM:圧延設備 YDI:スラブ置場
YD2:熱片ヤード
HH:加熱炉 HL:加熱炉TBO:
抽出テーブル CLL,CLH:クレーン一8
一FIG. 1 is a plan view schematically showing the layout of each component of a type of casting and rolling system implementing the present invention. FIG. 2 is a flowchart showing an outline of the operation of the CPU shown in FIG. Figure 3 is a time chart showing an example of changes in processing amount. CCI-CC3: Continuous casting machine RLI to RL3: Cargo lane HSM: Rolling equipment YDI: Slab yard YD2: Hot piece yard HH: Heating furnace HL: Heating furnace TBO:
Extraction table CLL, CLH: Crane 18
one
Claims (1)
1の加熱炉: 前記冷片保存領域から出た比較的温度の低いスラブを所
定の圧延温度に加熱する第2の加熱炉:前記連続鋳造機
で得られるスラブを搬送して、該スラブを第1の加熱炉
に搬入し、もしくは前記冷片保存領域を介して第2の加
熱炉に搬入する、搬送機構: 前記第1の加熱炉から出たスラブ及び第2の加熱炉から
出たスラブを順次に受入れて圧延する圧延装置:及び 前記搬送機構を制御し、前記複数の連続鋳造機から繰り
出されるスラブの量と前記第1の加熱炉の受入れ能力と
の大小関係、ならびに第1及び第2の加熱炉の、加熱ス
ラブ量と前記圧延装置の圧延能力との大小関係に応じて
、第1の加熱炉にスラブを装入するピッチと第2の加熱
炉にスラブを装入するピッチとの比率を自動的に調整す
る、搬送制御手段: を備える、熱間圧延装置。[Claims] A plurality of continuous casting machines: A cold piece storage area: A first heating furnace that heats the comparatively high-temperature slab to a predetermined rolling temperature: A comparatively low-temperature slab exiting from the cold piece storage area A second heating furnace that heats the slab to a predetermined rolling temperature: transports the slab obtained by the continuous casting machine and carries the slab into the first heating furnace, or transports the slab into the first heating furnace via the cold piece storage area. a conveyance mechanism that transports the slabs into the second heating furnace; a rolling device that sequentially receives and rolls the slabs coming out of the first heating furnace and the second heating furnace; and a rolling device that controls the conveyance mechanism and The magnitude relationship between the amount of slabs fed out from a plurality of continuous casting machines and the receiving capacity of the first heating furnace, and the magnitude relationship between the amount of heated slabs of the first and second heating furnaces and the rolling capacity of the rolling device. Conveyance control means for automatically adjusting the ratio of the pitch at which the slabs are charged into the first heating furnace and the pitch at which the slabs are charged into the second heating furnace according to the relationship. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1238674A JPH07115053B2 (en) | 1989-09-14 | 1989-09-14 | Hot rolling equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1238674A JPH07115053B2 (en) | 1989-09-14 | 1989-09-14 | Hot rolling equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03106501A true JPH03106501A (en) | 1991-05-07 |
JPH07115053B2 JPH07115053B2 (en) | 1995-12-13 |
Family
ID=17033629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1238674A Expired - Lifetime JPH07115053B2 (en) | 1989-09-14 | 1989-09-14 | Hot rolling equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07115053B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06519A (en) * | 1992-06-16 | 1994-01-11 | Kobe Steel Ltd | Method for deciding operation schedule for working line |
JP2013224463A (en) * | 2012-04-20 | 2013-10-31 | Nippon Steel & Sumitomo Metal Corp | Method for controlling slab conveying in continuous heating furnace |
JP2016078070A (en) * | 2014-10-15 | 2016-05-16 | Jfeスチール株式会社 | Rolling order determination system for hot rolling and rolling order determination method |
CN114713631A (en) * | 2022-05-18 | 2022-07-08 | 首钢长治钢铁有限公司 | Rolling production system integration |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62267425A (en) * | 1986-05-15 | 1987-11-20 | Nisshin Steel Co Ltd | Operating method for heating furnace in alternate rolling system |
-
1989
- 1989-09-14 JP JP1238674A patent/JPH07115053B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62267425A (en) * | 1986-05-15 | 1987-11-20 | Nisshin Steel Co Ltd | Operating method for heating furnace in alternate rolling system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06519A (en) * | 1992-06-16 | 1994-01-11 | Kobe Steel Ltd | Method for deciding operation schedule for working line |
JP2013224463A (en) * | 2012-04-20 | 2013-10-31 | Nippon Steel & Sumitomo Metal Corp | Method for controlling slab conveying in continuous heating furnace |
JP2016078070A (en) * | 2014-10-15 | 2016-05-16 | Jfeスチール株式会社 | Rolling order determination system for hot rolling and rolling order determination method |
CN114713631A (en) * | 2022-05-18 | 2022-07-08 | 首钢长治钢铁有限公司 | Rolling production system integration |
CN114713631B (en) * | 2022-05-18 | 2024-01-12 | 首钢长治钢铁有限公司 | Rolling production system integration |
Also Published As
Publication number | Publication date |
---|---|
JPH07115053B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7390478B2 (en) | Slab yard and heating furnace layout where cold slabs and hot slabs are charged separately, and furnace charging method | |
CN112108519B (en) | Hot-rolled strip steel production system and method based on hybrid heating | |
CN111315502A (en) | Continuous casting and rolling apparatus and continuous casting and rolling method | |
JPH03106501A (en) | Hot rolling device | |
JP2001505251A (en) | System, apparatus and method for heating metal products in a vibration induction furnace | |
JP2002096108A (en) | Rolling control method and equipment | |
US4606006A (en) | Method of controlling the rolling efficiency in hot rolling | |
JP2001205316A (en) | Steel conveying system | |
EP0822015B1 (en) | Method to manage an insulated cooling bed and relative insulated cooling bed | |
JP3264472B2 (en) | Slab group transfer order determination method | |
JP2002126814A (en) | Hot rolling method | |
JPS6353217A (en) | Method for controlling charging order of rolling material into heating furnace for hot rolling | |
JPS6353216A (en) | Method for controlling charging order of rolling material into heating furnace for hot rolling | |
JP2002035801A (en) | Charging method of continuously casting hot slab into heating furnace for hot rolling | |
JPS6353215A (en) | Method for controlling charging order of rolling material into heating furnace for hot rolling | |
JPH0377851B2 (en) | ||
JP4631105B2 (en) | Heating control method for heating furnace | |
JPH04341413A (en) | Blast furnace raw material charging control device | |
CN1033842A (en) | Steel billet in the stove is heated to the method for rolling temperature | |
JPH0471746A (en) | Method for heat treating forging billet | |
JP3177631B2 (en) | Method for setting furnace duration and heating control method for hot-rolled material | |
JP3680543B2 (en) | Heating furnace extraction pitch determination method | |
JPH0892631A (en) | Operation of continuous heating furnace | |
JPH08174021A (en) | Rolling method in hot rolling process with plural heating furnaces | |
JP3982219B2 (en) | Continuous heating furnace charging control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081213 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081213 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091213 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091213 Year of fee payment: 14 |