JPH0310609Y2 - - Google Patents

Info

Publication number
JPH0310609Y2
JPH0310609Y2 JP18231183U JP18231183U JPH0310609Y2 JP H0310609 Y2 JPH0310609 Y2 JP H0310609Y2 JP 18231183 U JP18231183 U JP 18231183U JP 18231183 U JP18231183 U JP 18231183U JP H0310609 Y2 JPH0310609 Y2 JP H0310609Y2
Authority
JP
Japan
Prior art keywords
unit cell
guide hole
diameter
fire
exothermic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18231183U
Other languages
Japanese (ja)
Other versions
JPS6090765U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18231183U priority Critical patent/JPS6090765U/en
Publication of JPS6090765U publication Critical patent/JPS6090765U/en
Application granted granted Critical
Publication of JPH0310609Y2 publication Critical patent/JPH0310609Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は、飛しよう体や緊急用電源などの短時
間に大電力を供給することのできる熱電池に関す
るものである。さらに詳しくは、電池を活性化す
るための発熱剤に起因した内部シヨートを防止す
る構造に関するものである。 従来例の構成とその問題点 熱電池は良く知られるように、正極,負極,電
解質および正,負極端子より構成されるが、電解
質は無水固体塩を用いるため、常温ではイオン伝
導性を示さず、従つて電池は不活性状態にある。
これを活性化する手段として、あるものは火炎報
知器の電源のように外部からの加熱で電解質を溶
融して活性化する場合もあるが、ほとんどの場合
は、電池内部に発熱剤を備え、外部よりトリガー
信号で発熱剤を発火させ、その後で電解質を溶融
して電池を活性化するのが一般的である。この従
来例の構造を第1図,第4図と共に更に詳しく説
明する。第1図の素電池1は、電解質と無機質バ
インダーの混合物からなる円板状成形体で、電解
質層を構成しており、その層上にCaCrO4を主成
分とする正極活物質層を形成した二層一体成形1
−aとその電解質層側に負極活物質であるカルシ
ウム1−b及び鉄からなる負極集電板1−cと、
正極活物質層側に鉄からなる正極集電板1−dを
配し構成されている。 なお、素電池1は、第1図に示す如く、中央に
火道孔4が設けられている。 第1図に示す如く、複数個の素電池1の間に
は、Zr−BaCrO4を主体とする発熱剤2が配置さ
れて発電部が構成されており、発熱剤2にも素電
池1と同一孔径の火導孔が設けられていた。 このように構成された熱電池は、先にも述べた
如く、内部シヨートの発生率が非常に高く、電圧
変動のない安定した放電電圧を得ることが困難で
あつた。 この内部シヨートの原因を解析してみると、第
1図に示す発熱剤2は、燃焼初期には導電性を有
しており、これらの飛散又は流出によつて移動1
を短絡させることが判つた。即ち、内部シヨート
は火導孔4を形成する素電池1の火導孔径と発熱
剤2の火導孔径が同一寸法であるため生じ易いこ
とが考案者の実験で明らかになつた。 このように従来の熱電池においては、構造上、
解決すべき欠点を有していた。 考案の目的 本考案の目的は、上記のような従来の欠点を解
消し、内部シヨートによる電圧変動を防止するこ
とにある。 考案の構成 この目的を達成するために本考案の熱電池は、
発熱剤の火導孔径を素電池のそれよりも大きく構
成したことを特徴とする。このような構成によつ
て、素電池の内部シヨートによる電圧変動を防止
することができる。 実施例の説明 以下本考案の実施例について、図面を参照しな
がら説明する。第2図は本考案の実施例における
熱電池の発電部を示し、素電池1の火導孔径より
も発熱剤の火導孔径が大きい状態を示すものであ
る。図中、2′は本考案の特徴とする火導孔をな
す内径が素電池1の火導孔径よりも大きな発熱剤
であり、2′−aは火導孔に面した発熱剤面を、
4′は火導孔をそれぞれ示している。その他の構
成は従来例を示す第1図のそれと同一なので省略
する。 第3図は本考案を実施した積層形熱電池の全体
を示す断面図である。図中、13−aと13−b
は3の点火器を作動させるためのトリガー信号を
入力する端子である。1は前述した素電池、2′
は本考案の特徴とする発熱剤、4′は火導孔であ
る。5,6,9は発電部の熱を外部へ逃がさない
ためのアスベストからなる断熱層であり、7は発
電部を上下方向に対して固定させるための鉄板か
らなる押え板である。また、8は発電部を拘束
し、振動や衝撃などの環境条件に耐え得る構造と
するための拘束金具である。12−aと12−b
は発電部からの電力を、14−aと14−bの出
力端子に中断するための中断リード線である。1
0は金層ケースであり、11は10のケースと出
力端子とを絶縁するための絶縁体である。 次にこの熱電池の動作を説明する。まず点火信
号端子13a,113bから点火信号を入力する
と点火器3が作動して火炎を発生する。この火炎
が火導孔4',4″に導びかれ、発熱剤2'に着火
する。発熱剤2′は一瞬に燃焼して発熱し、素電
池1を加熱する。素電池1は加熱されることによ
り電解質が溶融し、瞬時に起電力を生じ、出力端
子14a,14bに出力を供給する。 従来の熱電池は第1図に示す如く素電池1に形
成された火導孔径と発熱剤2に形成された火導孔
径が同一であつたため、内部シヨートによる電圧
変動の発生率は約40%と高いものであつた。し
かし本考案の熱電池は第2図,第3図に示す如
く、発熱剤2'の火導孔径4″を素電池1の火導孔
径4′よりも大きくしたことにより、素電池火導
孔面との間に距離があるため、発熱剤2′の燃焼
時の飛散や流出で、素電池を短絡させることがな
く、従つて電圧変動の発生がほぼ完全に解消でき
た。 しかし、発熱剤2'の火導孔径4″を素電池1の
火導孔径4′よりも大きくすることは従来より、
着火性が悪くなると考えられ、発熱剤が火導孔内
に突出したような形状又は火導孔面と面一になる
ように用いられていた。そこで着火性について実
験を行なつた。ここで、点火器の火炎が十分に火
導孔を満たすものを使用し、素電池の火導孔径:
発熱剤の火導孔径を1:1から1:2まで5段階
について着火性を確認した。なお素電池の火導孔
径は5mmとした。また夫々の条件における試験数
は10個とした。その結果を次の表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a thermal battery that can supply large amounts of power for short periods of time to applications such as flying vehicles and emergency power sources. More specifically, the present invention relates to a structure that prevents internal firing caused by a heat generating agent for activating a battery. Structure of conventional examples and their problems As is well known, thermal batteries are composed of a positive electrode, a negative electrode, an electrolyte, and positive and negative terminals, but since the electrolyte uses an anhydrous solid salt, it does not exhibit ionic conductivity at room temperature. , so the battery is in an inactive state.
As a means of activating this, some batteries use external heat to melt and activate the electrolyte, such as in the power supply of flame alarms, but in most cases, a heating agent is provided inside the battery. It is common to ignite a heat generating agent using an external trigger signal, and then melt the electrolyte to activate the battery. The structure of this conventional example will be explained in more detail with reference to FIGS. 1 and 4. The unit cell 1 shown in Fig. 1 is a disc-shaped molded body made of a mixture of an electrolyte and an inorganic binder, and constitutes an electrolyte layer, and a positive electrode active material layer containing CaCrO 4 as a main component is formed on the electrolyte layer. Two-layer integral molding 1
-a, and a negative electrode current collector plate 1-c made of calcium 1-b, which is a negative electrode active material, and iron on the electrolyte layer side thereof;
A positive electrode current collector plate 1-d made of iron is disposed on the positive electrode active material layer side. Note that, as shown in FIG. 1, the unit cell 1 is provided with a vent hole 4 in the center. As shown in FIG. 1, a power generating section is constructed by disposing a heat generating agent 2 mainly composed of Zr-BaCrO 4 between a plurality of unit cells 1. Fire guide holes of the same diameter were provided. As mentioned above, thermal batteries constructed in this manner have a very high incidence of internal shoots, making it difficult to obtain a stable discharge voltage without voltage fluctuations. Analyzing the cause of this internal shoot, we found that the exothermic agent 2 shown in Fig. 1 has conductivity in the initial stage of combustion, and the exothermic agent 2 moves as it scatters or flows out.
It was found that it caused a short circuit. That is, the inventor's experiments have revealed that internal shoots are likely to occur because the diameter of the firing hole of the unit cell 1 and the diameter of the firing hole of the exothermic agent 2, which form the firing hole 4, are the same size. In this way, in conventional thermal batteries, structurally,
It had some shortcomings that needed to be resolved. Purpose of the invention The purpose of the present invention is to eliminate the above-mentioned conventional drawbacks and to prevent voltage fluctuations due to internal shorts. Structure of the invention To achieve this purpose, the thermal battery of the invention is
It is characterized in that the diameter of the heat guide hole of the exothermic agent is larger than that of the unit cell. With such a configuration, voltage fluctuations due to internal shorts of the unit cell can be prevented. DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a power generation section of a thermal battery according to an embodiment of the present invention, and shows a state in which the diameter of the heat guide hole of the exothermic agent is larger than the diameter of the heat guide hole of the unit cell 1. In the figure, 2' is a heat-generating agent that forms a fire pipe, which is a feature of the present invention, and whose inner diameter is larger than the diameter of the fire pipe of the unit cell 1, and 2'-a indicates the heat-generating agent surface facing the fire pipe.
4' indicates the fuse holes, respectively. The rest of the configuration is the same as that shown in FIG. 1 showing the conventional example, so a description thereof will be omitted. FIG. 3 is a cross-sectional view showing the entire stacked thermal battery according to the present invention. In the figure, 13-a and 13-b
is a terminal for inputting a trigger signal for operating the igniter No. 3. 1 is the unit cell mentioned above, 2'
is a heating agent which is a feature of the present invention, and 4' is a fire guide hole. Reference numerals 5, 6, and 9 are heat insulating layers made of asbestos to prevent heat from the power generation section from escaping to the outside, and 7 is a holding plate made of an iron plate for fixing the power generation section in the vertical direction. Further, reference numeral 8 denotes a restraining metal fitting for restraining the power generation section and making the structure resistant to environmental conditions such as vibration and shock. 12-a and 12-b
is an interruption lead wire for interrupting the power from the power generation section to the output terminals 14-a and 14-b. 1
0 is a gold layer case, and 11 is an insulator for insulating the case 10 and the output terminal. Next, the operation of this thermal battery will be explained. First, when an ignition signal is input from the ignition signal terminals 13a and 113b, the igniter 3 is activated and generates a flame. This flame is guided to the flame guide holes 4', 4'' and ignites the exothermic agent 2'.The exothermic agent 2' instantly burns, generates heat, and heats the unit cell 1.The unit cell 1 is heated. As a result, the electrolyte melts, instantaneously generates an electromotive force, and supplies output to the output terminals 14a and 14b.As shown in FIG. Since the diameters of the pilot holes formed in both the holes were the same, the incidence of voltage fluctuation due to the internal shot was as high as approximately 40%. By making the fire guide hole diameter 4'' of the exothermic agent 2' larger than the fire guide hole diameter 4' of the unit cell 1, there is a distance between the fire guide hole surface of the unit cell and the combustion of the exothermic agent 2'. There was no possibility of short-circuiting of the unit cells due to scattering or leakage, and therefore, the occurrence of voltage fluctuations was almost completely eliminated. However, conventionally, making the diameter 4'' of the flame guide hole of the exothermic agent 2' larger than the diameter 4'' of the flame guide hole of the unit cell 1,
It was thought that the ignitability would be poor, and the exothermic agent was used in a shape such that it protruded into the fire pipe or was flush with the fire pipe surface. Therefore, we conducted an experiment on ignitability. Here, use an igniter whose flame sufficiently fills the fuse hole, and the diameter of the battery's fuse hole:
The ignitability of the exothermic agent was confirmed in five stages from 1:1 to 1:2. The diameter of the fire guide hole of the unit cell was 5 mm. The number of tests under each condition was 10. The results are shown in the table below.

【表】 また、前述の本考案による第3図に示す積層形
熱電池を試作し、完全な着火性が得られた素電池
の火導孔径4′と発熱剤の火導孔径4″との比が
1:1.25と1:1.75の2種類において、放電実験
を行なつたところ、次のような結果を得た。
[Table] In addition, we prototyped a laminated thermal battery shown in Figure 3 according to the present invention, and found that perfect ignitability was achieved. When a discharge experiment was conducted with two ratios of 1:1.25 and 1:1.75, the following results were obtained.

【表】 このように、発熱剤火導孔径4″を素電池の火
導孔径4′よりも大きくすることにより、内部シ
ヨートによる電圧変動を減少させて安定した放電
を得た。 各電池の分解結果も、従来の素電池の火導孔径
と発熱剤の火導孔径との比が1:1のものに比べ
て1:1.25のものは、素電池火導孔部への発熱剤
の飛散や流出が少なくなつているが電圧変動を発
生したものについては、素電池の火導孔部へ僅か
な飛散が認められた。尚、1:1.75のものは、素
電池火導孔部に至る発熱剤の飛散、流出は認めら
れなかつた。 考案の効果 以上のように本実施例によれば、素電池の火導
孔径よりも発熱剤の火導孔を大きくすることによ
り、発熱剤に起因した内部シヨートによる電圧変
動を防止することができる。
[Table] In this way, by making the exothermic agent lead hole diameter 4'' larger than the unit cell fire lead hole diameter 4', voltage fluctuations due to internal shots were reduced and stable discharge was obtained. Disassembly of each battery The results also show that compared to a conventional unit battery with a ratio of 1:1 between the fire guide hole diameter and the heat guide hole diameter of the exothermic agent, batteries with a ratio of 1:1.25 have less scattering of the heat generating agent into the unit cell fire guide hole. In the case where the outflow was reduced but voltage fluctuation occurred, slight scattering was observed in the cell's fire guide hole.In addition, in the case of 1:1.75, heat generation reaching the cell's fire guide hole was observed. No scattering or leakage of the exothermic agent was observed. Effects of the Device As described above, according to this example, by making the exothermic agent's conductor hole larger than the conductor hole of the unit cell, the Voltage fluctuations due to internal shorts can be prevented.

【実用新案登録請求の範囲】 高温で作動する素電池1と発熱剤2′を交互に
積層した発電部と、この発電部の上部に設けた点
火器3とを有し、 前記素電池1は、中央部に火導孔4'を有し、 前記発熱剤2'は、中央部に前記火導孔4'に連
なった火導孔4'を有し、 前記発熱剤の火導孔4″の径は、前記素電池の
火導孔4'の径よりも大きく、 前記点火器3より発した点火炎は前記連なつた
火導孔4',4″を通過して発熱剤2'の側面2'−
aに接触して発熱剤2′を着火させる熱電池。
[Claims for Utility Model Registration] The unit cell 1 has a power generation section in which a unit cell 1 that operates at high temperature and a heat generating agent 2' are alternately laminated, and an igniter 3 provided on the top of this power generation section. , has a fire guide hole 4' in the central part, the heat generating agent 2' has a fire guide hole 4' in the center part connected to the fire guide hole 4', and the heat generating agent fire guide hole 4'' is larger than the diameter of the fire guide hole 4' of the unit cell, and the ignition flame emitted from the igniter 3 passes through the series of fire guide holes 4', 4'' and reaches the exothermic agent 2'. Side 2'-
A thermal battery that ignites exothermic agent 2' by contacting a.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層形熱電池の発電部を示す部
分断面図、第2図は本考案の実施例における熱電
池の発電部を示す部分断面図、第3図は本考案の
実施例における積層形熱電池の断面図、第4図は
素電池の平面図である。 1…素電池、1−a……正極活物質と電解質の
成形体、1−c,1−d……集電体、2′……発
熱剤、3……点火器、4′……素電池の火導孔、
4″……発熱剤の火導孔。
FIG. 1 is a partial sectional view showing the power generation section of a conventional stacked thermal battery, FIG. 2 is a partial sectional view showing the power generation section of the thermal battery according to the embodiment of the present invention, and FIG. 3 is a partial sectional view showing the power generation section of the thermal battery according to the embodiment of the present invention. A cross-sectional view of the stacked thermal battery, and FIG. 4 is a plan view of the unit cell. 1...Battery, 1-a...Molded body of positive electrode active material and electrolyte, 1-c, 1-d...Current collector, 2'...Exothermic agent, 3...Igniter, 4'...Element battery fuse,
4″…Fire guide hole for exothermic agent.

JP18231183U 1983-11-26 1983-11-26 thermal battery Granted JPS6090765U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18231183U JPS6090765U (en) 1983-11-26 1983-11-26 thermal battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18231183U JPS6090765U (en) 1983-11-26 1983-11-26 thermal battery

Publications (2)

Publication Number Publication Date
JPS6090765U JPS6090765U (en) 1985-06-21
JPH0310609Y2 true JPH0310609Y2 (en) 1991-03-15

Family

ID=30394851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18231183U Granted JPS6090765U (en) 1983-11-26 1983-11-26 thermal battery

Country Status (1)

Country Link
JP (1) JPS6090765U (en)

Also Published As

Publication number Publication date
JPS6090765U (en) 1985-06-21

Similar Documents

Publication Publication Date Title
KR102258179B1 (en) Cylindrical secondary battery module
JP6275093B2 (en) Power battery top cover structure and power battery
JP2008507248A5 (en)
JPS6174257A (en) Battery
KR100770116B1 (en) Cylindrical Li Secondary battery
JPH0310609Y2 (en)
CN212412135U (en) Battery cover plate assembly and single battery
JPH0326911B2 (en)
JP3078058B2 (en) Lithium battery
JP2808652B2 (en) Thermal battery
JP3136903B2 (en) Thermal battery
JP2017139176A (en) Secondary battery
KR100420149B1 (en) Secondray battery applying safety device
JPS6121800Y2 (en)
JP3054965B2 (en) Stacked thermal battery
JP3283395B2 (en) Power supply system for flying objects
CN213459900U (en) Battery cover plate assembly and single battery
JP2976691B2 (en) Thermal battery
JP3178222B2 (en) Thermal battery
JPH0310607Y2 (en)
JP2003051315A (en) Thermal battery
JP2970185B2 (en) Thermal battery
JPS6057186B2 (en) molten salt battery
JP2964768B2 (en) Thermal battery
JPH0310608Y2 (en)