JPH03105992A - Optical semiconductor element - Google Patents

Optical semiconductor element

Info

Publication number
JPH03105992A
JPH03105992A JP1244576A JP24457689A JPH03105992A JP H03105992 A JPH03105992 A JP H03105992A JP 1244576 A JP1244576 A JP 1244576A JP 24457689 A JP24457689 A JP 24457689A JP H03105992 A JPH03105992 A JP H03105992A
Authority
JP
Japan
Prior art keywords
wavelength
layer
light guide
active layer
guide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1244576A
Other languages
Japanese (ja)
Inventor
Kiyohide Wakao
若尾 清秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1244576A priority Critical patent/JPH03105992A/en
Publication of JPH03105992A publication Critical patent/JPH03105992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/0622Controlling the frequency of the radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06203Transistor-type lasers
    • H01S5/06206Controlling the frequency of the radiation, e.g. tunable twin-guide lasers [TTG]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • H01S5/5045Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement having a frequency filtering function

Abstract

PURPOSE:To change a refractive index of a light guide layer independently and to change a transmission central wavelength or an oscillation wavelength while an intensity of a transmitted light of an oscillated light is kept definite by a method wherein a separate layer is formed between an active layer and the light guide layer and an electric current is made to flow to the light guide layer independently of the active layer. CONSTITUTION:A prescribed voltage is applied to a first electrode 20; an electric current Ia is injected into an InGaAsP active layer; a wavelength-variable filter is set to a state that it is immediately prior to a laser oscillation. Thereby, a resonance wavelength of the wavelength-variable filter, i.e. a transmission central wavelength, is first decided. Then, an electric current ls is injected, independently of the InGaAsP active layer 10, from a second electrode 22 formed on the bottom of a p-type InP substrate 2 into an InGaAsP light guide layer 6 which is separated electrically from the InGaAsP active layer 10 by an n-type InP separate layer 8. When the electric current Is is controlled, it is possible to largely change the transmission central wavelength of the wavelength-variable filter. Thereby, a tunable laser or the wavelength-varaible filter whose variable wavelength width is large is realized.

Description

【発明の詳細な説明】 [IR要] 光半導体素子に係り、特に波長多重化された光信号の中
からある特定の波長の光信号を取り出す波長可変フィル
タ又は複数の波長の光信号を選択的に発振する波長可変
レーザに関し、 透過光又は発振光の強度を一定に保ちながら共振波長を
大きく変えることができ、光ネットワークの波長多重度
を大きくすることができる光半導体素子を提供すること
を目的とし、 第1導電型の半導体基板と、前記半導体基板上に形成さ
れた光ガイド層と、前記光ガイド層上に形成された第2
導電型のセパレート層と、前記セパレート層により前記
光ガイド層と電気的に分離された活性層と、前記光ガイ
ド層、前記セパレート層、及び前記活性層の両開に形成
された第2導電型の埋込み層と、前記活性層上に第1導
電型のクラッド層を介して形成された第1の電極と、前
記半導体基板底面上に形成された第2の電極と、前記埋
込み層上に形或された第3の電極とを有し、前記光ガイ
ド層及び前記活性層にそれぞれ独立に電流を流すことに
より、共振波長を変えるように構成する. [産業上の利用分野] 本発明は光半導体素子に係り、特に波長多重化された光
信号の中からある特定の波長の光信号を取り出す波長可
変フィルタ又は複数の波長の光信号を選択的に発振する
波長可変レーザに関する.近年、長距離・大容量の光通
信システムの実用化に伴い、光の波長多重を利用した光
ネットワークの有用性が高まっている.そしてこの光ネ
ットワークの高性能化を図るためには、波長多重のチャ
ネル数を増やすことが必要となっている.従って、光ネ
ットワークを楕或する重要な素子である波長可変フィル
タの可変波長幅を拡大することが求められている。又同
様にして、波長可変レーザの可変波長幅を拡大すること
も求められている。
[Detailed Description of the Invention] [IR Required] Related to optical semiconductor devices, in particular, a wavelength tunable filter that extracts an optical signal of a certain wavelength from a wavelength-multiplexed optical signal, or a wavelength tunable filter that selectively extracts an optical signal of a plurality of wavelengths. The present invention relates to a wavelength tunable laser that oscillates in a wavelength tunable laser, and the purpose of the present invention is to provide an optical semiconductor device that can greatly change the resonant wavelength while keeping the intensity of transmitted light or oscillated light constant, and can increase the wavelength multiplicity of an optical network. a semiconductor substrate of a first conductivity type, a light guide layer formed on the semiconductor substrate, and a second conductivity type semiconductor substrate formed on the light guide layer.
a conductive type separate layer, an active layer electrically separated from the light guide layer by the separate layer, and a second conductive type formed on both sides of the light guide layer, the separate layer, and the active layer. a buried layer; a first electrode formed on the active layer via a cladding layer of a first conductivity type; a second electrode formed on the bottom surface of the semiconductor substrate; and a third electrode formed by the light guide layer, and is configured to change the resonant wavelength by passing current through the light guide layer and the active layer, respectively, independently. [Industrial Application Field] The present invention relates to an optical semiconductor device, and in particular to a wavelength tunable filter that extracts an optical signal of a certain wavelength from a wavelength multiplexed optical signal or a wavelength tunable filter that selectively extracts an optical signal of a plurality of wavelengths. Concerning oscillating wavelength tunable lasers. In recent years, with the commercialization of long-distance, large-capacity optical communication systems, the usefulness of optical networks that utilize optical wavelength multiplexing has increased. In order to improve the performance of this optical network, it is necessary to increase the number of wavelength multiplexed channels. Therefore, there is a need to expand the tunable wavelength width of a tunable filter, which is an important element for configuring an optical network. Similarly, there is also a demand for expanding the tunable wavelength width of wavelength tunable lasers.

[従来の技術〕 従来の波長可変フィルタを第2図に示す。[Conventional technology] A conventional wavelength tunable filter is shown in FIG.

例えばn型InP基板32上に、回折格子34を介して
、n型! nGaAs P光ガイド層36,ノンドープ
I nGaAsP活性層38、p型InPクラッド層4
0,及びp型1 nGaAsPコンタクト層42が順に
形戒されている.そしてメサ形状になっているp型I 
nGaAsPコンタクト層42、p型InPクラッド層
40、I nGaAsP活性層38、及びInGaAs
P光ガイド層36の測面には、n型InP埋込み層44
が形成されている.そしてp型I nGaAsPコンタ
クトNJ42上には、例えば3個の@極46,48.5
0が光の進行方向即ち共振器方向に配置され,またn型
InP基板32底面上には、電極52が形或されている
. こうして多電極DFB (分布帰還型)レーザと同じ横
遣の波長可変フィルタが形成されている.次に、動作を
説明する. 通常、DFBレーザの発振波長は内部に形成されている
回折格子のピッチにより決まる。すなわちDFBレーザ
の発振波長λは、 λ”=2N−A−n.tt で与えられる。ここで、Nは回折格子の次数、Aは回折
格子のピッチ、n ar+は活性層を伝播する光の等価
屈折率である. 第2図と同じ構造のDFBレーザのn型InP基板32
底面上の電極52を接地し、p型1nGaAsPコンタ
クト層42上の3個の電極4648.50に所定の電圧
を印加して駆動電流を均一に注入すると、所定の波長で
レーザ発振を行なう.これに対して、3個の電[!46
,48.50にから駆動電流に近い値の@流を均一に注
入してレーザ発振直前の状態にし、外部からいろいろな
波長或分をもつ光信号を入射すると、レーザ発振波長に
相当する光のみが選択的に増幅されて出力される.すな
わち、DFBレーザの発振波長に相当する特定の波長の
光信号のみを通過させる光フィルタが構成される. また、3個のt極46,48.50から注入する電流の
量を変えると、プラズマ効果によってInGaAsP活
性層38内のキャリア数が変化して光の等価屈折率n.
,,が変化する.これにより、DFBレーザの発振波長
を変化させることができる.従って、このDFBレーザ
をフィルタとして用いると、発振波長の変化に対応して
、フィルタ動作時の透過中心波長を変えることができる
,こうして波長可変フィルタが構成される.しかし、こ
の波長可変DFBレーザにおいては、発振波長を変える
ために電流注入量を変えるが、これによってInGaA
sP活I1!.層38の利得が変化し、光の増幅率が変
わる.同様にして、波長可変フィルタの場合には、透過
中心波長を変えるために電流注入量を変えることにより
、I nGaAsP活性層38の利得が変化し、透過す
る光の増幅率が変わる. また、3個の電極46,48.50から注入する電流の
比率を変えると、InGaAsP活性層38内のキャリ
ア数の変化によって共振器方向における屈折率分布が不
均一となり、光の等価屈折率n@ytが変化する。この
ため、波長可変DFBレーザの発振波長と利得との関係
を示す第3図のグラフに表されるように、InGaAs
P活性層38の利得を一定に保ったままでDFBレーザ
の発振波長が変化する.従って、この波長可変DFBレ
ーザをフィルタとして用いると、光増幅率を一定に保っ
たままで、フィルタ動作時の透過中心波長を発振波長の
変化に対応して変えることができる. しかし、この波長可変DFBレーザにおいては、3個の
電極46.48.50から注入する電流の比率を調整す
ることができる範囲は限られていて、光増幅率を一定に
保った状態では発振波長を余り大きく変えることができ
ない.従って、波長可変フィルタにおいても同様に、光
増幅率を一定に保つた状態では透過中心波長を余り大き
く変えることができない. [発明が解決しようとする課題] このように、上記従来の波長可変フィルタ又は波長可変
DFBレーザにおいては、透過中心波長又は発振波長を
変えるために電流注入量を変えると活性層の利得が変化
して透過する光の増幅率が変わってしまう.光増幅率が
一定になるように複数の電極から活性層に流す電流の比
率を調整する方法を用いても、調整することができる範
囲は限られているため、光増幅率を一定に保った状態で
は透過中心波長又は発振波長を余り大きく変えることが
できない. このため、波長可変フィルタ又は波長可変レーザを用い
てシステムを構成する際に、共振波長の可変領域が狭く
、波長多重度を大きくとることができないという問題が
あった. そこで本発明は、透過光又は発振光の強度を一定に保ち
ながら共振波長を大きく変えることができ、光ネットワ
ークの波長多重度を大きくすることができる光半導体素
子を提供することを目的とする. [課題を解決するための手段] 上記課題は、第1導電型の半専体基板と、前記半導体基
板上に形成された光ガイド層と、前記光ガイド層上に形
成された第2導電型のセパレート層と、前記セパレート
層により前記光ガイド層と電気的に分離された活性層と
、前記光ガイド層、前記セパレート層、及び前記活性層
の両開に形成された第2導電型の埋込み層と、前記活性
層上に第1導電型のクラッド層を介して形戒された第l
の電極と、前記半導体基板底面上に形成された第2の電
極と、前記埋込み屑上に形成された第3の電極とを有し
、前記光ガイド層及び前記活性層にそれぞれ独立に電流
を流すことにより、共振波長を変えることを特徴とする
光半導体素子によって達戒される. [作 用] すなわち本発明は、セパレート層によって活性層と電気
的に分離された光ガイド層に独立に電流を流すことによ
り、光ガイド層の屈折率を独立に変化させることができ
る.従って活性層の利得を一定に保ちながら、共振波長
を大きく変えることができる。
For example, on an n-type InP substrate 32, an n-type! nGaAsP optical guide layer 36, non-doped I nGaAsP active layer 38, p-type InP cladding layer 4
0 and p-type 1 nGaAsP contact layers 42 are formed in order. And the mesa-shaped p-type I
nGaAsP contact layer 42, p-type InP cladding layer 40, InGaAsP active layer 38, and InGaAs
An n-type InP buried layer 44 is formed on the surface of the P light guide layer 36.
is formed. For example, three @poles 46, 48.5 are placed on the p-type InGaAsP contact NJ42.
0 is arranged in the direction of light propagation, that is, in the direction of the resonator, and an electrode 52 is formed on the bottom surface of the n-type InP substrate 32. In this way, a horizontal variable wavelength filter similar to a multi-electrode DFB (distributed feedback) laser is formed. Next, we will explain the operation. Usually, the oscillation wavelength of a DFB laser is determined by the pitch of a diffraction grating formed inside. That is, the oscillation wavelength λ of the DFB laser is given by λ''=2N-A-n.tt. Here, N is the order of the diffraction grating, A is the pitch of the diffraction grating, and n ar+ is the amount of light propagating through the active layer. This is the equivalent refractive index. N-type InP substrate 32 of the DFB laser with the same structure as in Fig. 2
When the electrode 52 on the bottom surface is grounded and a predetermined voltage is applied to the three electrodes 4648.50 on the p-type 1nGaAsP contact layer 42 to uniformly inject a driving current, laser oscillation is performed at a predetermined wavelength. In contrast, three electricity [! 46
, 48. When a current with a value close to the driving current is uniformly injected from 50 to create a state immediately before laser oscillation, and optical signals with various wavelengths are input from the outside, only the light corresponding to the laser oscillation wavelength is generated. is selectively amplified and output. That is, an optical filter is configured that passes only an optical signal of a specific wavelength corresponding to the oscillation wavelength of the DFB laser. Furthermore, when the amount of current injected from the three t-poles 46, 48, 50 is changed, the number of carriers in the InGaAsP active layer 38 changes due to the plasma effect, and the equivalent refractive index of light is n.
, , changes. This allows the oscillation wavelength of the DFB laser to be changed. Therefore, when this DFB laser is used as a filter, the transmission center wavelength during filter operation can be changed in response to changes in the oscillation wavelength, thus constructing a wavelength tunable filter. However, in this wavelength tunable DFB laser, the amount of current injection is changed in order to change the oscillation wavelength, which causes the InGaA
sP life I1! .. The gain of the layer 38 changes, and the amplification factor of the light changes. Similarly, in the case of a wavelength tunable filter, by changing the amount of current injection to change the transmission center wavelength, the gain of the InGaAsP active layer 38 changes, and the amplification factor of the transmitted light changes. Moreover, when the ratio of the current injected from the three electrodes 46, 48, 50 is changed, the refractive index distribution in the cavity direction becomes non-uniform due to the change in the number of carriers in the InGaAsP active layer 38, and the equivalent refractive index of light n @yt changes. Therefore, as shown in the graph of FIG. 3 showing the relationship between the oscillation wavelength and gain of a wavelength tunable DFB laser, InGaAs
The oscillation wavelength of the DFB laser changes while keeping the gain of the P active layer 38 constant. Therefore, when this wavelength tunable DFB laser is used as a filter, the transmission center wavelength during filter operation can be changed in response to changes in the oscillation wavelength while keeping the optical amplification factor constant. However, in this wavelength tunable DFB laser, the range in which the ratio of current injected from the three electrodes 46, 48, 50 can be adjusted is limited, and when the optical amplification factor is kept constant, the oscillation wavelength cannot be changed too much. Therefore, in a wavelength tunable filter as well, the transmission center wavelength cannot be changed significantly if the optical amplification factor is kept constant. [Problems to be Solved by the Invention] As described above, in the conventional wavelength tunable filter or wavelength tunable DFB laser, when the amount of current injection is changed in order to change the transmission center wavelength or the oscillation wavelength, the gain of the active layer changes. The amplification factor of the transmitted light changes. Even if a method is used to adjust the ratio of current flowing from multiple electrodes to the active layer so that the optical amplification factor remains constant, the range of adjustment is limited, so the optical amplification factor is kept constant. In this state, the transmission center wavelength or oscillation wavelength cannot be changed too much. For this reason, when configuring a system using a wavelength tunable filter or a wavelength tunable laser, there is a problem that the resonant wavelength variable range is narrow and it is not possible to increase the wavelength multiplicity. Therefore, an object of the present invention is to provide an optical semiconductor device that can greatly change the resonance wavelength while keeping the intensity of transmitted light or oscillated light constant, and can increase the wavelength multiplicity of an optical network. [Means for Solving the Problems] The above-mentioned problems include a semi-dedicated substrate of a first conductivity type, a light guide layer formed on the semiconductor substrate, and a second conductivity type formed on the light guide layer. a separate layer, an active layer electrically separated from the light guide layer by the separate layer, and a second conductivity type embedding formed on both sides of the light guide layer, the separate layer, and the active layer. a first conductivity type cladding layer formed on the active layer through a cladding layer of a first conductivity type.
a second electrode formed on the bottom surface of the semiconductor substrate, and a third electrode formed on the buried waste, and a current is applied to the light guide layer and the active layer respectively independently. This is accomplished by an optical semiconductor device that is characterized by changing the resonant wavelength by changing the resonant wavelength. [Function] That is, according to the present invention, the refractive index of the light guide layer can be changed independently by passing a current through the light guide layer which is electrically separated from the active layer by the separate layer. Therefore, the resonance wavelength can be changed significantly while keeping the gain of the active layer constant.

[実施例] 以下、本発明を図示する実施例に基づいて具体的に説明
する. 第1図(a>,(b>は、それぞれ本発明のー実施例に
よる波長可変フィルタを示す斜視図及び断面図である. 例えばキャリア濃度p=5X10′8cm−’の(10
0)p型1nP基板2上に、ピッチ240nm、深さ3
0nmの回折格子4を介して、フォトルミネセンス波長
1.4μm、厚さ1,2μmのノンドーブInGaAs
P光ガイド層6が通常の液相成長法によって形成されて
いる。またこのInGaAsP光ガイド層6上に、キャ
リア濃度n=2X10”cm− 、厚さ1.2μmのn
型InPセパレート層8を介して、フォトルミネセンス
波長1.55μm、厚さ0.1μmのノンドーブInG
aAsP活性層10が液相成長法によって形成されてい
る.従って、このn型InPセパレート層8により、I
nGaAsP光ガイド層6及びI nGaAsP活性層
10は互いに電気的に分離されている. また、このInGaAsP活性層10上には、キャリア
濃度P=5X10”cm− 、厚さ1.5μmのp型I
nPクラッド層12及びフォトルミネセンス波長1.3
μm、キャリア濃度p=1×10”am一、厚さ0.4
,umのp型InGaAsPコンタクト層14が液相成
長法によって順に形成されている.そしてメサ形状にな
っているP型InGaAsPコンタクト層14、P型I
nPクラッド層12、I nGaAsP活性層10,n
型InPセパレート層8、及びInGaAsP光ガイド
層6の測面には、n型InP埋込み層16が液相成長法
によって形成されている.そしてP型InGaAspコ
ンタクト114表面にZnを拡散して形成されたZn拡
散領域18上には、I nGaAsP活性層10に電流
!aを注入する第1の電極20が形成されている.また
、p型InP基板2底面上には、I nGaAs P光
ガイド層6に電流Isを注入する第2の電極22が形成
されている.さらに、n型InP埋込み層16上にはグ
ランドに接地された第3の電極24が形或されている. 次に、動作を説明する. 第1の電[i20に所定の電圧を印加してInGaAs
P活性層10に電流Iaを注入し、波長可変フィルタを
レーザ発振直前の状態にする.これにより、波長可変フ
ィルタの共振波長、即ち透過中心波長がまず決定する.
次いで、第2の電極22に所定の電圧を印加してI n
GaAsP光ガイド層6に電流Isを注入すると、この
I nGaAsP光ガイド層6の等価屈折率naffが
プラズマ効果によって小さくなる.これにより、透過中
心波長は短波長開にシフトされる.そしてこのとき、I
nGaAsP活性層10に流れる電流Iaは変わらない
ため、光増幅率は変化しない.このように本実施例によ
れば、n型1nPセパレート層8によってInGaAs
P活性層10と電気的に分離されているInGaAsP
光ガイド層6に、p型InP基板2底面上に設けられた
第2の電[i22からInGaAsP活性層1oと独立
に電流Isを注入し、この電流Isを制御することによ
り、波長可変フィルタの透過中心波長を大きく変えるこ
とができる. なお、上記実施例においては、波長可変フィルタの場合
について述べたが、第1図に示す構造と同等の構造で可
変波長レーザを形或することができる.そしてこの可変
波長レーザにおいても、上記実施例による波長可変フィ
ルタの場合と同様にして、活性層と独立に光ガイド層に
電流Isを注入制御することにより、レーザ発振波長を
大きく変えることができる。
[Example] The present invention will be specifically described below based on an illustrative example. FIG. 1 (a> and (b>) are a perspective view and a sectional view, respectively, showing a wavelength tunable filter according to an embodiment of the present invention. For example, (10
0) Pitch 240 nm, depth 3 on p-type 1nP substrate 2
A non-doped InGaAs film with a photoluminescence wavelength of 1.4 μm and a thickness of 1.2 μm is passed through a 0 nm diffraction grating 4.
The P light guide layer 6 is formed by a normal liquid phase growth method. Further, on this InGaAsP optical guide layer 6, an n layer with a carrier concentration n=2×10"cm- and a thickness of 1.2 μm is formed.
Non-doped InG with a photoluminescence wavelength of 1.55 μm and a thickness of 0.1 μm is passed through the InP type separate layer 8.
The aAsP active layer 10 is formed by liquid phase growth. Therefore, this n-type InP separate layer 8 allows I
The nGaAsP light guide layer 6 and the InGaAsP active layer 10 are electrically isolated from each other. Further, on this InGaAsP active layer 10, there is a p-type I layer with a carrier concentration P=5×10”cm− and a thickness of 1.5 μm.
nP cladding layer 12 and photoluminescence wavelength 1.3
μm, carrier concentration p=1×10”am, thickness 0.4
, um p-type InGaAsP contact layers 14 are sequentially formed by liquid phase growth. Then, a P-type InGaAsP contact layer 14 having a mesa shape, a P-type I
nP cladding layer 12, In nGaAsP active layer 10,n
An n-type InP buried layer 16 is formed on the surface of the InP type separate layer 8 and the InGaAsP light guide layer 6 by liquid phase growth. A current flows through the InGaAsP active layer 10 on the Zn diffusion region 18 formed by diffusing Zn on the surface of the P-type InGaAsP contact 114. A first electrode 20 for injecting a is formed. Further, on the bottom surface of the p-type InP substrate 2, a second electrode 22 for injecting a current Is into the InGaAsP optical guide layer 6 is formed. Furthermore, a third electrode 24 grounded is formed on the n-type InP buried layer 16. Next, we will explain the operation. Apply a predetermined voltage to the first voltage [i20 to
A current Ia is injected into the P active layer 10 to bring the wavelength tunable filter into a state immediately before laser oscillation. As a result, the resonant wavelength of the wavelength tunable filter, that is, the transmission center wavelength, is first determined.
Next, by applying a predetermined voltage to the second electrode 22, I n
When a current Is is injected into the GaAsP light guide layer 6, the equivalent refractive index naff of the InGaAsP light guide layer 6 becomes smaller due to the plasma effect. As a result, the transmission center wavelength is shifted to shorter wavelengths. And at this time, I
Since the current Ia flowing through the nGaAsP active layer 10 does not change, the optical amplification factor does not change. In this way, according to this embodiment, the n-type 1nP separate layer 8 allows the InGaAs
InGaAsP electrically isolated from the P active layer 10
A current Is is injected into the light guide layer 6 from the second electrode (i22) provided on the bottom surface of the p-type InP substrate 2 independently of the InGaAsP active layer 1o, and by controlling this current Is, the wavelength tunable filter is The transmission center wavelength can be changed significantly. In the above embodiment, the case of a wavelength tunable filter has been described, but a tunable wavelength laser can be formed with a structure equivalent to the structure shown in FIG. Also in this tunable wavelength laser, the laser oscillation wavelength can be changed significantly by controlling the injection of current Is into the optical guide layer independently of the active layer, in the same way as in the case of the wavelength tunable filter according to the above embodiment.

[発明の効果] 以上のように本発明によれば、活性層と光ガイド層との
間にセパレート層を設けて活性層と独立に光ガイド層に
電流を流すことにより、光ガイド層の屈折率を独立に変
化させて、透過光又は発振光の強度を一定に保ちながら
透過中心波長又は発振波長を大きく変えることができる
[Effects of the Invention] As described above, according to the present invention, by providing a separate layer between the active layer and the light guide layer and passing a current through the light guide layer independently of the active layer, the refraction of the light guide layer can be improved. By independently changing the ratio, the transmission center wavelength or oscillation wavelength can be greatly changed while keeping the intensity of the transmitted light or oscillation light constant.

これにより、可変波長幅の大きな波長可変レーザ又は波
長可変フィルタを実現し、光ネットワークの波長多重度
を大きくすることができる。
Thereby, it is possible to realize a wavelength tunable laser or a wavelength tunable filter with a large tunable wavelength width, and increase the wavelength multiplexing degree of the optical network.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実熊例による波長可変フィルタを示
す図、 第2図は従来の波長可変フィルタを示す図、第3図は第
2図の波長可変フィルタの動作を説明するためのグラフ
である. 図において、 2・・・・・・P型1nP基板、 4.34・・・・・・回折格子、 6・・・・・・InGaAsP光ガイド層、8・・・・
・・n型1nPセパレート層、1 0.38・・−I 
nGaAs P活性層、12.40・・・・・・p型1
nPクラッド層、14.42p型1nGaAsPコンタ
クト層、16.44・・・・・・n型InP埋込み層、
18・・・・・・Zn拡散領域、 20,  22.  24.46.  48,  50
.  52・・・・・・電極、 32・・・・・・n型InP基板、 36・・・・・・n型InGaAsP光ガイド層。
FIG. 1 is a diagram showing a wavelength tunable filter according to an example of the present invention, FIG. 2 is a diagram showing a conventional wavelength tunable filter, and FIG. 3 is a diagram for explaining the operation of the wavelength tunable filter shown in FIG. It is a graph. In the figure, 2... P-type 1nP substrate, 4.34... Diffraction grating, 6... InGaAsP optical guide layer, 8...
...n-type 1nP separate layer, 1 0.38...-I
nGaAs P active layer, 12.40...p type 1
nP cladding layer, 14.42 p-type 1nGaAsP contact layer, 16.44... n-type InP buried layer,
18...Zn diffusion region, 20, 22. 24.46. 48, 50
.. 52... Electrode, 32... N-type InP substrate, 36... N-type InGaAsP light guide layer.

Claims (1)

【特許請求の範囲】 第1導電型の半導体基板と、 前記半導体基板上に形成された光ガイド層と、前記光ガ
イド層上に形成された第2導電型のセパレート層と、 前記セパレート層により前記光ガイド層と電気的に分離
された活性層と、 前記光ガイド層、前記セパレート層、及び前記活性層の
両側に形成された第2導電型の埋込み層と、 前記活性層上に第1導電型のクラッド層を介して形成さ
れた第1の電極と、 前記半導体基板底面上に形成された第2の電極と、 前記埋込み層上に形成された第3の電極とを有し、 前記光ガイド層及び前記活性層にそれぞれ独立に電流を
流すことにより、共振波長を変えることを特徴とする光
半導体素子。
[Scope of Claims] A semiconductor substrate of a first conductivity type, a light guide layer formed on the semiconductor substrate, a separate layer of a second conductivity type formed on the light guide layer, and the separate layer. an active layer electrically isolated from the light guide layer; a buried layer of a second conductivity type formed on both sides of the light guide layer, the separate layer, and the active layer; a first electrode formed through a conductive cladding layer; a second electrode formed on the bottom surface of the semiconductor substrate; and a third electrode formed on the buried layer; An optical semiconductor device characterized in that a resonant wavelength is changed by passing current through the optical guide layer and the active layer independently.
JP1244576A 1989-09-19 1989-09-19 Optical semiconductor element Pending JPH03105992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1244576A JPH03105992A (en) 1989-09-19 1989-09-19 Optical semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1244576A JPH03105992A (en) 1989-09-19 1989-09-19 Optical semiconductor element

Publications (1)

Publication Number Publication Date
JPH03105992A true JPH03105992A (en) 1991-05-02

Family

ID=17120776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1244576A Pending JPH03105992A (en) 1989-09-19 1989-09-19 Optical semiconductor element

Country Status (1)

Country Link
JP (1) JPH03105992A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315706A (en) * 1992-05-11 1993-11-26 Mitsubishi Electric Corp Semiconductor laser
JPH0653606A (en) * 1992-07-27 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser
US5325379A (en) * 1992-01-20 1994-06-28 Siemens Aktiengesellschaft Tunable laser diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325379A (en) * 1992-01-20 1994-06-28 Siemens Aktiengesellschaft Tunable laser diode
JPH05315706A (en) * 1992-05-11 1993-11-26 Mitsubishi Electric Corp Semiconductor laser
JPH0653606A (en) * 1992-07-27 1994-02-25 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser

Similar Documents

Publication Publication Date Title
JP2825508B2 (en) Semiconductor laser device and optical communication system
US5642371A (en) Optical transmission apparatus
JP3950604B2 (en) Semiconductor laser device, semiconductor laser array device, and optical transmission device
JPH06160655A (en) Tunable optical fiber
US6228670B1 (en) Method of manufacturing a semiconductor optical waveguide array and an array-structured semiconductor optical device
JPH09162499A (en) Semiconductor laser device, method for driving it, and optical communication system using it
KR100464359B1 (en) Tunable laser apparatus
JP2010153826A (en) Wavelength-tunable filter and wavelength-tunable laser module
JPH02159781A (en) Optical communication device
JPH07273400A (en) Semiconductor laser
US4817105A (en) Integrated laser device with refractive index modulator
JPS5878488A (en) Distributed feedback type semiconductor laser
JPH09270568A (en) Multiple wavelength oscillation laser
JPH03105992A (en) Optical semiconductor element
JPH01126621A (en) Variable wavelength filter
JP3630977B2 (en) Laser having phase adjustment region and use thereof
JPH10261837A (en) Polarization-modulatable semiconductor laser having ring resonator, method for using it, and optical communication system using it
JP2003168842A (en) Wavelength variable distribution feedback type laser element and wavelength variable distribution feedback type laser integrated device
JP2544410B2 (en) Tunable semiconductor device
JP2911856B2 (en) Semiconductor laser device
JPH0766487A (en) Semiconductor laser device
JPS60178685A (en) Single-axial mode semiconductor laser device
JP3149962B2 (en) Multi-wavelength semiconductor laser device and driving method thereof
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
JPH06177481A (en) Semiconductor laser device