JPH03105837A - Scanning electron microscope and similar device - Google Patents

Scanning electron microscope and similar device

Info

Publication number
JPH03105837A
JPH03105837A JP1242217A JP24221789A JPH03105837A JP H03105837 A JPH03105837 A JP H03105837A JP 1242217 A JP1242217 A JP 1242217A JP 24221789 A JP24221789 A JP 24221789A JP H03105837 A JPH03105837 A JP H03105837A
Authority
JP
Japan
Prior art keywords
magnifying
electric field
detector
range
factors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242217A
Other languages
Japanese (ja)
Inventor
Mitsugi Sato
貢 佐藤
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242217A priority Critical patent/JPH03105837A/en
Publication of JPH03105837A publication Critical patent/JPH03105837A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an image from being lowered in quality in a range from a high to a low magnifying factor, and thereby keep the image high in quality by making a magnetic field changeable, which is generated by high voltage applied to a detector, while interlocking the deflection intensity of a polariscope. CONSTITUTION:A control electrode 73 controlling an electric field 8 is installed onto a shield electrode 71 (earthing potential) while an insulating spacer 72 is held. When a desired magnifying factor is set up by a magnifying setter 10, a deflection signal is given to a polariscope 5 by a deflection signal generator 11. Desired control voltage is concurrently applied to the control electrode 73 by a control voltage generator 12. The aforesaid control voltage is so set up as to respond the magnifying factor in such a way that no influence on primary electron beams is exerted in a range of high magnifying factors and also that the whole of secondary electron beams produced from a specimen is detected in a range of low magnifying factors. This thereby enables the electric field 8 to be controlled while being interlocked with change in magnifying factor, thereby making it possible to obtain a secondary electron image which is high in quality while an reduction in resolving power is prevented in a range from the high magnifying factors to the low magnifying factors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は.走査電子顕微鏡及びその類似装置に係り、特
に低倍率から高倍率まで高画質を保持するのに好適な二
次電子検出器に関する.〔従来の技術〕 一般に、二次電子検出器には電子が衝突するε光を放射
するシンチレータとこの光を高感度で検知するホトマル
チプライアこにより構成されている.このシンチレータ
には約10KVの高電圧が印加きれでおり、この高電圧
による電界が二次電子の通路に染みだして二次電子を吸
引し、検出している。ただ、この電界は第2図に示すよ
うに光学軸にたいして非対称であるために、二次電子の
試料放出位置により検出効率が異なる。したがつて、二
次電子画像を表示したとき、特定の象限が暗くなる.こ
の現象は,高倍率では試料の走査領域が狭いために問題
ないが,低倍率では顕著に現われるという問題があった
[Detailed Description of the Invention] [Industrial Application Field] The present invention... This article relates to scanning electron microscopes and similar devices, and particularly to secondary electron detectors suitable for maintaining high image quality from low to high magnifications. [Prior art] Generally, a secondary electron detector consists of a scintillator that emits epsilon light upon which electrons collide, and a photomultiplier that detects this light with high sensitivity. A high voltage of approximately 10 KV is applied to this scintillator, and the electric field due to this high voltage leaks into the secondary electron path, attracts the secondary electrons, and detects them. However, since this electric field is asymmetrical with respect to the optical axis as shown in FIG. 2, the detection efficiency differs depending on the sample emission position of the secondary electrons. Therefore, when a secondary electron image is displayed, certain quadrants become dark. This phenomenon is not a problem at high magnifications because the scan area of the sample is narrow, but it becomes noticeable at low magnifications.

〔発明が解決しようヒする課題〕[Problems to be solved by the invention]

本発明の目的は,低倍率から高倍率まで画質の低下を防
止して高画質を保持できる二次電子検出器を提供するこ
とである. 〔課題を解決するための手段〕 上記問題点を解決するためには、一次電子線の通路に染
みだしている二次電子検出器の電界をできるだけ一様に
なるようにすればよい.そのためには二次電子検出器か
ら生じている電界を強くして、試料から出てくる二次電
子をすべて検出すればよい。ただ、この場合一次電子線
の軌道に影響を与え,分解能の低下が生じる。この原因
は検出器電界による偏向作用により一次電子線の軌道が
変化し、レンズの軸外収差を受けるからである。
The purpose of the present invention is to provide a secondary electron detector that can maintain high image quality from low magnification to high magnification by preventing deterioration of image quality. [Means for solving the problem] In order to solve the above problem, it is necessary to make the electric field of the secondary electron detector that seeps into the path of the primary electron beam as uniform as possible. To do this, the electric field generated by the secondary electron detector can be strengthened to detect all secondary electrons coming out of the sample. However, in this case, the trajectory of the primary electron beam is affected, resulting in a decrease in resolution. This is because the trajectory of the primary electron beam changes due to the deflection effect of the detector electric field and is subject to off-axis aberrations of the lens.

この分解能低下は、低倍率では問題ないが,高倍率では
問題になる。したがって倍率に連動して電気的に電界を
制御できるようにすれば、高倍率での分解能の低下を防
止し,低倍率では象限による二次電子効率の差異を防止
でき、上記問題は解決できる. 〔作用〕 一次電子線の通路に染みだしている二次電子検出器の電
界を制御するためには、検出器に印加されている高電圧
を制御するか,もしくはこの電界を制御するための電極
を配置してこの電極に印加する電圧を制御すれば可能と
なる.これらいずれかの電圧を観察倍率に連動して制御
すれば本目的は達戒できる. 〔実施例〕 以下,本発明の一実施例を第1図により説明する.l!
子銃lからでた一次電子Ji2は,幾つかのレンズ(対
物レンズ以外は省略)3により細く絞られて試料4上に
照射されている。この一次電子線2は偏向器5により試
料4上を二次元的に走査される.試料4から出てくる二
次電子6は、二次電子検出器7の電界8により加速され
てシンチレ一夕74により検出され、映像信号となる,
本実施例では、電界8を制御するための制御電極73が
絶縁スペーサ72を挟んでシールド電極71(接地電位
)に取付けられている。
This decrease in resolution is not a problem at low magnifications, but becomes a problem at high magnifications. Therefore, by making it possible to electrically control the electric field in conjunction with the magnification, the above problem can be solved by preventing a decrease in resolution at high magnifications and preventing differences in secondary electron efficiency depending on the quadrant at low magnifications. [Function] In order to control the electric field of the secondary electron detector that seeps into the path of the primary electron beam, it is necessary to control the high voltage applied to the detector or to use an electrode to control this electric field. This can be done by placing an electrode and controlling the voltage applied to this electrode. This objective can be achieved by controlling either of these voltages in conjunction with the observation magnification. [Example] An example of the present invention will be explained below with reference to FIG. l!
The primary electrons Ji2 emitted from the child gun 1 are focused narrowly by several lenses (other than the objective lens are omitted) 3 and are irradiated onto the sample 4. This primary electron beam 2 is scanned two-dimensionally over a sample 4 by a deflector 5. Secondary electrons 6 coming out of the sample 4 are accelerated by the electric field 8 of the secondary electron detector 7 and detected by the scintillator 74, resulting in a video signal.
In this embodiment, a control electrode 73 for controlling the electric field 8 is attached to a shield electrode 71 (ground potential) with an insulating spacer 72 in between.

このような構成において、倍率設定器10により所望の
倍率が設定されると偏向信号発生器11により偏向信号
が偏向器5に与えられる.同時に制御電圧発生器12に
より所望の制御電圧が制御電極73に印加される。この
制御電圧は、高倍率では一次電子線に影響を与えないよ
うに,低倍率では試料から出てきた二次電子をすべて検
出できるように倍率との対応があらかじめ設定されてい
る。したがって、倍率の変化に連動して電界8の制御が
でき、低倍率から高倍率まで高画質で分解能の低下が生
じていないような二次電子像が得られる。
In such a configuration, when a desired magnification is set by the magnification setter 10, a deflection signal is given to the deflector 5 by the deflection signal generator 11. At the same time, a desired control voltage is applied to the control electrode 73 by the control voltage generator 12. This control voltage is preset in correspondence with the magnification so that it does not affect the primary electron beam at high magnifications, and so that all secondary electrons emitted from the sample can be detected at low magnifications. Therefore, the electric field 8 can be controlled in conjunction with changes in magnification, and secondary electron images with high image quality and no reduction in resolution can be obtained from low to high magnifications.

以上は本発明の一実施例であるが、低倍率で分解能の低
下が分かるほど一次電子線に影響を与えている場合には
、この影響を補正することもできる。すなわち、倍率設
定器10に連動して補正信号発生器13から電子線軸補
正器14に信号を与えて,常にレンズ3の輔上を一次電
子線が通過するようにすれば分解能低下を防止すること
ができる。なお、この実施は偏向信号発生器11に重畳
させて偏向器5により行うこともできる。
The above is an embodiment of the present invention, but if the primary electron beam is affected to the extent that a decrease in resolution is noticeable at low magnification, this influence can be corrected. That is, by giving a signal from the correction signal generator 13 to the electron beam axis corrector 14 in conjunction with the magnification setting device 10 so that the primary electron beam always passes over the lens 3, a decrease in resolution can be prevented. I can do it. Note that this implementation can also be performed by the deflector 5 superimposed on the deflection signal generator 11.

以上は本発明の一実施例である6 〔作用〕で述べたよ
うに、シンチレータの印加電圧9を直接制御しても可能
である.この場合制御電極73は不要となる. 本実施例はレンズ3の中に試料4が配置された構成のも
のについて述べたが、これに限ることなく、例えば試料
4がレンズ3の下方にあっても同様にできる。また、電
子線について述べたが,イオン線のような荷電粒子線一
般に実施できることはいうまでもない. 〔発明の効果〕 以上述べたごとく、本発明によれば二次電子検出器の印
加電圧により生じる電界を加速電圧に応じて制御するの
で、広範囲の倍率にたいして画質の低下を防止できる効
果がある.
As described in Section 6 [Operation], which is an embodiment of the present invention, the above is also possible by directly controlling the applied voltage 9 to the scintillator. In this case, the control electrode 73 becomes unnecessary. Although this embodiment has been described with respect to a configuration in which the sample 4 is placed inside the lens 3, the present invention is not limited to this, and the same can be done even if the sample 4 is placed below the lens 3, for example. Also, although we have discussed electron beams, it goes without saying that this method can be applied to charged particle beams in general, such as ion beams. [Effects of the Invention] As described above, according to the present invention, since the electric field generated by the voltage applied to the secondary electron detector is controlled in accordance with the accelerating voltage, there is an effect of preventing deterioration of image quality over a wide range of magnification.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す基本構或図,第2図は
従来の構成図である。
FIG. 1 is a basic configuration diagram showing one embodiment of the present invention, and FIG. 2 is a conventional configuration diagram.

Claims (1)

【特許請求の範囲】 1、電子銃からでた電子線を細く絞つて試料に照射する
レンズ、該電子線を該試料上で二次元的に走査する偏向
器、該試料から出てくる二次電子を検出する二次電子検
出器とからなる電子線装置において、該検出器に印加さ
れた高電圧により生じる電界を該偏向器の偏向強度に連
動して可変としたことを特徴する走査電子顕微鏡及びそ
の類似装置。 2、第1項記載の検出器の電界を偏向強度に連動して可
変とする際に、検出器の電界による電子線の影響を補正
する手段を設け、この手段も偏向強度に連動して可変と
したことを特徴とする走査電子顕微鏡及びその類似 3、第2項記載の補正手段は、偏向器を用いて偏向強度
に重畳させたことを特徴とする走査電子顕微鏡及びその
類似装置。 4、第1項記載の試料はレンズの内部に配設されており
、二次電子検出器は該レンズの電子銃側に配置されたこ
とを特徴とする第1項から第3項のいずれかに記載の走
査電子顕微鏡及びその類似
[Claims] 1. A lens that narrows the electron beam emitted from the electron gun and irradiates it onto the sample, a deflector that scans the electron beam two-dimensionally on the sample, and a secondary beam emitted from the sample. A scanning electron microscope comprising an electron beam device comprising a secondary electron detector for detecting electrons, wherein an electric field generated by a high voltage applied to the detector is made variable in conjunction with the deflection intensity of the deflector. and similar devices. 2. When the electric field of the detector described in item 1 is made variable in conjunction with the deflection strength, a means for correcting the influence of the electron beam due to the electric field of the detector is provided, and this means is also made variable in conjunction with the deflection strength. 3. A scanning electron microscope and similar devices characterized in that the correction means according to item 2 uses a deflector to superimpose the deflection intensity. 4. Any one of items 1 to 3, wherein the sample described in item 1 is placed inside a lens, and the secondary electron detector is placed on the electron gun side of the lens. Scanning electron microscopes and similar devices described in
JP1242217A 1989-09-20 1989-09-20 Scanning electron microscope and similar device Pending JPH03105837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242217A JPH03105837A (en) 1989-09-20 1989-09-20 Scanning electron microscope and similar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242217A JPH03105837A (en) 1989-09-20 1989-09-20 Scanning electron microscope and similar device

Publications (1)

Publication Number Publication Date
JPH03105837A true JPH03105837A (en) 1991-05-02

Family

ID=17085985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242217A Pending JPH03105837A (en) 1989-09-20 1989-09-20 Scanning electron microscope and similar device

Country Status (1)

Country Link
JP (1) JPH03105837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512228B2 (en) * 1998-10-29 2003-01-28 Hitachi, Ltd. Scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512228B2 (en) * 1998-10-29 2003-01-28 Hitachi, Ltd. Scanning electron microscope

Similar Documents

Publication Publication Date Title
US10896800B2 (en) Charged particle beam system and method
US11239053B2 (en) Charged particle beam system and method
US5387793A (en) Scanning electron microscope
US20120132801A1 (en) Method and an apparatus of an inspection system using an electron beam
US6979821B2 (en) Scanning electron microscope
US3833811A (en) Scanning electron microscope with improved means for focusing
US5670782A (en) Scanning electron microscope and speciman observation method thereby
JP4527289B2 (en) Particle optics including detection of Auger electrons
US3717761A (en) Scanning electron microscope
US3857034A (en) Scanning charged beam particle beam microscope
US6653632B2 (en) Scanning-type instrument utilizing charged-particle beam and method of controlling same
US4893009A (en) Scanning electron microscope and the like apparatus
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JP3499690B2 (en) Charged particle microscope
JPH03105837A (en) Scanning electron microscope and similar device
JPH07105888A (en) Scanning electron microscope
USRE29500E (en) Scanning charged beam particle beam microscope
JP2000208089A (en) Electron microscope device
JPS6364255A (en) Particle beam radiating device
JP6920539B2 (en) Scanning electron microscope and its imaging method
JPH05343021A (en) Scanning electron microscope
JPH04522Y2 (en)
JPS586267B2 (en) scanning electron microscope
JPH06150869A (en) Scanning electron microscope
JP2004259465A (en) Scanning charged particle beam system