JPH03105289A - Reactor container - Google Patents

Reactor container

Info

Publication number
JPH03105289A
JPH03105289A JP1242169A JP24216989A JPH03105289A JP H03105289 A JPH03105289 A JP H03105289A JP 1242169 A JP1242169 A JP 1242169A JP 24216989 A JP24216989 A JP 24216989A JP H03105289 A JPH03105289 A JP H03105289A
Authority
JP
Japan
Prior art keywords
containment vessel
wall
container
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1242169A
Other languages
Japanese (ja)
Inventor
Shigeo Hatamiya
重雄 幡宮
Masanori Naito
内藤 正則
Isao Sumida
隅田 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1242169A priority Critical patent/JPH03105289A/en
Publication of JPH03105289A publication Critical patent/JPH03105289A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce the area of heat transfer necessary for removing a heat from a container by a construction wherein a channel enabling natural draft of air is provided along the outer wall of the container and a partition is provided between the outer wall of the container and a wall surface opposite to the outer wall in this channel. CONSTITUTION:A partition 5 is installed in a channel formed by the wall surface 3 of a container and a wall surface 4 opposite to the outer wall. In this case, air flowing in from below the container is heated by a heat transferred from the wall surface and rises and it is released upward along the container. According to this constitution, the area of heat transfer required when a decay heat generated on the occasion of long-term cooling after LOCA is removed from the container by convective heat transfer of the air can be reduced by about 15%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は,原子炉の格納容器に係り、特に,事故時に炉
心で発生する崩壊熱を自然力で外部に放熱させるのに好
適な構造をもつ格納容器に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a containment vessel for a nuclear reactor, and in particular, a containment vessel having a structure suitable for radiating decay heat generated in the reactor core to the outside by natural forces during an accident. Regarding containment vessels.

〔従来の技術〕[Conventional technology]

沸騰水型原子炉の格納容器では、配管破断時に格納容器
内に噴出した蒸気を圧力抑制室内のサブレツションプー
ルに導いて凝縮させ、格納容器内の圧力の上昇を押さえ
るという圧力抑制方法を採用している。配管破断事故直
後のブローダウン時には原子炉圧力容器内に蓄えられて
いた多量の蒸気エネルギが格納容器内に放出され、サブ
レツションプールの温度が上昇する。サブレツションプ
ールの温度が上昇すると格納容器の外部に設置された外
周プールとの温度差により格納容器外に放熱される。こ
の場合、外周プールの温度が100℃を越えると外周プ
ール水は蒸発し、しだいに水位は低下する。このような
構造を持つ格納容器の例は、たとえば、特開昭63−1
91096号公報がある。
In the containment vessel of a boiling water reactor, a pressure suppression method is adopted in which steam ejected into the containment vessel when a pipe ruptures is guided to a subrepression pool in the pressure suppression chamber and condensed, thereby suppressing the rise in pressure within the containment vessel. are doing. During a blowdown immediately after a pipe rupture accident, a large amount of steam energy stored in the reactor pressure vessel is released into the containment vessel, raising the temperature of the subreduction pool. When the temperature of the sub-retention pool rises, heat is radiated outside the containment vessel due to the temperature difference between it and the peripheral pool installed outside the containment vessel. In this case, when the temperature of the outer pool exceeds 100°C, the outer pool water evaporates and the water level gradually decreases. An example of a containment vessel having such a structure is, for example, Japanese Patent Application Laid-Open No. 63-1
There is a publication No. 91096.

この具体例を第2図に示す。このような構造では、外周
プールの放熱能力が確保されている晴間がその構造に特
有な値として存在し、この時間内では、外的な操作を加
えることなく自然力のみで崩壊熱が除去できるとされて
いる。
A concrete example of this is shown in FIG. In such a structure, there is a clear space that is unique to the structure and ensures the heat dissipation ability of the outer pool, and within this time, it is assumed that decay heat can be removed by natural forces alone without any external operations. has been done.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の格納容器では、外周プール水が蒸発してしまった
後は、水を補給するか、残留熱除去系が作動することを
前提としていた。今、さらに進めて、外周プール水が蒸
発してしまった後もなんら外的な操作をすることなしに
、除熱が達成できるシステムを考える。この一つの例と
して空気の自然対流で除熱する方法がある。しかし、空
気の自然対流ではそれほど大きな熱伝達率を期待できな
いため、崩壊熱に相当する熱を格納容器の外壁から除去
するためには、伝熱面積を大きくする必要があり、格納
容器が大型化するという問題がある。
Conventional containment vessels assume that after the outer pool water has evaporated, water must be replenished or a residual heat removal system must be activated. Now, we will go further and consider a system that can achieve heat removal without any external operations even after the water in the outer pool has evaporated. One example of this is a method of removing heat using natural convection of air. However, natural convection of air cannot be expected to have a very high heat transfer coefficient, so in order to remove the heat equivalent to decay heat from the outer wall of the containment vessel, it is necessary to increase the heat transfer area, making the containment vessel larger. There is a problem with doing so.

格納容器の大型化を避けるには、放熱特性を積極的に向
上させる必要がある。
In order to avoid increasing the size of the containment vessel, it is necessary to proactively improve its heat dissipation characteristics.

本発明の目的は、格納容器外部の自然対流による放熱量
を増加させ、放熱特性の良い原子炉格納容器を提供する
ことにある。
An object of the present invention is to provide a reactor containment vessel with good heat dissipation characteristics by increasing the amount of heat dissipated by natural convection outside the containment vessel.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、格納容器外壁に沿って設けられた空気の流
路内に熱伝導率の良い材質を用いた、隔壁を設置するこ
とにより達或される。
The above object is achieved by installing a partition wall made of a material with good thermal conductivity in an air flow path provided along the outer wall of the containment vessel.

〔作用〕[Effect]

以下,第3図を参考にして本発明の作用を説明する。 
(a)は格納容器外壁に沿って設けられた空気の流路の
断面を示したものである。格納容器外壁面(壁而L)が
温度Twt、外壁に対向する壁面(壁面2)の温度がT
 112、空気の主流温度がT a r rであるとす
る。いま,壁而1から壁面2に輻射で伝えられる熱量Q
rは Q,=tσA (( T−1)’  ( T w2)’
)    − (1)ここで、εは輻射率,σはステフ
ァンボルツマン定数。定常状態では、壁面2に与えられ
た熱量は壁面2から対流熱伝達により、空気に与えられ
る。このときの伝熱量Q2は、 Q2= h A(TwZ  Tagr)       
 −(2)エネルギ収支の関係から、 Q,−Qzの関係を満足するように、輻射伝熱量と壁面
2の温度が決まる。
The operation of the present invention will be explained below with reference to FIG.
(a) shows a cross section of an air flow path provided along the outer wall of the containment vessel. The temperature of the outer wall of the containment vessel (wall L) is Twt, and the temperature of the wall facing the outer wall (wall 2) is T.
112, it is assumed that the mainstream temperature of the air is T a r r. Now, the amount of heat Q transferred from wall 1 to wall 2 by radiation
r is Q, = tσA ((T-1)' (T w2)'
) − (1) Here, ε is the emissivity, and σ is the Stefan Boltzmann constant. In a steady state, the amount of heat given to the wall surface 2 is given to the air from the wall surface 2 by convection heat transfer. The amount of heat transfer Q2 at this time is Q2= h A (TwZ Tagr)
-(2) From the energy balance relationship, the amount of radiant heat transfer and the temperature of the wall surface 2 are determined so as to satisfy the relationship Q, -Qz.

ここで,(b)のように、流路内に隔壁を設置した場合
を考える。この場合、輻射伝熱量と、対流伝熱の関係式
は近似的に、 Q,= εa A((Tvt)’  (T−a)’) 
   −(3)Q3:hA(Tw3−Tatr)   
    ・・・(4)Q3’ ” h ’ A(Tw3
Tair      ”・(5)このときエネルギ収支
の関係から Qr=03+Q3’ また、熱伝達率は隔壁の両面でほぼ等しいと見なせるの
で結局Q−”=2Qsの関係を満足するように、輻射伝
熱量と隔壁の温度が決まる。すなわち.(b)の場合に
は(a)の場合に比べ、伝熱面積が二倍になったことに
対応し、その分だけ隔壁の温度が低い値でつりあうため
、輻射伝熱量が増加していることがわかる。なお,格納
容器からの全放熱量は格納容器外壁からの対流伝熱Ji
 Q r をQ1= h A(Twt  Tair) 
      −(6)として Q ” Q 1 + Q r として求められる。
Here, consider the case where a partition wall is installed in the flow path as shown in (b). In this case, the relational expression between radiant heat transfer and convective heat transfer is approximately Q, = εa A((Tvt)'(T-a)')
-(3)Q3:hA(Tw3-Tatr)
...(4)Q3'"h' A(Tw3
Tair''・(5) At this time, from the relationship of energy balance, Qr=03+Q3' Also, since the heat transfer coefficient can be considered to be almost equal on both sides of the partition wall, the amount of radiant heat transfer and The temperature of the bulkhead is determined. In other words. In case (b), compared to case (a), the heat transfer area has doubled, and the temperature of the partition wall is balanced at a lower value by that much, so the amount of radiant heat transfer increases. I understand that. Note that the total amount of heat radiation from the containment vessel is determined by convective heat transfer Ji from the outer wall of the containment vessel.
Q1 = h A (Twt Tair)
−(6), it is determined as Q ” Q 1 + Q r .

第4図は本発明の隔壁の効果を評価した結果の図で、本
発明の隔壁を設置することで、隔壁がない場合に比べ放
熱量が約↓5%向上しているのがわかる。
FIG. 4 is a diagram showing the results of evaluating the effect of the partition wall of the present invention, and it can be seen that by installing the partition wall of the present invention, the amount of heat dissipation is improved by about ↓5% compared to the case without a partition wall.

〔実施例〕〔Example〕

以下、図面を参考にして本発明の実施例について説明す
る。第1図は、本発明の一実施例を示すものである。格
納容器壁面3とその外壁に対向する壁面4とで構成され
た流路内に隔壁5が設置されている。格納容器の下方か
ら流入した空気は壁面からの伝熱により加熱されて上昇
し,格納容器に沿って上方に抜けてゆく。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the present invention. A partition wall 5 is installed in a flow path formed by a containment vessel wall surface 3 and a wall surface 4 facing the outer wall thereof. Air flowing in from below the containment vessel is heated by heat transfer from the walls, rises, and escapes upward along the containment vessel.

第5図は本発明の他の実施例を示すもので、格納容器の
外部にプール7を設け、そのプールの底部が外部と連通
している例である。この場合には、格納容器の冷却過程
の初期に、外周プール水の蒸発により熱除去し、外周プ
ールの水位が低下し、連通孔8が呪われた後では空気に
よる対流伝熱が可能となる。
FIG. 5 shows another embodiment of the present invention, in which a pool 7 is provided outside the containment vessel, and the bottom of the pool communicates with the outside. In this case, at the beginning of the cooling process of the containment vessel, heat is removed by evaporation of the outer pool water, the water level of the outer pool decreases, and after the communication hole 8 is cursed, convection heat transfer by air becomes possible. .

〔発明の効果〕〔Effect of the invention〕

本発明によればLOCA後の長期冷却時の崩壊熱を空気
の対流伝熱により格納容器から除去する際に必要な伝熱
面積を約15%小さくおさえることが可能になる。
According to the present invention, it is possible to reduce the heat transfer area necessary for removing decay heat during long-term cooling after LOCA from the containment vessel by air convection heat transfer by about 15%.

【図面の簡単な説明】[Brief explanation of drawings]

第上図は本発明の一実施例の断面図、第2図は外周にプ
ールを持つ格納容器の断面図,第3図は本発明の原理を
示す説明図、第4図は本発明の効果の説明図、第5図は
本発明の他の実施例の断面図である。 1・・・炉心、2・・・原子炉圧力容器、3・・・格納
容器外壁、4・・・壁面、5・・・隔壁、6・・・サブ
レッションプ第 2 図 了W1 Tll/2 T広7Q TWt TW3Tw′2 To−il″L 第4図 イ太 ,字21丘h 景1 A(7n2) 第5図
The upper figure is a sectional view of an embodiment of the present invention, Figure 2 is a sectional view of a containment vessel with a pool on the outer periphery, Figure 3 is an explanatory diagram showing the principle of the present invention, and Figure 4 is an effect of the present invention. FIG. 5 is a sectional view of another embodiment of the present invention. 1...Reactor core, 2...Reactor pressure vessel, 3...Containment vessel outer wall, 4...Wall surface, 5...Partition wall, 6...Subpression 2nd figure completed W1 Tll/2 T wide 7Q TWt TW3Tw'2 To-il''L Fig. 4 Ita, character 21 hill h view 1 A (7n2) Fig. 5

Claims (1)

【特許請求の範囲】 1、原子炉を内蔵する原子炉格納容器において、前記格
納容器の外壁に沿つて自然通風が可能な流路を設け、前
記流路内の前記格納容器の外壁と前記外壁に対向する壁
面との間に、熱伝導率の良い材質で構成した隔壁を設置
したことを特徴とする原子炉格納容器。 2、特許請求の範囲第1項記載の原子炉格納容器におい
て、 前記格納容器の外周にプールを設け、前記外周のプール
の底部が前記格納容器の外部と連通していることを特徴
とする原子炉格納容器。
[Claims] 1. In a reactor containment vessel containing a nuclear reactor, a flow path that allows natural ventilation is provided along the outer wall of the containment vessel, and the outer wall of the containment vessel and the outer wall within the flow path are provided. A nuclear reactor containment vessel characterized in that a partition wall made of a material with good thermal conductivity is installed between the wall surface facing the reactor containment vessel. 2. The nuclear reactor containment vessel according to claim 1, wherein a pool is provided on the outer periphery of the containment vessel, and a bottom of the outer pool communicates with the outside of the containment vessel. Reactor containment vessel.
JP1242169A 1989-09-20 1989-09-20 Reactor container Pending JPH03105289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1242169A JPH03105289A (en) 1989-09-20 1989-09-20 Reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1242169A JPH03105289A (en) 1989-09-20 1989-09-20 Reactor container

Publications (1)

Publication Number Publication Date
JPH03105289A true JPH03105289A (en) 1991-05-02

Family

ID=17085353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1242169A Pending JPH03105289A (en) 1989-09-20 1989-09-20 Reactor container

Country Status (1)

Country Link
JP (1) JPH03105289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168404B1 (en) 1998-12-16 2001-01-02 Tecumseh Products Company Scroll compressor having axial compliance valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168404B1 (en) 1998-12-16 2001-01-02 Tecumseh Products Company Scroll compressor having axial compliance valve

Similar Documents

Publication Publication Date Title
US7522693B2 (en) Passive safety-grade decay-heat removal method and decay-heat removal system for LMR with pool direct heat cooling process
JPS62265597A (en) Auxiliary cooling system of radiating vessel
JP2009150860A (en) Passive safety grade residual heat removal system of eliminated sodium solidification possibility in intermediate sodium loop for removing remaining heat in sodium cooled fast reactor
US4959193A (en) Indirect passive cooling system for liquid metal cooled nuclear reactors
JP2001166081A (en) Cooling of reactor core catcher by heat pipe
BR112020026850A2 (en) SYSTEM FOR CONFINING AND COOLING MELTING FROM THE CORE OF A WATER MODERATED NUCLEAR REACTOR
JPH0395489A (en) Liquid metal cooling type nclear reactor with passive cooling system
JP5727799B2 (en) Heat transfer device for reactor containment
US5339340A (en) Liquid metal reactor air cooling baffle
JPH03105289A (en) Reactor container
JPH02297097A (en) Reactor container
JPS60244891A (en) Fast neutron reactor
JPH02253196A (en) Cooling device for natural heat radiation type containment
JPH05240990A (en) Two-phase reactor plant having partitioned separation condenser
JPH05172979A (en) Pressure suppression device for reactor container
JPS5945119B2 (en) Auxiliary cooling device
JPH04157396A (en) Natural cooling type container
JPH01174897A (en) Heat pipe
KR20190106301A (en) Apparatus for Preventing Hydrogen Explosion in a Water Storage Tank in a Nuclear Power Plant
JPH0472597A (en) Decay heat removing device for high temperature gas-cooled reactor
JP2001228279A (en) Split suppression chamber and reactor containment facility
JPS60205278A (en) Fast breeder reactor
JPS62190491A (en) Container for nuclear reactor
JPH08297186A (en) Core for fast reactor
JPH04190192A (en) Reactor containment vessel