JPH03105261A - Signal processing circuit for optical zero-phase current-voltage sensor - Google Patents

Signal processing circuit for optical zero-phase current-voltage sensor

Info

Publication number
JPH03105261A
JPH03105261A JP24379889A JP24379889A JPH03105261A JP H03105261 A JPH03105261 A JP H03105261A JP 24379889 A JP24379889 A JP 24379889A JP 24379889 A JP24379889 A JP 24379889A JP H03105261 A JPH03105261 A JP H03105261A
Authority
JP
Japan
Prior art keywords
phase
optical fiber
cpu
current
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24379889A
Other languages
Japanese (ja)
Other versions
JP3010642B2 (en
Inventor
Shinya Kominami
小南 真也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1243798A priority Critical patent/JP3010642B2/en
Publication of JPH03105261A publication Critical patent/JPH03105261A/en
Application granted granted Critical
Publication of JP3010642B2 publication Critical patent/JP3010642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To detect a fault existing for a long period by sampling a zero-phase value by CPU at a frequency containing an error of a commercial frequency when the fault occurring in an arbitrary phase is discriminated on the basis of a change in a current value or a voltage value of each phase of a three-phase alternating current. CONSTITUTION:A sensor signal processing circuit is constructed of three optical fiber sensor 1, 2 and 3 each detecting a current or a voltage of each phase of a three-phase alternating current of which the phases shift at 120 deg. from each other, three LEDs 4, 5 and 6 supplying light to the sensors, three driving amplifiers 7, 8 and 9 for driving these LEDs, three light-sensing diodes 10, 11 and 12 sensing the light from the optical fiber sensors, three light-sensing amplifiers 13, 14 and 15 amplifying signals of these diodes, an A/D converter 16 digitizing signals inputted from these amplifiers, CPU 17 for an arithmetic processing, and a comparator 18 making a trigger generated when an arbitrary phase crosses zero. By constructing the circuit in this way, an apparent zero phase is removed and a true zero is detected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、3相交流の各相の電流値又は電圧値の瞬時和
の変化で、任意の相に起きた事故を判別する光方式零相
電流電圧センサ信号処理回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is an optical zero-sequence current system that determines an accident that has occurred in any phase based on changes in the instantaneous sum of current values or voltage values of each phase of a three-phase alternating current. The present invention relates to a voltage sensor signal processing circuit.

従来の技術 第4図に従来例の回路構成図を示す。この従来例は、光
ファイバセンサ1,2.3へ光を供給する3個のLED
4,5.6と、これらを駆動する3個の駆動アンプ7,
8.9と、光ファイバセンサからの光信号を受光する3
個の受光ダイオード10,11.12と、これらの受光
ダイオードの信号を増幅する3個の受光アンプ13,1
4.15と、これらの受光アンプで増幅された信号をデ
ィジタル化するA/D変換器16と、このデイジタル信
号を演算処理するCPU17と、商用周波数を基準とす
るクロツク発生器19と光方式零相電流電圧センサ信号
処理回路を構成している。
BACKGROUND ART FIG. 4 shows a circuit configuration diagram of a conventional example. This conventional example uses three LEDs that supply light to optical fiber sensors 1, 2.3.
4, 5.6, and three drive amplifiers 7 that drive them.
8.9 and 3 which receives the optical signal from the optical fiber sensor.
three light-receiving diodes 10, 11.12 and three light-receiving amplifiers 13, 1 for amplifying the signals of these light-receiving diodes.
4.15, an A/D converter 16 that digitizes the signals amplified by these light receiving amplifiers, a CPU 17 that processes these digital signals, a clock generator 19 based on the commercial frequency, and an optical system zero. It constitutes a phase current voltage sensor signal processing circuit.

この従来例は、3相交流の周波数を商用周波数5 0 
r−{ z又は6 0 f{ zで固定したものとして
、前記A/D変換器16へ変換トリガーをかけて、前記
CPU17が各相の電流値又は電圧値を検出する。光フ
ァイバセンサ1,2.3からの受光信号は、センサ間の
感度のばらつきや多層の影響により、その3相f口は必
ずしも零とはならない。このため、この従来例では、第
5図に示す様に、クロツク発生器19で取り込んだ1周
期前の波形を基準周波数として零相を求め、この零相の
変化で任意の相に起きた事故を判別するようにしている
In this conventional example, the frequency of three-phase alternating current is the commercial frequency 50
Assuming that r-{ z or 60 f{ z is fixed, a conversion trigger is applied to the A/D converter 16, and the CPU 17 detects the current value or voltage value of each phase. The light reception signals from the optical fiber sensors 1, 2.3 are not necessarily zero at the three-phase f port due to variations in sensitivity between the sensors and the influence of multiple layers. For this reason, in this conventional example, as shown in Fig. 5, the zero phase is determined using the waveform of one cycle before the clock generator 19 as a reference frequency, and an accident that occurs in any phase due to a change in this zero phase is detected. I am trying to determine.

即ち、この従来例では、光ファイバセンサ1,2,3か
らの受光信号の3相瞬時和である零相値に、前記光ファ
イバセンサ1,2.3の感度ばらつきや多層の影響によ
り、みかけの零相値が現れるため、これらのみかけの零
相値を除去し、任意の相に起きた事故による真の零相値
を検出すべく、第5図に示す様に一周期前の零相値を基
準同期として、同位置サンプル点データからの差を前記
CPU17で演算処理する。そして、任意の相に起きた
事故を検出するため、第6図に示すアルゴリズムに従い
、真の零相電圧が閾値を越えると、真の零相値を演算処
理するための基準周期を事故前の一周期に固定する。こ
れは、第5図に示す様に任意の相に起きた事故による、
真の零相値の変化した周期を基準周期としてしまうと、
次周期以降は零相値が再び零になってしまい、事故検出
できなくなる事を避けるために行なう。
That is, in this conventional example, the zero-phase value, which is the instantaneous three-phase sum of the light reception signals from the optical fiber sensors 1, 2, and 3, has an apparent Since zero-sequence values appear, in order to remove these apparent zero-sequence values and detect the true zero-sequence value due to an accident that occurred in an arbitrary phase, the zero-sequence value of one cycle before is removed as shown in Figure 5. Using this value as a reference synchronization, the CPU 17 calculates and processes the difference from the sample point data at the same position. In order to detect a fault occurring in any phase, according to the algorithm shown in Figure 6, when the true zero-sequence voltage exceeds a threshold, the reference period for calculating the true zero-sequence value is set to the pre-fault period. Fixed to one cycle. This is due to an accident occurring in any phase as shown in Figure 5.
If we take the period in which the true zero-phase value changes as the reference period,
This is done to prevent the zero-phase value from becoming zero again from the next cycle onward, making it impossible to detect an accident.

発明が解決しようとする課題 しかしながら、零相電圧が閾値を越え、零相電流が閾値
を越えない場合には、第7図に示す様に、固定された基
準周期と前記光ファイバセンサ1,2.3から人力され
た3検出周期の間での時間差が大きくなる。
Problem to be Solved by the Invention However, when the zero-sequence voltage exceeds the threshold value and the zero-sequence current does not exceed the threshold value, as shown in FIG. .3 to 3, the time difference between the 3 manual detection cycles becomes large.

また、零相値のサンプル点データはクロツク発生器19
により、商用周波数50Hz又は60Hzに固定されて
いるため基準周期の真の周波数が商用周波数の持つ誤差
周波数によるサンプル点のずれを含んでしまう。このた
め、前記CPU17により、基準周期と検出され比較さ
れる周期との時間差が大きくなる程、前記誤差が蓄積さ
れ、第7図に示す様に真の零相電流が閾値を越えていな
いにもかかわらず、誤差による閾値越えが検出され、事
故の誤検出となる。この従来例では、これを防止するた
め、蓄積誤差による閾値越えを生じる前に、事故検出を
停止するようにしているが、そのため零相電圧が事故検
出閾値越えをし、零相電流が事故検出閾値越えをしない
場合は、長時間に渡って事故検出ができないという問題
がある。
In addition, the sample point data of the zero phase value is generated by the clock generator 19.
Therefore, since the commercial frequency is fixed at 50 Hz or 60 Hz, the true frequency of the reference period includes a sample point shift due to the error frequency of the commercial frequency. Therefore, the larger the time difference between the reference period and the period detected and compared by the CPU 17, the more the error is accumulated, and as shown in FIG. Regardless, the threshold is detected to be exceeded due to an error, resulting in an erroneous detection of an accident. In order to prevent this, in this conventional example, fault detection is stopped before the accumulated error exceeds the threshold, but as a result, the zero-sequence voltage exceeds the fault detection threshold, and the zero-sequence current is If the threshold is not exceeded, there is a problem that accident detection cannot be performed for a long time.

課題を解決するための手段 本発明の第1の発明は、位相が120゜毎にずれた3相
交流の各相の電流又は電圧を検出する3個の光ファイバ
センサと、これらの光ファイバセンサヘ光を供給する3
個のLEDと、これらのLEDを駆動する3個の駆動ア
ンプと、前記3個の光ファイバセンサからの光信号を受
光する3個の受光ダイオードと、これらの受光ダイオー
ドの信号を増幅する3個の受光アンプと、これら3個の
受光アンプで増幅される信号をデイジタル化するA/D
変換器と、このディジタル信号を演算処理するCPUと
、前記3相交流の周波数を1周期毎に検出する手段と、
検出された周期に同期して前記A/D変換器へ変換トリ
ガーをかける手段からなり、CPUで読み取られる光フ
ァイバセンサからの光信号値を3相交流周波数の変動の
影響を受けずにサンプルするように構成したことを特徴
とする。
Means for Solving the Problems A first aspect of the present invention includes three optical fiber sensors that detect the current or voltage of each phase of three-phase alternating current whose phase is shifted by 120 degrees, and these optical fiber sensors. 3 supplying light to
three LEDs, three drive amplifiers that drive these LEDs, three light receiving diodes that receive optical signals from the three optical fiber sensors, and three that amplify the signals of these light receiving diodes. and an A/D that digitizes the signals amplified by these three light receiving amplifiers.
a converter, a CPU for processing the digital signal, and means for detecting the frequency of the three-phase alternating current every cycle;
It consists of means for applying a conversion trigger to the A/D converter in synchronization with the detected period, and samples the optical signal value from the optical fiber sensor read by the CPU without being affected by fluctuations in the three-phase AC frequency. It is characterized by being configured as follows.

また、本発明の第2の発明は、前記3個の光ファイバセ
ンサから検出された3相交流電流値又は電圧値の特定範
囲データより前記CPUにより3相交流周波数の変動を
演算検出し、前記A/D変換器へ変換トリガーをかける
タイミングを演算結果に比例させる事により、CPUで
読み取られる光ファイバセンサからの光信号値を3相交
流周波数の変動の影響を受けずにサンプルするよう構成
したことを特徴とする。
Further, in a second aspect of the present invention, the CPU calculates and detects fluctuations in the three-phase AC frequency from specific range data of three-phase AC current values or voltage values detected from the three optical fiber sensors, and By making the timing at which the conversion trigger is applied to the A/D converter proportional to the calculation result, the optical signal value from the optical fiber sensor read by the CPU is sampled without being affected by fluctuations in the three-phase AC frequency. It is characterized by

さらに、本発明の第3の発明は、前記3個の光ファイバ
センサから検出された3相交流電流値又は電圧値の特定
範囲データより前記CPUにより3相交流周波数の変動
を演算検出し、前記A / D変換器へ変換トリガーを
かけるタイミングを演算結果の増減により、サンプルク
ロックの最小単位分のみ増減させる事により、CPUで
読み取られる光ファイバセンサからの光信号値が3相交
流周波数の変動の影響を受けずにサンプルするよう構成
したことを特徴とする。
Furthermore, the third invention of the present invention is characterized in that the CPU calculates and detects fluctuations in the three-phase AC frequency based on specific range data of three-phase AC current values or voltage values detected from the three optical fiber sensors; By increasing or decreasing the timing at which the conversion trigger is applied to the A/D converter by the minimum unit of the sample clock depending on the increase or decrease of the calculation result, the optical signal value from the optical fiber sensor read by the CPU can be adjusted to the fluctuation of the three-phase AC frequency. It is characterized by being configured so that it can be sampled without being influenced.

作   用 本発明の第1の発明によれば、商用周波数の誤差を含ん
だ周波数で、零相値をCPUはサンプリングするので、
基準周期が商用周波数の誤差のずれを含まないため、零
相電圧が事故検出閾値越えをし、零相電流が事故検出閾
値越えをしない場合も、長期に渡って事故検出を行なう
ことができる。
According to the first aspect of the present invention, since the CPU samples the zero-sequence value at a frequency that includes an error of the commercial frequency,
Since the reference period does not include deviations due to errors in the commercial frequency, faults can be detected over a long period of time even when the zero-sequence voltage exceeds the fault detection threshold but the zero-sequence current does not exceed the fault detection threshold.

本発明の第2の発明によれば、商用周波数の誤差を含ん
だ周波数の検出を、センサからの電圧値又は電流値の変
動で行ない、零相値をCPUはサンプリングするので、
基準周期が商用周波数の誤差のずれを含まないため、零
相電圧が事故検出閾値越えをし、零相電流が事故検出閾
値越えをしない場合も、長期に渡って事故検出を行なう
ことができる。
According to the second aspect of the present invention, the frequency including errors in the commercial frequency is detected by fluctuations in the voltage value or current value from the sensor, and the CPU samples the zero-phase value.
Since the reference period does not include deviations due to errors in the commercial frequency, faults can be detected over a long period of time even when the zero-sequence voltage exceeds the fault detection threshold but the zero-sequence current does not exceed the fault detection threshold.

本発明の第3の発明によれば、商用周波数の誤差を含ん
だ周波数の検出を、センサからの電圧値又は電流値の変
動で行ない、サンプルされたデータの精度にかかわらず
、周波数の誤差のずれを最小限に押さえた周波数で、零
相値をCPUはサンプリングするので、基準周期が商用
周波数の誤差のずれを含まないため、零相電圧が事故検
出閾値越えをし、零相電流が事故検出閾値越えをしない
場合も、長期に渡って事故検出を行なうことができる。
According to the third aspect of the present invention, the frequency including the commercial frequency error is detected by the fluctuation of the voltage value or current value from the sensor, and the frequency error is detected regardless of the accuracy of the sampled data. Since the CPU samples the zero-sequence value at a frequency that minimizes the deviation, the reference period does not include the error deviation of the commercial frequency, so the zero-sequence voltage exceeds the fault detection threshold and the zero-sequence current Even if the detection threshold is not exceeded, accident detection can be performed for a long period of time.

実施例 第1図に本発明の第1実施例における回路ブロック図を
示す。本実施例の光方式零相電流電圧センサ信号処理回
路は、位相が120゜毎にずれた3相交流の各相の電流
又は電圧を検出する3個の光ファイバ1.2.3と、こ
れらの光ファイバセンサ1,2.3へ光を供給する3個
のLED4.5.6と、これらのLED4.5.6を駆
動する3個の駆動アンプ?,8.9と、前記光ファイバ
センサ1.2.3からの光信号を受光する3個の受光ダ
イオード10,11.12と、これらの受光ダイオード
10,11.12の信号を増幅する3個の受光アンプ1
3,14.15と、これらから入力される信号をデイシ
タル化するA/D変換器16と、ディジタル化された信
号値を演算処理するCPU17と、前記3相交流の周波
数の任意の相が零クロスするとトリガーを発生する比較
器18とを備えており、前記比較器l8からの出力をC
PU17へ人力し、CPU17は、この比較器18の出
力パルス毎に前記A/D変換器16へ例えば第8図に示
す様に、12点の変換トノガーをかける。
Embodiment FIG. 1 shows a circuit block diagram in a first embodiment of the present invention. The optical zero-phase current/voltage sensor signal processing circuit of this embodiment includes three optical fibers 1.2.3 that detect the current or voltage of each phase of a three-phase alternating current whose phase is shifted by 120 degrees, and Three LEDs 4.5.6 that supply light to the optical fiber sensors 1 and 2.3, and three drive amplifiers that drive these LEDs 4.5.6? , 8.9, three light receiving diodes 10, 11.12 that receive optical signals from the optical fiber sensor 1.2.3, and three light receiving diodes 10, 11.12 that amplify the signals of these light receiving diodes 10, 11.12. Receiving amplifier 1
3, 14. 15, an A/D converter 16 that digitizes the signals input from these, a CPU 17 that processes the digitized signal values, and an arbitrary phase of the frequency of the three-phase alternating current that is zero. The comparator 18 generates a trigger when crossed, and the output from the comparator l8 is connected to C.
The CPU 17 applies a 12-point conversion trigger to the A/D converter 16 for each output pulse of the comparator 18, as shown in FIG. 8, for example.

本実施例によれば、第8図に示す様に、みかけの零相を
除去し、真の零相を検出するため、基準周期と、検出中
の周期の同位置サンプル点の差を演算する場合、商用周
波数が誤差を含む事による前述同位置サンプル点の差に
含まれる誤差を除去する事ができる。
According to this embodiment, as shown in FIG. 8, in order to remove the apparent zero phase and detect the true zero phase, the difference between the reference period and the sample point at the same position of the period being detected is calculated. In this case, it is possible to remove the error included in the difference between the sample points at the same position due to the commercial frequency including an error.

よって、基準周期と検出中の周期の時間差が大きい場合
も、前述誤差の蓄積がなくなるため、長時間の事故検出
ができる。
Therefore, even if the time difference between the reference period and the period under detection is large, the accumulation of the above-mentioned errors is eliminated, so that accident detection can be carried out over a long period of time.

第2図に本発明の第2実施例における回路ブロック図を
示す。本実施例の光方式零相電流電圧センサ信号処理回
路は、前記第1実施例の中で、比較器18を取り除いた
構成であり、CPU17は人力された電流値又は電圧値
データの変動により、前記3相交流周波数を求め、この
周波数に比例して、例えば第9図に示す様に12点の変
換トリガーを前記A/D変換器16へかける。
FIG. 2 shows a circuit block diagram in a second embodiment of the present invention. The optical zero-phase current/voltage sensor signal processing circuit of this embodiment has a configuration in which the comparator 18 is removed from the first embodiment, and the CPU 17 performs The three-phase AC frequency is determined, and conversion triggers at 12 points are applied to the A/D converter 16 in proportion to this frequency, as shown in FIG. 9, for example.

本実施例によれば、第9図に示す様に、CPU17へ人
力された電流値又は電圧値の3相瞬時和である零相値の
例えば3周期毎の零クロスするデータ値a,,b,,a
4,b4点の傾きより、3周期間の平均周波数を求める
。そして、この周波数に比例して前記A/D変換器■6
へ変換トリガーをかけていく。
According to this embodiment, as shown in FIG. 9, the data values a, b, which cross zero every three cycles of the zero-phase value, which is the instantaneous sum of three phases of current values or voltage values manually inputted to the CPU 17, ,,a
4, b Find the average frequency for three periods from the slope of the four points. Then, in proportion to this frequency, the A/D converter ■6
Apply the conversion trigger to .

この方式により、第1実施例と同様に、基準周期と検出
中の周期の時間差が大きい場合も、前述誤差の蓄積がな
くなるため、長時間の事故検出ができる。
With this method, as in the first embodiment, even if the time difference between the reference period and the period under detection is large, the accumulation of the above-mentioned errors is eliminated, so that accident detection can be carried out over a long period of time.

第3図に本発明の第3実施例における回路ブロック図を
示す。本実施例の光方式零相電流電圧センサ信号処理回
路は、前記第2実施例の中で、A/D変換器16の分解
能が比較的第2実施例に比べ低次のもので構成してあり
、CPU17は、前記第2実施例と同様の方法で3相交
流の平均周波数を求める。そして、この周波数が、第1
0図に示す様に、前3周期間で求められた平均周波数よ
り大きい場合は、CPU17の最小カウントクロツク値
分だけ小さくする。又、平均周波数が小さい場合は、前
記最小カウントクロツク値分だけ大きくする。これらの
判別により決定されたカウントクロツク値により前記A
/D変換器16へ変換トリガーをかける。
FIG. 3 shows a circuit block diagram in a third embodiment of the present invention. The optical zero-phase current/voltage sensor signal processing circuit of this embodiment is constructed by using an A/D converter 16 having a relatively lower resolution than that of the second embodiment. Yes, the CPU 17 calculates the average frequency of the three-phase AC using the same method as in the second embodiment. And this frequency is the first
As shown in FIG. 0, if the average frequency is higher than the average frequency found in the previous three cycles, it is decreased by the minimum count clock value of the CPU 17. If the average frequency is small, it is increased by the minimum count clock value. Based on the count clock value determined by these determinations, the
/A conversion trigger is applied to the D converter 16.

この方式により、比較的低次のA/D変換器16により
求められた周波数を使用して、前記第2実施例と同様に
、基準周期と検出中の周期の時間差が大きい場合も、前
述誤差の蓄積がなくなるため、長時間の事故検出ができ
る。
With this method, the frequency determined by the relatively low-order A/D converter 16 is used, and as in the second embodiment, even when the time difference between the reference period and the period under detection is large, the above-mentioned error is detected. Accidents can be detected over a long period of time.

発明の効果 本発明は上記構成、作用を有するので、零相電圧が事故
検出閾値を越え、零相電流が事故検出閾値を越えない場
合に、長時間に渡って事故検出を行なう事ができる。
Effects of the Invention Since the present invention has the above configuration and operation, it is possible to detect an accident over a long period of time when the zero-sequence voltage exceeds the fault detection threshold and the zero-sequence current does not exceed the fault detection threshold.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す回路ブロック図、第
2図は本発明の第2実施例を示す回路ブロック図、第3
図は本発明の第3実施例を示す回路ブロック図、第4図
は従来例を示す回路ブロック図、第5図は従来例の事故
検出を行なう波形図、第6図は従来例の事故判別概略を
示すフローチャート、第7図は従来例の事故検出を誤判
断する波形図、第8図は本発明の第1実施例による事故
検出を行なう波形図、第9図は本発明の第2実施例によ
る事故検出を行なう波形図、第10図は本発明の第3実
施例による事故検出を行なう波形図である。 1.2.3・・・・・・光ファイバセンサ、4.5.6
・・・・・・LED、7,8.9・・・・・・駆動アン
プ、10.1112・・・・・・受光ダイオード、13
,14.1 5・・・ ・・受光アンプ、 1 6・・・・・・A/D変換器、 第 1 図 1 7・・・・・・CPU、 1 8・・・・・・比較器。
Fig. 1 is a circuit block diagram showing a first embodiment of the present invention, Fig. 2 is a circuit block diagram showing a second embodiment of the invention, and Fig. 3 is a circuit block diagram showing a second embodiment of the present invention.
Fig. 4 is a circuit block diagram showing the third embodiment of the present invention, Fig. 4 is a circuit block diagram showing the conventional example, Fig. 5 is a waveform diagram for detecting an accident in the conventional example, and Fig. 6 is an accident discrimination in the conventional example. A flowchart showing an outline, FIG. 7 is a waveform diagram for misjudging accident detection in the conventional example, FIG. 8 is a waveform diagram for detecting an accident according to the first embodiment of the present invention, and FIG. 9 is a waveform diagram for detecting an accident according to the first embodiment of the present invention. FIG. 10 is a waveform diagram for detecting an accident according to a third embodiment of the present invention. 1.2.3...Optical fiber sensor, 4.5.6
...LED, 7,8.9...Drive amplifier, 10.1112...Light receiving diode, 13
, 14.1 5... Light receiving amplifier, 1 6... A/D converter, 1st Figure 1 7... CPU, 1 8... Comparator .

Claims (3)

【特許請求の範囲】[Claims] (1)位相が120゜毎にずれた3相交流の各相の電流
又は電圧を検出する3個の光ファイバセンサと、これら
の光ファイバセンサへ光を供給する3個のLEDと、こ
れらのLEDを駆動する3個の駆動アンプと、前記3個
の光ファイバセンサからの光信号を受光する3個の受光
ダイオードと、これらの受光ダイオードの信号を増幅す
る3個の受光アンプと、これら3個の受光アンプで増幅
される信号をディジタル化するA/D変換器と、このデ
ィジタル信号を演算処理するCPUと、前記3相交流の
周波数を1周期毎に検出する手段と、検出された周期に
同期して前記A/D変換器へ変換トリガーをかける手段
からなり、CPUで読み取られる光ファイバセンサから
の光信号値を3相交流周波数の変動の影響を受けずにサ
ンプルするように構成したことを特徴とする光方式零相
電流電圧センサ信号処理回路。
(1) Three optical fiber sensors that detect the current or voltage of each phase of three-phase alternating current whose phase is shifted by 120 degrees, three LEDs that supply light to these optical fiber sensors, and Three drive amplifiers that drive the LEDs, three light receiving diodes that receive optical signals from the three optical fiber sensors, three light receiving amplifiers that amplify the signals of these light receiving diodes, and these three. an A/D converter that digitizes the signal amplified by the light-receiving amplifier; a CPU that processes the digital signal; a means for detecting the frequency of the three-phase alternating current every cycle; The device comprises means for applying a conversion trigger to the A/D converter in synchronization with the A/D converter, and is configured to sample the optical signal value from the optical fiber sensor read by the CPU without being affected by fluctuations in the three-phase AC frequency. An optical zero-phase current/voltage sensor signal processing circuit characterized by:
(2)位相が120゜毎にずれた3相交流の各相の電流
又は電圧を検出する3個の光ファイバセンサと、これら
の光ファイバセンサへ光を供給する3個のLEDと、こ
れらのLEDを駆動する3個の駆動アンプと、前記3個
の光ファイバセンサからの光信号を受光する3個の受光
ダイオードと、これらの受光ダイオードの信号を増幅す
る3個の受光アンプと、これら3個の受光アンプで増幅
される信号をディジタル化するA/D変換器と、このデ
ィジタル信号を演算処理するCPUとからなり、前記3
個の光ファイバセンサから検出された3相交流電流値又
は電圧値の特定範囲データより前記CPUにより3相交
流周波数の変動を演算検出し、前記A/D変換器へ変換
トリガーをかけるタイミングを演算結果に比例させる事
により、CPUで読み取られる光ファイバセンサからの
光信号値を3相交流周波数の変動の影響を受けずにサン
プルするように構成したことを特徴とする光方式零相電
流電圧センサ信号処理回路。
(2) Three optical fiber sensors that detect the current or voltage of each phase of three-phase alternating current with a phase shift of 120 degrees, three LEDs that supply light to these optical fiber sensors, and Three drive amplifiers that drive the LEDs, three light receiving diodes that receive optical signals from the three optical fiber sensors, three light receiving amplifiers that amplify the signals of these light receiving diodes, and these three. It consists of an A/D converter that digitizes the signal amplified by the three light-receiving amplifiers, and a CPU that processes this digital signal.
The CPU calculates and detects fluctuations in the three-phase AC frequency from specific range data of the three-phase AC current value or voltage value detected from the optical fiber sensors, and calculates the timing to apply a conversion trigger to the A/D converter. An optical zero-phase current/voltage sensor characterized in that it is configured to sample an optical signal value from an optical fiber sensor read by a CPU without being affected by fluctuations in three-phase AC frequency by making it proportional to the result. signal processing circuit.
(3)位相が120゜毎にずれた3相交流の各相の電流
又は電圧を検出する3個の光ファイバセンサと、これら
の光ファイバセンサへ光を供給する3個のLEDと、こ
れらのLEDを駆動する3個の駆動アンプと、前記3個
の光ファイバセンサからの光信号を受光する3個の受光
ダイオードと、これらの受光ダイオードの信号を増幅す
る3個の受光アンプと、これら3個の受光アンプで増幅
される信号をディジタル化するA/D変換器と、このデ
ィジタル信号を演算処理するCPUとからなり、前記3
個の光ファイバセンサから検出された3相交流電流値又
は電圧値の特定範囲データより前記CPUにより3相交
流周波数の変動を演算検出し、前記A/D変換器へ変換
トリガーをかけるタイミングを演算結果の増減により、
サンプルクロックの最小単位分のみ増減させる事により
、CPUで読み取られる光ファイバセンサからの光信号
値を3相交流周波数の変動の影響を受けずにサンプルす
るように構成したことを特徴とする光方式零相電流電圧
センサ信号処理回路。
(3) Three optical fiber sensors that detect the current or voltage of each phase of three-phase alternating current whose phase is shifted by 120 degrees, three LEDs that supply light to these optical fiber sensors, and Three drive amplifiers that drive the LEDs, three light receiving diodes that receive optical signals from the three optical fiber sensors, three light receiving amplifiers that amplify the signals of these light receiving diodes, and these three. It consists of an A/D converter that digitizes the signal amplified by the three light-receiving amplifiers, and a CPU that processes this digital signal.
The CPU calculates and detects fluctuations in the three-phase AC frequency from specific range data of the three-phase AC current value or voltage value detected from the optical fiber sensors, and calculates the timing to apply a conversion trigger to the A/D converter. Due to the increase or decrease in results,
An optical method characterized in that the optical signal value from the optical fiber sensor read by the CPU is sampled without being affected by fluctuations in the three-phase AC frequency by increasing or decreasing only the minimum unit of the sample clock. Zero-phase current and voltage sensor signal processing circuit.
JP1243798A 1989-09-20 1989-09-20 Optical system zero-phase current / voltage sensor signal processing circuit Expired - Fee Related JP3010642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1243798A JP3010642B2 (en) 1989-09-20 1989-09-20 Optical system zero-phase current / voltage sensor signal processing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1243798A JP3010642B2 (en) 1989-09-20 1989-09-20 Optical system zero-phase current / voltage sensor signal processing circuit

Publications (2)

Publication Number Publication Date
JPH03105261A true JPH03105261A (en) 1991-05-02
JP3010642B2 JP3010642B2 (en) 2000-02-21

Family

ID=17109106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1243798A Expired - Fee Related JP3010642B2 (en) 1989-09-20 1989-09-20 Optical system zero-phase current / voltage sensor signal processing circuit

Country Status (1)

Country Link
JP (1) JP3010642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378462C (en) * 2003-09-09 2008-04-02 武汉大学 Multiphase digital synchronously sampling photoelectric current mutual inductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100378462C (en) * 2003-09-09 2008-04-02 武汉大学 Multiphase digital synchronously sampling photoelectric current mutual inductor

Also Published As

Publication number Publication date
JP3010642B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JPH03105261A (en) Signal processing circuit for optical zero-phase current-voltage sensor
JPH10117484A (en) Ac uninterruptive power circuit normally supplied with commercial power
JP3521072B2 (en) Vehicle speed and vehicle length measurement method for moving objects
JPH0619409B2 (en) DC power transmission system fault location device
JP2000209767A (en) Analog input section monitoring device for digital protective controller
JP2815978B2 (en) Radiation measurement device
KR20150108133A (en) Digital logic signal generating circuit for frequency measurement
KR100459127B1 (en) Apparatus and Method for Sensing Phase Current in a Motor
KR20030002515A (en) Evaluation method and apparatus for a loop detector
SU1467493A2 (en) Device for detecting defects of lengthy metal articles
JP3385602B2 (en) Current detector
JPH04372816A (en) Data processing apparatus
JP2527710Y2 (en) Distance measuring device with spatial filter
SU1117559A1 (en) Eddy-current metal detector
JPS6466569A (en) Method for measuring partial discharge
JP2602595B2 (en) Method for detecting and correcting zero point error of torque sensor
JPH04194620A (en) Detector
JPS60158354A (en) Spatial filter applied speed sensor
SU1624339A1 (en) Device for contactless heavy-duty current measurement
JPH10246738A (en) Frequency change sensor
JP2624977B2 (en) Optical magnetic field measurement method
JPH05209902A (en) Measurement of asymmetric component of ac current
JPH08159898A (en) Pressure sensor
JPH05209903A (en) Measurement of asymmetric component of ac current
JPS5925449B2 (en) Photometric conversion device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees