JPH03105162A - Cryogenic freezer - Google Patents

Cryogenic freezer

Info

Publication number
JPH03105162A
JPH03105162A JP24185989A JP24185989A JPH03105162A JP H03105162 A JPH03105162 A JP H03105162A JP 24185989 A JP24185989 A JP 24185989A JP 24185989 A JP24185989 A JP 24185989A JP H03105162 A JPH03105162 A JP H03105162A
Authority
JP
Japan
Prior art keywords
cold heat
heat accumulation
regenerator
accumulation material
cold storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24185989A
Other languages
Japanese (ja)
Inventor
Makoto Nakajima
良 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24185989A priority Critical patent/JPH03105162A/en
Publication of JPH03105162A publication Critical patent/JPH03105162A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Abstract

PURPOSE:To keep a high freezing capability for a long period of time by a method wherein a cold heat accumulation device has a spring mechanism in its inside for stably holding a cold heat accumulating material. CONSTITUTION:During operation of a freezer, a cold heat accumulation device 10 is moved up and down within a cylinder. Herium gas flows through the cold heat accumulation material 22 in both directions under a pressure difference between a high pressure and a low pressure, resulting in that the cold heat accumulation material 22 is severely oscillated. When the cold heat accumulation material 22 is severely oscillated due to unavoidable non-uniform particle diameter of the cold heat accumulating material 22, small particles enter the large particles and a changing volume of the cold heat accumulation material 22 is decreased. However, since the cold heat accumulation material 22 is always restricted to a lower temperature end by a resilient force of a disc spring 26, a pressor plate 25 and a metallic net 23, the cold heat accumulation material 22 is stably held irrespective of a severe flow of herium gas as well as vibration of the cold heat accumulator 10. Even if the cold heat accumulation material 22 is severely oscillated, the cold heat accumulation material 22 is kept stably, so that it is possible to avoid some disadvantages such as a reduction of freezing capability caused by a frictional heat generation between the particles of the cold heat accumulation material 22, a damage of the cold heat accumulation device 10 caused by an external flow of the cold heat accumulation material 22 and a solidification of relative fixing of the cold heat accumulation material 22.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は,超電導マグネットの冷却やクライオポンプ用
等に広く用いられる極低温冷凍機の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to improvements in cryogenic refrigerators widely used for cooling superconducting magnets, cryopumps, and the like.

(従来の技術) 絶対温度10〜20[ K ]程度の極低温まで冷凍を
行う小型の冷凍機としては.ギフオード・マクマホン(
以下GMと略す)サイクル、逆スターリングサイクル、
ソルベイサイクルなどの原理を利用六 した冷凍機があり、半導体製造装置や磁気供鳴診ットの
冷却や、高真空ポンプであるクライオポンプ用として広
く使用されている。
(Prior art) This is a small refrigerator that freezes to extremely low absolute temperatures of about 10 to 20 [K]. Gift McMahon (
(hereinafter abbreviated as GM) cycle, reverse Stirling cycle,
There are refrigerators that utilize principles such as the Solvay cycle, and are widely used for cooling semiconductor manufacturing equipment and magnetic diagnostic kits, as well as for cryopumps, which are high-vacuum pumps.

一例として、GMサイクルによる極低温冷凍機の基本的
構或を第、3図を用いて説明する。
As an example, the basic structure of a cryogenic refrigerator based on the GM cycle will be explained using FIGS.

圧縮機(1)の吐出側にはガスクーラー■,油分離器■
なとの機器が設けられ,吸気弁■を介してGM式コール
ドヘッド■に配管0で接続される。GM式コールドヘッ
ド■は、シリンダ0,第1段蓄冷器■、第1段ガスシー
ル0、第2段蓄冷器(10)、第2段ガスシール(l1
)、蓄冷器駆動機構(l2)から構成される。第1段蓄
冷器(8)は,第2段蓄冷器(IO)と直列に接続ピン
(13)で接続されており、両者は蓄冷器駆動機構(i
2)によりシリンダ0の上死点、下死点間を一定の周期
で同時に往復動する。
A gas cooler■ and an oil separator■ are installed on the discharge side of the compressor (1).
This machine is equipped with the following equipment and is connected to the GM type cold head (■) via the intake valve (■) with piping 0. GM type cold head ■ has cylinder 0, 1st stage regenerator ■, 1st stage gas seal 0, 2nd stage regenerator (10), 2nd stage gas seal (l1
), and a regenerator drive mechanism (l2). The first stage regenerator (8) is connected in series with the second regenerator (IO) through a connecting pin (13), and both are connected to the regenerator drive mechanism (i).
2) causes the cylinder 0 to reciprocate simultaneously between the top dead center and the bottom dead center at a constant cycle.

第1段,第2段とも蓄冷器■, (10)にはガスシー
ル0, (11)が設けられ,それぞれ蓄冷器(8).
 (10)とシリンダ0間のギャップの冷媒ヘリウムガ
スの流通を防いでおり、冷媒ヘリウムガスは蓄冷器■,
(LO)内におかれる蓄冷材(14), (15)内を
流通する構造となっている。蓄冷材(14), (is
)としては,第1段蓄冷器■では銅合金の金網を積層し
たものが、第2段蓄冷器(10)には鉛の小球を充填し
たものが通常用いられる。GM式コールドヘッド■は圧
縮機■のガス吸入側の間には排気弁(l6)や、サージ
タンク(17)等が設けられ配管0で接続されている。
Gas seals 0 and (11) are provided in both the first and second stage regenerators (8) and (10), respectively.
(10) prevents the flow of refrigerant helium gas in the gap between cylinder 0, and the refrigerant helium gas is transferred to the regenerator ■,
The structure is such that the cold storage materials (14) and (15) that are placed inside the (LO) flow through them. Cold storage material (14), (is
), the first-stage regenerator (2) is usually made of a layered copper alloy wire mesh, and the second-stage regenerator (10) is usually filled with lead pellets. The GM type cold head (2) is equipped with an exhaust valve (16), a surge tank (17), etc. between the gas suction side of the compressor (2), and is connected to the gas intake side of the compressor (2) through a pipe 0.

圧縮機(1)で昇圧昇温した冷媒はガスクーラー■で冷
却され、また冷媒中に混入している油ミスト等の不純物
を油分離器■で除去されて、吸気弁■からGM式コール
ドヘッド■内へ流入する。冷媒としては、極低温でも液
化しないヘリウムガスが一般的に使われる。吸気弁(4
)、排気弁(16)の開閉タイミングと蓄冷器(6),
 (10)のシリンダω内における位置関係は第4図に
示すような関係にある。
The refrigerant that has been pressurized and heated by the compressor (1) is cooled by the gas cooler ■, and impurities such as oil mist mixed in the refrigerant are removed by the oil separator ■, and then passed from the intake valve ■ to the GM type cold head. ■Flow inwards. Helium gas, which does not liquefy even at extremely low temperatures, is commonly used as a refrigerant. Intake valve (4
), the opening/closing timing of the exhaust valve (16) and the regenerator (6),
The positional relationship of (10) within the cylinder ω is as shown in FIG.

すなわち蓄冷器■, (10)が下死点にある時に、吸
気弁(4)が開いてシリンダω上部空間に室温での高圧
のヘリウムガスが流入する。この時排気弁(16)は閉
じたままである.吸気弁■が開いたまま蓄冷器■, (
io)が上死点へ移動し、冷媒ヘリウムガスは寒冷を蓄
えた第工段蓄冷器■の蓄冷材(■4)と熱交換して冷却
されながら第1段膨張室(l8)へ流入し、次に第2段
蓄冷器(10)の蓄冷材(l5)と熱交換してさらに低
温に冷却されて第2段膨張室(19)へと流入する。蓄
冷器(8), (10)が上死点へ達すると同時に吸気
弁■が閉じ、排気弁(16)が開く。すると排気弁(1
6)は低圧である圧縮機(1)の吸入側に接続されてい
るので、ヘリウムガスは断熱膨張して第1段および第2
段の膨張室(18). (19)に寒冷が生じる。そし
て蓄冷器(8), (10)が下死点に到達するまで排
気弁(16)は開いており、第2段膨張室(19)の冷
えたヘリウムガスは第2段蓄冷器(10)の蓄冷材(l
5)と熱交換して寒冷を蓄冷材(l5)に蓄え、冷媒は
温度上昇して第1段膨張室(l8)に流入する。
That is, when the regenerator (10) is at the bottom dead center, the intake valve (4) opens and high pressure helium gas at room temperature flows into the space above the cylinder ω. At this time, the exhaust valve (16) remains closed. While the intake valve ■ is open, the regenerator ■, (
io) moves to the top dead center, the refrigerant helium gas exchanges heat with the cold storage material (■4) of the first stage regenerator (■4) that stores cold, and flows into the first stage expansion chamber (18) while being cooled. Next, it exchanges heat with the regenerator material (15) of the second stage regenerator (10), is further cooled to a low temperature, and flows into the second stage expansion chamber (19). At the same time as the regenerators (8) and (10) reach top dead center, the intake valve (■) closes and the exhaust valve (16) opens. Then the exhaust valve (1
6) is connected to the suction side of the compressor (1), which has low pressure, so the helium gas expands adiabatically and flows into the first and second stages.
Stage expansion chamber (18). Cold occurs in (19). The exhaust valve (16) is open until the regenerators (8) and (10) reach the bottom dead center, and the cooled helium gas in the second stage expansion chamber (19) is transferred to the second stage regenerator (10). cold storage material (l
5), the cold is stored in the cold storage material (l5), the temperature of the refrigerant rises, and it flows into the first stage expansion chamber (l8).

同じように第1段蓄冷器(8)の蓄冷材(14)とヘリ
ウムガスは熱交換して、室温まで温度上昇し、排気弁(
16)を通ってGM式コールドヘッド■外へ流出し、圧
縮機(1)の吸入側へ戻ってゆく。以上のサイクルを繰
り返して第l段および第2段の膨張室(18), (1
9)が極低温に冷却される。第1段膨張室(18)はお
よそ80[K]の液体窒素温度レベルの冷却を行い,第
2段膨張室(19)は20[K]以下の冷却を行うのが
、クライオポンプや超電導マグネットの冷却に用いられ
る場合の通常の極低温冷凍機の使用法である. GMサイクル、逆スターリングサイクルやソルベイサイ
クルなどの冷凍サイクルは総称して蓄冷式サイクル(R
egenerative Cycles)と呼ばれるこ
とから明らかなように,冷媒の冷熱を蓄冷する蓄冷器が
非常に重要な役割を果している。蓄冷器に充填される蓄
冷材としては次の3つの性質が必要である。すなわち、
(a)使用される温度レベルにおいて,単位体積あたり
の熱容量が高いこと。
Similarly, the regenerator material (14) of the first stage regenerator (8) and helium gas exchange heat, and the temperature rises to room temperature, and the exhaust valve (
16), flows out of the GM type cold head ■, and returns to the suction side of the compressor (1). By repeating the above cycle, the first stage and second stage expansion chambers (18), (1
9) is cooled to a cryogenic temperature. The first stage expansion chamber (18) performs cooling to a liquid nitrogen temperature level of approximately 80 [K], and the second stage expansion chamber (19) performs cooling to a temperature of 20 [K] or less for cryopumps and superconducting magnets. This is the normal usage of cryogenic refrigerators when used for cooling. Refrigeration cycles such as the GM cycle, reverse Stirling cycle, and Solvay cycle are collectively called regenerative cycles (R
As is clear from the fact that they are called generative cycles, regenerators that store the cold heat of refrigerants play a very important role. The following three properties are required for the cold storage material to be filled into the cold storage device. That is,
(a) High heat capacity per unit volume at the temperature level used.

(b)冷媒ガスとの熱交換効率が高く、かつガスの通風
抵抗が小さいこと。(c)蓄冷材の両端には大きな温度
差がつくので熱伝導率が小さいこと。
(b) High heat exchange efficiency with refrigerant gas and low gas ventilation resistance. (c) There is a large temperature difference between both ends of the cold storage material, so the thermal conductivity is low.

(a)は、蓄冷器が蓄熱式の熱交換器として作用するの
で、冷媒ガスよりもはるかに大きな熱容量を持つことが
必要なためである。通常の金属材料は一般に温度ととも
に比熱が小さくなるために、使用温度レベルで大きな比
熱を有する材料を用いなければならない。そこで一般的
には第l段に銅または黄銅,リン青銅などの銅合金がよ
く用いられる。第2段は極低温領域で用いられるために
、室温では銅合金よりも比熱の小さい鉛が用いられる。
(a) is because the regenerator acts as a regenerative heat exchanger and therefore needs to have a much larger heat capacity than the refrigerant gas. Since the specific heat of ordinary metal materials generally decreases with temperature, it is necessary to use a material that has a large specific heat at the operating temperature level. Therefore, copper or a copper alloy such as brass or phosphor bronze is generally used for the first stage. Since the second stage is used in an extremely low temperature region, lead is used, which has a lower specific heat than copper alloy at room temperature.

また近年、極低温領域で釦よりもさらに比熱の大きい希
土類金属が開発され、このような材料も用いられつつあ
る。
In addition, in recent years, rare earth metals have been developed that have a higher specific heat than buttons in the cryogenic region, and such materials are also being used.

(b)は,お互いに相反する条件であるが、蓄冷式の熱
交換器において常に考慮されなければならない条件であ
る。蓄冷材の材質による製作上の容易さなどから,第1
段では金網状の蓄冷材を多量に積層する構造がとられ、
第2段は小球状の蓄冷材を充填する構造をとるのが一般
的である。そして、このような構造とすることで(c)
項の見かけ上の低熱伝導率化をはかっており、極低温部
へ侵入する熱を低減し,冷凍能力の向上をはかっている
Although (b) is a mutually contradictory condition, it is a condition that must always be taken into consideration in a regenerator type heat exchanger. The first method was selected due to the ease of manufacturing due to the material of the cold storage material.
The stage has a structure in which a large amount of wire mesh cold storage material is laminated,
The second stage is generally filled with small spherical regenerator material. With this structure, (c)
This is intended to reduce the apparent thermal conductivity of the cryocooler, reduce the amount of heat that enters the cryogenic area, and improve the refrigeration capacity.

第2段蓄冷器の構造について,第5図を用いてより詳細
に説明する9円筒状の蓄冷器(10)の容器の一端にガ
ス流通用の孔(20)が設けられている.反対側の端部
にはやはりガス流通用の孔(21)が設けられており、
蓄冷器内部には釦の小球(22)が密に充填されている
。小球(22)の直径はおよそ0,1〜0.2mm位の
、均一な粒径の鉛が用いられる。そしてガス流通孔(2
0), (21)から小球(22)が外部へもれ出さな
いように、小球(22)の直径よりも細かな金網(23
) (たとえば200メッシュの銅合金製の金網)が両
端部に配置されている。
The structure of the second stage regenerator will be explained in more detail with reference to FIG. 5.9 A hole (20) for gas circulation is provided at one end of the container of the cylindrical regenerator (10). The opposite end is also provided with a hole (21) for gas flow.
The inside of the regenerator is densely filled with button balls (22). The diameter of the small balls (22) is approximately 0.1 to 0.2 mm, and lead is used with a uniform particle size. and gas flow holes (2
In order to prevent the small balls (22) from leaking out from the small balls (22), wire mesh (23) that is finer than the diameter of the small balls (22) is used.
) (e.g. 200 mesh copper alloy wire gauze) are placed at both ends.

(以上参考文献: G.Walker著“Cryoco
olers”,Plenum Press (1983
)など)(発明が解決しようとする課題) このような蓄冷器の製作にあたっては、第5図に示した
蓄冷器(10)の一端部をフタ(24)にして、まず金
網(23)を落し込み、続いて鉛の小球(22)を流し
込んで充填して、さらに金網(23)を敷いてからフタ
(24)を蓄冷器(10)に接着するなどして組み立て
るのが一般的である.蓄冷材である金属の小球をつくる
方法としては、溶かした金属を油中に落として沈降させ
つつ凝固させる方法などがあるが、鉛のように融点の低
い金属の場合は比較的真球に近い粒が容易に製造できる
。この粒をふるいにかけて均一な粒径の小球を集めて蓄
冷材とするわけである,しかし、O.lmm位の小球に
おいては、ふるいにかけてよりわけるといっても非常に
細かいメッシュのふるいを何段階にもわけて用いなけれ
ばならず、製造に関する手間が大変であるとか、歩留ま
りが悪いなどのコスト的制限から必ずしも均一な粒径の
小題を入手することが難しい。例えば0.1mm”0.
2a+wといった範囲の鉛粒を蓄冷材として使用するこ
とになる。
(References above: “Cryoco” by G. Walker
olers”, Plenum Press (1983
), etc.) (Problems to be Solved by the Invention) When manufacturing such a regenerator, one end of the regenerator (10) shown in FIG. It is common to assemble the regenerator by pouring it in, then filling it with small lead balls (22), then laying a wire mesh (23), and then gluing the lid (24) to the regenerator (10). be. Methods for making small metal balls that serve as cold storage materials include dropping molten metal into oil and allowing it to settle and solidify, but metals with low melting points, such as lead, cannot be made into relatively perfect spheres. Similar grains can be easily produced. These particles are sieved to collect small balls of uniform particle size and used as a cold storage material.However, O. Even if small spheres of about 1 mm size can be separated by sieving, very fine mesh sieves must be used in several stages, which increases the cost of manufacturing and reduces yield. Due to physical limitations, it is difficult to obtain particles of uniform particle size. For example, 0.1mm"0.
Lead particles in the range of 2a+w will be used as the cold storage material.

ところで、先の極低温冷凍機の作用を説明するときに述
べたように、冷凍機の運転中、蓄冷器はシリンダ内を上
下に移動し、かつ高圧、低圧の圧力差によってヘリウム
ガスが蓄冷材内を双方向に流通するために、蓄冷材は激
しく揺さぶられることになる。もしも蓄冷材が完全な真
球で,かつ直径がまったく同一であり、蓄冷器の中に最
密充填されているならば、どんなに激しくガスが流通し
、蓄冷器が揺さぶられたとしても蓄冷材は強固に固定さ
れているのでなんら問題は生じない。しかし現実にはさ
きに述べたように、完全に球径の一様な蓄冷材をつくる
のは不可能であり、長時間揺さぶられている間には、大
きい粒の間に小さい粒が入り込むなどして,しだいに蓄
冷器内部に空間が生じてゆき,そうなるとさらに加速的
に蓄冷材が揺さぶられるようになってしまう。その結果
、粒子間の摩擦発熱による損失で冷凍能力が著しく減少
してしまうという問題がある。また、長期間揺さぶられ
るうちに流出防止用の金網には損傷を加えて蓄冷器外に
蓄冷材が流出する事故が生じる虞れがある。この場合は
、蓄冷器とシリンダの間に異物が混入することになるの
で、かじりによる蓄冷器駆動機構の損傷など、極低温冷
棟機の致命的損傷を引き起こしてしまう。また、鉛は柔
らかい金属なので激しく揺さぶられて衝突を繰り返して
いるうちに蓄冷器内部に互いにくっついて固まってしま
い、ガスの流通を阻害し、かつ見かけ上の熱伝導率が著
しく増大することによって蓄冷材としての機能を果たさ
なくなる事故も生じる可能性がある. 最近鉛にかわる高性能蓄冷材として希土類金属を蓄冷材
に用いる試みがなされている。この材料を蓄冷材として
用いた場合でも、一般に希土類の金属間化合物は硬く、
真球の製作が難しいために鉛の場合とほぼ同様に上記の
問題が生じてしまう。
By the way, as mentioned earlier when explaining the operation of a cryogenic refrigerator, while the refrigerator is operating, the regenerator moves up and down inside the cylinder, and due to the pressure difference between high and low pressure, helium gas is absorbed into the regenerator material. As it circulates in both directions, the cold storage material is shaken violently. If the regenerator material is a perfect sphere, has exactly the same diameter, and is packed close-packed inside the regenerator, no matter how violently the gas flows and the regenerator is shaken, the regenerator material will remain intact. Since it is firmly fixed, no problems will occur. However, in reality, as mentioned earlier, it is impossible to make a regenerator material with a completely uniform spherical diameter, and during long periods of shaking, small particles may get stuck between the large particles. As a result, a space gradually forms inside the regenerator, which causes the regenerator material to shake even more rapidly. As a result, there is a problem in that the refrigerating capacity is significantly reduced due to loss due to frictional heat generation between particles. In addition, after being shaken for a long period of time, there is a risk that the wire mesh for preventing leakage may be damaged and an accident may occur where the cold storage material leaks out of the cold storage device. In this case, foreign matter will get mixed in between the regenerator and the cylinder, resulting in fatal damage to the cryogenic refrigeration unit, such as damage to the regenerator drive mechanism due to galling. In addition, since lead is a soft metal, as it is violently shaken and repeatedly collided with each other, it sticks to each other inside the regenerator and solidifies, obstructing gas flow and significantly increasing the apparent thermal conductivity. Accidents may also occur where the material no longer functions as a material. Recently, attempts have been made to use rare earth metals as high-performance cold storage materials in place of lead. Even when this material is used as a cold storage material, rare earth intermetallic compounds are generally hard;
Because it is difficult to manufacture a perfect sphere, the above-mentioned problems arise, almost the same as in the case of lead.

これらの点に鑑み、本発明の極低温冷凍機は、蓄冷材の
粒径が多少不均一であったとしても長期間にわたって安
定に蓄冷材を保持することができる蓄冷器を備えた長期
にわたって高い冷凍能力を維持することができ、信頼性
の優れた極低温冷凍機を提供することを目的とする。
In view of these points, the cryogenic refrigerator of the present invention is equipped with a regenerator that can stably hold a regenerator material for a long period of time even if the particle size of the regenerator material is somewhat uneven. The purpose of the present invention is to provide a highly reliable cryogenic refrigerator that can maintain its refrigerating capacity.

〔発明の構或〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために,本発明の極低温冷凍機は、
蓄冷材を保持するバネ機構を有する蓄冷器を備えたこと
を特徴とした構成とする。
(Means for Solving the Problems) In order to achieve the above object, the cryogenic refrigerator of the present invention has the following features:
The present invention is characterized in that it includes a regenerator having a spring mechanism that holds a regenerator material.

(作用) 本発明の極低温冷凍機においては、蓄冷器内の蓄冷材の
粒径が多少不均一あるいは真球でないために長期間揺さ
ぶられているうちに充填容積が減少したとしても、バネ
機構によって蓄冷材は押さえつけられ、安定に保持され
るために、蓄冷材粒子同士のこすれあいによる摩擦熱の
発生などが生じず.高い冷凍能力を維持することができ
る。
(Function) In the cryogenic refrigerator of the present invention, even if the filling volume decreases during long-term shaking because the particle size of the regenerator material in the regenerator is somewhat uneven or not a perfect sphere, the spring mechanism Because the cold storage material is pressed down and held stably, there is no generation of frictional heat due to friction between the cold storage material particles. Able to maintain high refrigeration capacity.

また、バネ機構で安定に保持されることによって、蓄冷
材が蓄冷器外部に流出するとか、蓄冷材の小球どうしが
互いにくっついて固まってしまう等の事故を防ぐことが
でき、長期信頼性の高い冷凍機を提供することができる
In addition, by being held stably by the spring mechanism, it is possible to prevent accidents such as the cold storage material leaking out of the cold storage device or small balls of the cold storage material sticking to each other and solidifying, thereby improving long-term reliability. We can provide high-quality refrigerators.

(実施例) 第1図は本発明の一実施例を示す。蓄冷器(10)の容
器の高温端側にはガス流通孔(20)をもつフタ(24
)があり、その内側に蓄冷材である小球(22)が密に
密に充填されている。フタ(24)と蓄冷材(22)の
間には蓄冷材流出防止用の金網(23)と多孔質材の押
え板(25)を介して皿バネ(26)が配設されている
。蓄冷材(22)は皿バネ(26)の弾性力によって蓄
冷器(10)の低温端側に押しつけられる.蓄冷器(l
O)の低温端側には蓄冷材流出防止用の金網(23)と
、ガス流通孔(21)が設けられており、これは従来装
置と同様の構造である。
(Example) FIG. 1 shows an example of the present invention. A lid (24) with gas flow holes (20) is provided on the high temperature end side of the container of the regenerator (10).
), and small balls (22), which are cold storage materials, are densely packed inside. A disc spring (26) is disposed between the lid (24) and the cold storage material (22) via a wire mesh (23) for preventing the cold storage material from flowing out and a holding plate (25) made of porous material. The regenerator material (22) is pressed against the low temperature end side of the regenerator (10) by the elastic force of the disc spring (26). Cool storage device (l
A wire mesh (23) for preventing cold storage material from flowing out and gas flow holes (21) are provided on the low-temperature end side of O), which has the same structure as the conventional device.

次に本実施例の作用について述べる。Next, the operation of this embodiment will be described.

冷凍機の運転中、蓄冷器(10)はシリンダ内を上下に
移動し、かつ高圧、低圧の圧力差によってヘリウムガス
が蓄冷材(22)を双方向に流通するために、蓄冷材(
22)は激しく揺さぶられる。不可避的な蓄冷材(22
)粒径の不均一によって、長時間揺さぶられている間に
は、大きい粒の間に小さい粒が入り込むなどして、しだ
いに蓄冷材(22)の充填容積が減少してゆく。しかし
、皿バネ(26)の弾性力と押え板(25) .金網(
23)によって蓄冷材(22)は常に低温端側におさえ
つけられているので、蓄冷器(10)の振動やヘリウム
ガスの激しい流出にもかかわらず蓄冷材(22)は安定
に保持される。
During operation of the refrigerator, the regenerator (10) moves up and down within the cylinder, and the helium gas flows in both directions through the regenerator (22) due to the pressure difference between high and low pressures.
22) is shaken violently. Unavoidable cold storage material (22
) Due to the non-uniformity of the particle size, while being shaken for a long time, small particles get stuck between the large particles, and the filling volume of the regenerator material (22) gradually decreases. However, the elastic force of the disc spring (26) and the presser plate (25). Wire mesh (
23), the regenerator material (22) is always held at the low temperature end side, so the regenerator material (22) is stably held despite vibrations of the regenerator (10) and violent outflow of helium gas.

このように、蓄冷材(22)が激しく揺さぶられても,
本実施例によれば安定に蓄冷材(22)が保持される構
造となっているので、蓄冷材(22)粒子間の摩擦発熱
にともなう冷凍能力の低下や、蓄冷材(22)の蓄冷器
(10)外流出による損傷、蓄冷材(22)が相互にく
っついて固化するなどの不具合を回避することができる
In this way, even if the cold storage material (22) is shaken violently,
According to this embodiment, since the structure is such that the cold storage material (22) is stably held, the refrigerating capacity decreases due to frictional heat generation between the cold storage material (22) particles, and the cold storage material (22) (10) It is possible to avoid problems such as damage caused by leakage and the cold storage materials (22) sticking together and solidifying.

第2図に本発明の他の実施例を示す。バネ機構として皿
バネのかわりに渦巻バネ(27〉を用いている。この場
合も上記実施例と、同様の作用、効果を得ることができ
る.バネ機構としては以上のほかにもコイルバネや、板
バネなどを用いることも可能である。
FIG. 2 shows another embodiment of the invention. As a spring mechanism, a spiral spring (27) is used instead of a disc spring. In this case as well, the same action and effect as in the above embodiment can be obtained. In addition to the above, coil springs and plate springs can also be used as spring mechanisms. It is also possible to use a spring or the like.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明に係る極低温冷凍機においては
、蓄冷材粒径の不可避的な不均一性,あるいは完全な球
状でないために生じる蓄冷材の充填容積減少に対して、
バネ機構によって蓄冷材は蓄冷器内に安定に保持され、
長期にわたって高い冷凍能力を維持することができ、信
頼性の優れた極低温冷凍機を提供することができる。
As described above, in the cryogenic refrigerator according to the present invention, the reduction in the filling volume of the cold storage material caused by the unavoidable non-uniformity of the particle size of the cold storage material or the non-perfect spherical shape,
The spring mechanism holds the regenerator material stably inside the regenerator,
It is possible to provide a highly reliable cryogenic refrigerator that can maintain high refrigerating capacity over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る極低温冷凍機の蓄冷器
の構或を示す図、第2図は本発明の他の実施例の極低温
冷凍機の蓄冷器構戊を示す図,第3図はGMサイクルに
よる極低温冷凍機の構或図、第4図は第3図に示す装置
の作用を示す図、第5図は従来装置の蓄冷器の構或図で
ある。 1・・・圧縮機      2・・・ガスクーラー3・
・・油分離器     4・・・吸気弁5・・・GM式
コールドヘッド
FIG. 1 is a diagram showing a regenerator structure of a cryogenic refrigerator according to an embodiment of the present invention, and FIG. 2 is a diagram showing a regenerator structure of a cryogenic refrigerator according to another embodiment of the present invention. , FIG. 3 is a diagram showing the structure of a cryogenic refrigerator using the GM cycle, FIG. 4 is a diagram showing the operation of the device shown in FIG. 3, and FIG. 5 is a diagram showing the structure of a regenerator of a conventional device. 1... Compressor 2... Gas cooler 3.
・・Oil separator 4・Intake valve 5・GM type cold head

Claims (1)

【特許請求の範囲】[Claims] 極低温を達成する手段として蓄冷材を充填した蓄冷器を
備えた極低温冷凍機において、前記蓄冷器は内部に充填
される蓄冷材を安定保持するバネ機構を有することを特
徴とする極低温冷凍機。
A cryogenic refrigerator equipped with a regenerator filled with a regenerator as a means for achieving an extremely low temperature, characterized in that the regenerator has a spring mechanism that stably holds the regenerator filled inside. Machine.
JP24185989A 1989-09-20 1989-09-20 Cryogenic freezer Pending JPH03105162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24185989A JPH03105162A (en) 1989-09-20 1989-09-20 Cryogenic freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24185989A JPH03105162A (en) 1989-09-20 1989-09-20 Cryogenic freezer

Publications (1)

Publication Number Publication Date
JPH03105162A true JPH03105162A (en) 1991-05-01

Family

ID=17080578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24185989A Pending JPH03105162A (en) 1989-09-20 1989-09-20 Cryogenic freezer

Country Status (1)

Country Link
JP (1) JPH03105162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128252A (en) * 2012-10-22 2018-08-16 株式会社東芝 Manufacturing method of cold head, manufacturing method of superconducting magnet, manufacturing method of examination apparatus, and manufacturing method of cryopump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018128252A (en) * 2012-10-22 2018-08-16 株式会社東芝 Manufacturing method of cold head, manufacturing method of superconducting magnet, manufacturing method of examination apparatus, and manufacturing method of cryopump

Similar Documents

Publication Publication Date Title
US7594406B2 (en) Regenerator and cryogenics pump
JP5889743B2 (en) Regenerative refrigerator
JP2009133620A (en) Superconductive mri system and cryopump
JPH03105162A (en) Cryogenic freezer
JPH03208378A (en) Cryorefrigerator
JP3417654B2 (en) Cryogenic refrigerator
JP2941575B2 (en) Cryogenic refrigerator and operating method thereof
KR100785745B1 (en) Coolness storage unit and cryopump
JP3648265B2 (en) Superconducting magnet device
JPH0452468A (en) Cryogenic refrigerator
JP2008215783A (en) Cryogenic refrigerating machine and cryogenic refrigerating method
JPH03274359A (en) Cryogenic refrigerating machine
JP2723342B2 (en) Cryogenic refrigerator
JP2563272Y2 (en) Low temperature regenerator
JPH0399162A (en) Cryogenic refrigerator
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
JPH02309159A (en) Manufacture of cold accumulation material and ultra-low temperature refrigerator
JP2845724B2 (en) Regenerator for cryogenic refrigerator
JPH11257771A (en) Cold storage refrigerator
JPH11257769A (en) Cold storage refrigerating machine
JP2006008999A (en) Method for producing regenerator material for extremely low temperatures and method for producing regenerator for extremely low temperatures
JPH03129257A (en) Extremely low-temperature freezer
JP2885529B2 (en) Cryogenic refrigerator
JP2549861Y2 (en) Regenerator for cryogenic refrigerator
JPH0668417B2 (en) Cryogenic refrigerator