JPH02309159A - Manufacture of cold accumulation material and ultra-low temperature refrigerator - Google Patents

Manufacture of cold accumulation material and ultra-low temperature refrigerator

Info

Publication number
JPH02309159A
JPH02309159A JP12777289A JP12777289A JPH02309159A JP H02309159 A JPH02309159 A JP H02309159A JP 12777289 A JP12777289 A JP 12777289A JP 12777289 A JP12777289 A JP 12777289A JP H02309159 A JPH02309159 A JP H02309159A
Authority
JP
Japan
Prior art keywords
magnetic
regenerator
refrigerator
magnetic material
cold heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12777289A
Other languages
Japanese (ja)
Other versions
JPH0668418B2 (en
Inventor
Toru Kuriyama
透 栗山
Yoichi Tokai
陽一 東海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1127772A priority Critical patent/JPH0668418B2/en
Priority to EP19900305632 priority patent/EP0399813B1/en
Priority to DE1990603738 priority patent/DE69003738T2/en
Publication of JPH02309159A publication Critical patent/JPH02309159A/en
Priority to US07/776,885 priority patent/US5224657A/en
Publication of JPH0668418B2 publication Critical patent/JPH0668418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To prevent cold heat accumulation material of magnetic material from generating any fine powders by a method wherein after the cold heat accumulation material of the magnetic material is formed into a predetermined size by crushing the magnetic material, corners of the material are removed after mixing. CONSTITUTION:After melting operation, cold heat accumulation material 24 of magnetic material is crushed and selected to a proper size (100 to 500mum) by a sieve or the like so as to form fine magnetic particles. The magnetic particles under this state have several find projections of which angle is less than 30 deg. ranging from several tens mum to several mum. Then, the projection corners 41a placed at the surface of the cold heat material 24 of magnetic material are removed by a mixing operation after crushing of the magnetic material. Accordingly, if the cold heat accumulation material 24 of magnetic material is applied, the projections are prevented from being crushed. With such an arrangement as above, it is possible to prevent the find powder form being generated from the cold heat accumulation material 24 of the magnetic material during an operation of a refrigerator, from adhering the seal, reducing a refrigerating performance, scratching a valve and damaging a compressor.

Description

【発明の詳細な説明】 [発明の目的コ 〈産業上の利用分野) 本発明は極低温冷凍機に係り、特に、蓄冷式冷凍機に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention (Field of Industrial Application)] The present invention relates to a cryogenic refrigerator, and particularly to a regenerator refrigerator.

(従来の技術) 極低温冷凍機のうち、蓄冷器を有する蓄冷式冷凍機には
ギフオード・マクマホン(GM)冷凍機、スターリング
冷凍機等の種々のタイプがあるが、これらの中で、GM
冷凍機の構成を第3図に承 リ 。
(Prior Art) Among cryogenic refrigerators, there are various types of regenerator refrigerators with regenerators, such as Gifford-McMahon (GM) refrigerators and Stirling refrigerators.
The configuration of the refrigerator is shown in Figure 3.

叩ら、このGM冷凍機は大きく分けてコールドヘッド1
と冷媒ガス導排出系2とで構成されている。コールドへ
′ラド1は閉じられたシリンダ11とこのシリンダ内に
往復動自在に収容されたディスプレーサ12とシリンダ
11に通じる部屋内に配置されて上記ディスプレーサ1
2に往復動に必要な動力を与える[−夕13とで構成さ
れている。
This GM refrigerator can be broadly divided into cold head 1.
and a refrigerant gas introduction and discharge system 2. To the Cold Rad 1 includes a closed cylinder 11, a displacer 12 housed in the cylinder so as to be able to reciprocate, and a displacer 1 disposed in a room communicating with the cylinder 11.
2 provides the necessary power for reciprocating motion.

シリンダ11は大径の第1シリンダ14とこの第1シリ
ンダ14に同軸的に接続された小径の第2シリンダ15
とで構成されている。そして、第1シリンダ14と第2
シリンダ15との境界檗部分で冷却面としての1段ステ
ージ16を構成し、またシリンダ15の先端壁部分で1
段ステージ16より低温の2段ステージ17を構成して
いる。
The cylinder 11 includes a large-diameter first cylinder 14 and a small-diameter second cylinder 15 coaxially connected to the first cylinder 14.
It is made up of. Then, the first cylinder 14 and the second cylinder
A first stage 16 is formed as a cooling surface at the boundary part with the cylinder 15, and a first stage 16 is formed at the tip wall part of the cylinder 15.
A second stage 17 having a lower temperature than the second stage 16 is configured.

ディスプレーサ12は、第1シリンダ14内を往復動す
る第1デイスプレーサ18と第2シリンダ15内を往復
動する第2デイスプレーサ19で構成されている。第1
デイスプレーサ18と第2デイスプレーサ19とは、連
結部材20によって軸方向に連結されている。第1デイ
スプレーサ18の内側には、軸方向に延びる流体通路2
1が形成されて第1蓄冷器35を構成しており、第1蓄
冷器35内には銅メツシユ等で形成された蓄冷材22が
収容されている。同様に、第2デイスプレーサ19の内
側にも軸方向に延びる流体通路23が形成されており、
第2蓄冷器36を構成している。
The displacer 12 includes a first displacer 18 that reciprocates within the first cylinder 14 and a second displacer 19 that reciprocates within the second cylinder 15. 1st
The displacer 18 and the second displacer 19 are connected in the axial direction by a connecting member 20. Inside the first displacer 18, a fluid passage 2 extending in the axial direction is provided.
1 is formed to constitute a first regenerator 35, and a regenerator material 22 formed of copper mesh or the like is accommodated in the first regenerator 35. Similarly, a fluid passage 23 extending in the axial direction is formed inside the second displacer 19.
A second regenerator 36 is configured.

第2蓄冷器36内には鉛等の球等で構成された蓄冷材2
4が収容されている。第1デイスプレーサ18の外周面
と第1シリンダ14の内周面との間および第2′i′イ
スプレーサ19の外周面と第2シリンダ15の内周面と
の間には、それぞれシール1描25.26が装着されて
いる。
Inside the second regenerator 36, there is a regenerator material 2 made of balls such as lead.
4 is accommodated. A seal 1 is provided between the outer circumferential surface of the first displacer 18 and the inner circumferential surface of the first cylinder 14 and between the outer circumferential surface of the second 'i' displacer 19 and the inner circumferential surface of the second cylinder 15, respectively. Pictures 25 and 26 are installed.

第1デイスプレーυ18の図中上端は、連結ロッド27
、スコッチョークあるいはクランク軸28を介し°てモ
ータ13の回転軸に連結されている。
The upper end of the first display υ18 in the figure is connected to the connecting rod 27.
, is connected to the rotating shaft of the motor 13 via a Scotch choke or crankshaft 28.

従って、モータ13の回転軸が回転するとこの回転に同
期してディスプレーサ12が図中実線矢印29で示すよ
うに往復動する。
Therefore, when the rotating shaft of the motor 13 rotates, the displacer 12 reciprocates in synchronization with this rotation as shown by the solid line arrow 29 in the figure.

第1シリンダ14の側壁上部には冷媒ガスの導入口30
と排出口31とが設けてあり、これら導入口30と排出
口31は冷媒ガス導排出系2に接続されている。冷媒ガ
ス導排出系2は、シリンダ11を経由したヘリウムガス
循環系を構成するもので、排出口31を低圧弁32、コ
ンプレッサ33、高圧弁34を介して導入口30に接続
したものとなっている。即ち、この冷媒ガス導排出系2
は、低圧(約6atm)ヘリウムガスをコンプレッサ3
3で高圧(約18atm>に圧縮してシリンダ11内に
送りこむものである。そして、低圧弁32、高圧弁34
の開閉はディスプレ−サ12の往復動との関連において
後)ホする関係に制御される。
A refrigerant gas inlet 30 is provided at the upper side wall of the first cylinder 14.
and a discharge port 31 are provided, and these inlet port 30 and discharge port 31 are connected to the refrigerant gas introduction and discharge system 2. The refrigerant gas introduction and discharge system 2 constitutes a helium gas circulation system via the cylinder 11, and has a discharge port 31 connected to an inlet port 30 via a low pressure valve 32, a compressor 33, and a high pressure valve 34. There is. That is, this refrigerant gas introduction and discharge system 2
The compressor 3 supplies low pressure (approximately 6 atm) helium gas to the compressor 3.
3, it is compressed to high pressure (approximately 18 atm>) and sent into the cylinder 11. Then, a low pressure valve 32, a high pressure valve 34
The opening and closing of the displacer 12 is controlled in the following relationship with respect to the reciprocating movement of the displacer 12.

この様に構成された冷凍機の動作を簡単に説明すると以
下の通りである。この冷凍機では寒冷の発生ザる部分、
つまり冷却面に供される部分は第1ステージ16と第2
ステージ17とである。こ′ れらは熱負荷のない場合
にそれぞれ30にと8に程度まで冷える。このため、第
1蓄冷器35の上下端間には常m (300K>から3
0Kまでの温度勾配がつき、また第2蓄冷器36の図中
上下端間には30Kから8KまでのmlU勾配がつく。
A brief explanation of the operation of the refrigerator configured as described above is as follows. In this refrigerator, the part that generates cold,
In other words, the portions serving as cooling surfaces are the first stage 16 and the second stage 16.
This is stage 17. These cool down to about 30° and 8°, respectively, when there is no heat load. Therefore, there is always m (300K> to 3 m) between the upper and lower ends of the first regenerator 35.
A temperature gradient is created from 0K to 0K, and a mlU gradient from 30K to 8K is created between the upper and lower ends of the second regenerator 36 in the figure.

ただし、この温度は各段の熱負荷によって変化し、通常
第1ステージ16では30〜80K、2段ステージ17
では8〜20にの間となる。
However, this temperature changes depending on the heat load of each stage, and is usually 30 to 80K for the first stage 16, and 30 to 80K for the second stage 17.
It will be between 8 and 20.

モータ13が回転を開始すると、ディスプレーサ12は
上死点と下死点の間を往復動ケる。ディスプレーυ12
が下死点にあるとき、高圧弁34が開いて高圧のヘリウ
ムガスがコールドヘッド1内に流入する。次に、ディス
プレー勺12が一ヒ死点へと移動ケる。前述の如く、第
1デイスプレーサ18の外周面と第1シリンダ14の内
周面との問および第2デイスプレーサ19の外周面と第
2シリンダ15の内周面との間にはそれぞれシール礪横
25.26が装着されている。このため、ディスプレー
サ12が上死点へと向かうと、高圧のへり「クムガスは
第1デイスプレーサ18に形成された流体通路21およ
び第2デイスプレーサ19に流体通路23を通って、第
1デイスプレーサ18と第2デイスプレーサ19との間
に形成された1段膨張室39および第2デイスプレーサ
1つと第2シリンダ15の先端壁との間に形成された2
段膨張室40へと流れる。この流れに伴って、高Itの
ヘリウムガスは蓄冷材22.24によって冷1.11さ
れ、結局、1段膨張室39に流れ込んだ1?″!l圧ヘ
リウムガスは30に程度に、また2段膨張室40に流れ
込んだ高圧ヘリウムガスは8KF?ft2に冷u1され
る。ここで、高圧弁34が閉じ、低圧弁32が聞く。こ
のように低圧弁32が聞くと、1段膨張室39内および
2段膨張室40内の高圧ヘリウムガスが膨張して寒冷を
発生する。この寒冷によっ−C第1ステージ16および
第2ステージ17が冷N1される。そして、ディスプレ
ーサ12が再び下死点へと移動し、これに伴って1段膨
張室39内および2段膨張室40内のヘリウムガスが排
除される。膨張したヘリウムガスは流体通路21.23
内を通る間に蓄冷材22.24によって暖められ、常温
となって排出される。以下、上述したサイクルが繰返さ
れて冷凍運転が行われる。このタイプの冷凍機は、超電
導マグネットの冷却や赤外線センサの冷却、あるいはま
たクライオポンプの冷却源として使用されている。
When the motor 13 starts rotating, the displacer 12 reciprocates between the top dead center and the bottom dead center. Display υ12
When the cold head is at the bottom dead center, the high pressure valve 34 opens and high pressure helium gas flows into the cold head 1. Next, the display 12 moves to the dead center. As mentioned above, there are gaps between the outer circumferential surface of the first displacer 18 and the inner circumferential surface of the first cylinder 14 and between the outer circumferential surface of the second displacer 19 and the inner circumferential surface of the second cylinder 15. Seals 25 and 26 are installed. Therefore, when the displacer 12 moves toward the top dead center, the high-pressure gas passes through the fluid passage 23 to the fluid passage 21 formed in the first displacer 18 and the second displacer 19, A first-stage expansion chamber 39 is formed between the displacer 18 and the second displacer 19, and a two-stage expansion chamber 39 is formed between one second displacer and the tip wall of the second cylinder 15.
It flows into the stage expansion chamber 40. Along with this flow, the high-It helium gas is cooled by the cold storage material 22, 24, and eventually flows into the first-stage expansion chamber 39. The high-pressure helium gas that has flowed into the two-stage expansion chamber 40 is cooled down to 8KF?ft2.The high-pressure valve 34 is closed, and the low-pressure valve 32 is closed. When the low pressure valve 32 hears this, the high pressure helium gas in the first stage expansion chamber 39 and the second stage expansion chamber 40 expands and generates cold.This cold causes -C first stage 16 and second stage 17. is cooled to N1.Then, the displacer 12 moves to the bottom dead center again, and along with this, the helium gas in the first-stage expansion chamber 39 and the second-stage expansion chamber 40 is removed.The expanded helium gas Fluid passage 21.23
While passing through the inside, it is warmed by the cold storage materials 22 and 24, and is discharged at room temperature. Thereafter, the above-described cycle is repeated to perform the refrigeration operation. This type of refrigerator is used to cool superconducting magnets, infrared sensors, and as a cooling source for cryopumps.

更に、第2蓄冷器36内の蓄冷材24として鉛の変わり
にある種の磁性体、例えばEr 3Ni、fEu S、
Gd Rh等を相当量使用することにより、冷凍機のR
低温部を下げ、低温(IOK以下)での冷凍能力を増加
させることができる。これは温度の低下と共に、鉛の比
熱が下がり、蓄冷材として熱を蓄える能力が減少してし
まい、蓄冷器としての熱交換効率が大幅に下がるためで
ある。従って、低温で鉛よりも比熱の大きい材料を用い
ることによって、蓄冷効率の向上を図り、最低温度の低
下と低温での冷凍能力の向上が実現されている。
Further, instead of lead as the regenerator material 24 in the second regenerator 36, some kind of magnetic material such as Er 3Ni, fEu S,
By using a considerable amount of Gd Rh, etc., the R of the refrigerator can be reduced.
It is possible to lower the low temperature section and increase the refrigeration capacity at low temperatures (below IOK). This is because as the temperature decreases, the specific heat of lead decreases, reducing its ability to store heat as a regenerator, and the heat exchange efficiency as a regenerator decreases significantly. Therefore, by using a material that has a higher specific heat than lead at low temperatures, it is possible to improve the cold storage efficiency, lower the minimum temperature, and improve the refrigerating capacity at low temperatures.

例えば、第2蓄冷器内の鉛の代りに、Er 3N;を使
用すると最低温度が8Kから5Kまで下がり、10にで
°冷凍能力も3Wから5Wまで向上している。
For example, when Er 3N is used instead of lead in the second regenerator, the minimum temperature drops from 8K to 5K, and the cooling capacity improves from 3W to 5W at 10°C.

しかしながら、上記のように構成された従来の冷凍機に
あっては次のような問題があった。即ち、第2蓄冷器3
6内の蓄冷材24の一部あるいは全部に磁性体を使用し
た場合、鉛のように球状に加工あるいは第1デイスプレ
ーサ18内の蓄冷材22のようにメツシュ状に加工する
ことは非常に困nである。従って、通常は溶融後のバル
ク状のものを粉砕後、ふるい符によっである大きさく1
00へ一500μm程度)に揃えたものが、蓄冷材とし
て使用されている。しかし、粉砕後のこれらの材料は数
μ山程度の細かい角や突起を右しており、それらの突起
が、冷凍機運転中に欠けて取れてしまう。蓄冷材24は
第2デイスプレーサ19よりこぼれないように両端でメ
ツシュ等によって蓋をしているが、それらにも数10μ
゛m程度の隙間が問いており、磁性体の細かい粉は、ヘ
リウムガスとともに抜けでてしまう。両端のメツシュ等
の蓋の隙間を細かくすることは、ヘリウムガスの圧力損
失を増大させることにつながり得策ではない。
However, the conventional refrigerator configured as described above has the following problems. That is, the second regenerator 3
When a magnetic material is used for part or all of the regenerator material 24 in the first displacer 18, it is very difficult to process it into a spherical shape like lead or into a mesh shape like the regenerator material 22 in the first displacer 18. It's difficult. Therefore, after pulverizing the melted bulk material, it is usually divided into 1-sized pieces using a sieve.
00 to -500 μm) is used as a cold storage material. However, these materials after pulverization have small corners and protrusions on the order of several micrometers, and these protrusions can chip and come off during operation of the refrigerator. The cold storage material 24 is covered with mesh etc. at both ends to prevent it from spilling over the second displacer 19, but there
There is a gap of about 1.5 ft., and fine powder of the magnetic material escapes along with the helium gas. It is not a good idea to narrow the gap between the lids such as meshes at both ends, as this will increase the pressure loss of the helium gas.

また、第2蓄冷器36から出た磁性体の微粉はシール2
5に付着し、シールの漏れj@増大させ冷凍能力を大幅
に低減させてしまう。また、第1蓄冷器35、バルブ3
2を通って、コンプレッサ33に至り、バルブ32の目
詰まりやコンプレッサ33の破損にもつながる。このよ
うに、粉砕したままの磁tI1体を蓄冷材として使用し
た場合、冷凍機の能力低下や冷凍機の破損を招くという
問題点があった。
In addition, the fine powder of magnetic material coming out of the second regenerator 36 is removed from the seal 2.
5, increasing seal leakage and significantly reducing refrigeration capacity. In addition, the first regenerator 35, the valve 3
2 and reaches the compressor 33, leading to clogging of the valve 32 and damage to the compressor 33. As described above, when the as-pulverized magnetic tI body is used as a cold storage material, there is a problem that the capacity of the refrigerator is decreased and the refrigerator is damaged.

(発明が解決しようとする課題) 上述の如く、磁性体を蓄冷材として使用した蓄冷式冷凍
機にあっては、冷凍機運転中に生じた磁性体の微粉が蓄
冷器より出てくることによって、冷凍機の冷凍能力低下
を招き、ひいては冷凍機の破損まで引起こすという問題
点があった。
(Problems to be Solved by the Invention) As mentioned above, in a regenerator refrigerator that uses a magnetic material as a regenerator, fine particles of the magnetic material generated during operation of the refrigerant come out from the regenerator. However, there was a problem in that the refrigerating capacity of the refrigerating machine was reduced, and even the refrigerating machine was damaged.

そこで本発明は、磁性体製蓄冷材が微粉を生じないよう
な形状にすることのできるvJ造方法と、この製造方法
によって製造した磁性体製の蓄冷材を用いた極低温冷凍
機を提供することを目的としている。
Therefore, the present invention provides a vJ manufacturing method that allows a regenerator material made of a magnetic material to be formed into a shape that does not produce fine powder, and a cryogenic refrigerator using a regenerator material made of a magnetic material manufactured by this manufacturing method. The purpose is to

[発明の構成] (課題を解決するための手段) 本発明は圧縮した冷媒ガスを蓄冷器を用いて冷却した後
、低温部で膨張させることによって寒冷を発生させる極
低温冷凍機の蓄冷器内にFIlいるlllll体性体製
蓄冷材造方法であって、前記磁性体製蓄冷材は磁性体の
粉砕によって所定の大きさに形成した後、ミキシングし
て角を除いた。
[Structure of the Invention] (Means for Solving the Problems) The present invention is directed to cooling compressed refrigerant gas using a regenerator and then expanding the compressed refrigerant gas in a low-temperature section to generate cold. FIl is a method for manufacturing a regenerator material made of a physical body, in which the regenerator material made of a magnetic material is formed into a predetermined size by crushing a magnetic material, and then mixed to remove corners.

また、圧縮した冷媒ガスを蓄冷器を用いて冷却した後、
低温部で膨張させることによって寒冷を発生さセる極低
温冷凍機において、前記蓄冷器に用いる蓄冷材を前記製
造方法による磁性体製蓄冷材としている。
In addition, after cooling the compressed refrigerant gas using a regenerator,
In a cryogenic refrigerator that generates cold by expanding in a low-temperature section, the cold storage material used in the cold storage device is a magnetic cold storage material made by the manufacturing method described above.

(作用) 磁性体の粒砕後のミキシングによって磁性体製蓄冷(Δ
の表面に有する突起の角を除いた。従つて、この磁性体
製蓄冷材を用いれば突起が欠けて取れることが抑制され
る。このため、冷凍機の運転中に磁性体製蓄冷材から微
粉が生じて、シールに付着し、冷凍性能を低下させたり
、バルブに傷を゛つけ、コンプレッサを破損させること
を防ぐことができる。
(Function) By mixing after crushing the magnetic material, magnetic material cold storage (Δ
The corners of the protrusions on the surface were excluded. Therefore, if this magnetic regenerator material is used, the protrusions are prevented from chipping and coming off. Therefore, it is possible to prevent fine powder from being generated from the magnetic regenerator material during operation of the refrigerator, adhering to the seal, deteriorating the refrigerating performance, damaging the valve, and damaging the compressor.

(実施例) 以下、図面を参照しながら実施例を説明する。(Example) Examples will be described below with reference to the drawings.

第1図に本発明の一実施例に係る冷凍機が示されている
。この図では第5図と同一部分が同一符号で示されてい
る。従って、m複する部分の説明は省略する。
FIG. 1 shows a refrigerator according to an embodiment of the present invention. In this figure, the same parts as in FIG. 5 are designated by the same reference numerals. Therefore, the explanation of m multiple parts will be omitted.

この実施例に係る冷凍機が従来の冷凍機と異なる点は、
第2蓄冷器35内の蓄冷材24に使用している磁性体の
形状・加工方法にある。
The difference between the refrigerator according to this embodiment and the conventional refrigerator is that
The problem lies in the shape and processing method of the magnetic material used for the regenerator material 24 in the second regenerator 35.

磁性体製蓄冷材は溶融後、粉砕し、ふるい等によって適
当な大きさく100〜500μm)に選別し、磁性体粒
とする。この状態の磁性体粒には数+μmから数μm程
度で角度が30度以下の細かい突起が多数ついている。
After the magnetic regenerator material is melted, it is pulverized and sorted into appropriate sizes (100 to 500 μm) using a sieve or the like to obtain magnetic particles. The magnetic grains in this state have many fine protrusions of several micrometers to several micrometers and angles of 30 degrees or less.

第3図°に粉砕・選別後の磁性体粒41Aの様子を示す
。この磁性体粒41Δの突起41aは、ぞのままでは冷
凍運転を行)゛うらに欠けて冷凍機内に漏れてしまう。
FIG. 3 shows the state of the magnetic particles 41A after crushing and sorting. If the protrusions 41a of the magnetic grains 41Δ are left as they are during the refrigeration operation, they will break off at the back and leak into the refrigerator.

実験によるど、これらの突起41aのうち角度が30度
以下のものは冷凍あの運転後に全て欠()落らている。
According to experiments, all of these protrusions 41a with an angle of 30 degrees or less have fallen off after the freezing operation.

従って、30度以下の突起のない磁性体粒を蓄冷材とし
て使用することにより、磁性体粒の微粉が蓄冷器から漏
れることを防ぐことができる。
Therefore, by using magnetic particles without protrusions of 30 degrees or less as a regenerator, it is possible to prevent fine powder of the magnetic particles from leaking from the regenerator.

30度以下の突起のない磁性体粒は、磁性体を粉砕・選
別後、アルコール等の有機溶媒中あるいはアルゴンガス
等の不活性ガス中でミギサー等によってミキシングする
ことによって製造することができる。
Magnetic particles without protrusions of 30 degrees or less can be produced by crushing and sorting the magnetic material and then mixing it in an organic solvent such as alcohol or an inert gas such as argon gas using a mixer or the like.

第2図にミキシング後の磁性体粒4113の様子を承り
。第2図に見られるように細かい突起(まミキシングに
よって取れており、この磁性体粒41Bを蓄冷材として
使用すると運転中に磁性体粒4’l Bの微粉が第2蓄
冷器36よりこぼれてシール等に付着し冷凍性能を落と
づということがなくなる。
Figure 2 shows the state of the magnetic particles 4113 after mixing. As shown in FIG. 2, fine protrusions (removed by mixing) are produced. When these magnetic particles 41B are used as a cold storage material, fine particles of magnetic particles 4'lB spill out from the second cold storage device 36 during operation. This prevents it from sticking to seals and deteriorating refrigeration performance.

第4図に磁性体を粉砕したのみの磁性体粒41Aを蓄冷
材に使用した極低温冷凍機と、粉砕後、ミキシングを行
った磁性体粒41Bを蓄冷材に使用した本発明実施例の
極低温冷凍機の運転後100時間を経過した時の冷凍能
力曲線を示す。横軸は第2ステージ17の温度(K)を
示し、縦軸は第2ステージ17に加えた熱負荷(W)を
示している。双方共運転開始直後の冷凍能力曲線は一致
していたが、100時間経過後には第4図のように能力
に差が生じている。本発明実施例の冷凍機に関して(ユ
運転開始直後と全く等しい冷凍能力を示した。
Figure 4 shows a cryogenic refrigerator in which magnetic particles 41A, which are simply pulverized magnetic substances, are used as a regenerator material, and a cryogenic refrigerator according to an embodiment of the present invention, in which magnetic particles 41B, which are pulverized and mixed, are used as a regenerator material. A refrigerating capacity curve after 100 hours has passed after the operation of the low temperature refrigerator is shown. The horizontal axis represents the temperature (K) of the second stage 17, and the vertical axis represents the thermal load (W) applied to the second stage 17. The refrigerating capacity curves of both cases were the same immediately after the start of operation, but after 100 hours there was a difference in capacity as shown in Figure 4. Regarding the refrigerator of the example of the present invention, it showed exactly the same refrigerating capacity as immediately after the start of operation.

また、運転侵分解調査を行った所、粉砕したのみの磁性
体粒41Aを蓄冷材24に使用した冷凍機ではシール2
6に磁性体粒41aの微粉が付着していたが、本発明実
施例”の冷凍機ではそのような微粉は見られなかった。
In addition, when we conducted an operational erosive decomposition investigation, we found that the seal 2 of a refrigerator using only pulverized magnetic particles 41A as the regenerator material 24 was
Although fine powder of magnetic particles 41a was found adhering to No. 6, such fine powder was not observed in the refrigerator of "Embodiment of the Present Invention".

従って、付着した磁性体粒の微粉がシール26の漏れ量
を増加させ、第4図に見られるような冷凍能力の低下を
持たらしたものと考えられ、ミキシングを行°った磁性
体粒41Rを蓄冷材として使用りることの効果が理解で
きる。
Therefore, it is thought that the adhering fine particles of magnetic particles increased the amount of leakage from the seal 26, causing a decrease in the refrigerating capacity as seen in Fig. 4. I can understand the effect of using it as a cold storage material.

なお、上述した実施例では、冷凍機の栴造はGM冷凍機
として・いたが、GM76凍機に限らず、スターリング
冷凍機や改良型ソルベーサイクル冷凍機、ビルミ(7冷
凍翁などの蓄冷式極低hm冷凍機においても本発明は適
用される。また、磁性体の形状も粒状のみならず粉体、
繊維状磁性体(例えばメツシュ等の形状)、他硬質等の
形状をもつ磁性体においても均等に適用される。
In the above-mentioned embodiments, the Seizo refrigerator was a GM refrigerator, but it is not limited to the GM76 refrigerator, but can also be used as a Stirling refrigerator, an improved Solvay cycle refrigerator, or a regenerator type refrigerator such as Birmi (7 Refrigerator). The present invention is also applicable to low hm refrigerators.The shape of the magnetic material is not only granular but also powder,
It is equally applicable to fibrous magnetic materials (for example, mesh shapes) and other hard magnetic materials.

[発明の効果] 以l−述べたように本発明によれば、使用中に欠(プ易
い角を有さない磁性体製蓄冷材を得ることができ、また
、これを用いた極低温冷凍機によれば、冷凍能力の低下
や破損を招くことを未然に防ぐことができる。
[Effects of the Invention] As described below, according to the present invention, it is possible to obtain a magnetic regenerator material that does not have corners that are easily broken during use, and it is also possible to obtain cryogenic refrigeration materials using the same. According to the machine, it is possible to prevent a decrease in refrigerating capacity or damage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る極低温冷凍機を局部的
に切り欠ぎして示ず構成図、第2図は同極(l(潟冷凍
機に組込まれた磁性体製蓄冷材を拡大して見た図、第3
図はミキシング前の磁性体製蓄冷材を拡大して見た図、
第4図は本発明実施例に係る極低温冷凍機の特性を従来
の極低温冷凍機のぞれど比較して示した図、第5図は従
来の極低温冷凍機の構成図である。 24・・・蓄冷材 41Δ・・・ミキシング前の磁性体製蓄冷材41B・・
・ミキシング後の磁性体製蓄冷材41a・・・角
Fig. 1 is a partially cutaway block diagram of a cryogenic refrigerator according to an embodiment of the present invention; 3rd enlarged view of
The figure is an enlarged view of the magnetic regenerator material before mixing.
FIG. 4 is a diagram showing the characteristics of the cryogenic refrigerator according to the embodiment of the present invention in comparison with a conventional cryogenic refrigerator, and FIG. 5 is a diagram showing the configuration of the conventional cryogenic refrigerator. 24... Cold storage material 41Δ... Magnetic material cold storage material 41B before mixing...
・Magnetic cold storage material 41a after mixing... corner

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮した冷媒ガスを蓄冷器を用いて冷却した後、
低温部で膨脹させることによって寒冷を発生させる極低
温冷凍機の蓄冷器内に用いる磁性体製蓄冷材の製造方法
であつて、前記磁性体製蓄冷材は磁性体の粉砕によつて
所定の大きさに形成した後、ミキシングして角を除いた
ことを特徴とする蓄冷材の製造方法。
(1) After cooling the compressed refrigerant gas using a regenerator,
A method for manufacturing a magnetic regenerator material used in a regenerator of a cryogenic refrigerator that generates cold by expanding in a low-temperature section, wherein the magnetic regenerator material is made into a predetermined size by crushing the magnetic material. A method for producing a cold storage material, which is characterized in that the material is formed into a solid material and then mixed to remove the corners.
(2)圧縮した冷媒ガスを蓄冷器を用いて冷却した後、
低温部で膨脹させることによって寒冷を発生させる極低
温冷凍機において、前記蓄冷器に用いる蓄冷材を前記請
求項1記載の製造方法による磁性体製蓄冷材を用いてい
ることを特徴とする極低温冷凍機。
(2) After cooling the compressed refrigerant gas using a regenerator,
A cryogenic refrigerator that generates cold by expanding in a low-temperature section, characterized in that the cold storage material used in the cold storage device is a magnetic cold storage material produced by the manufacturing method according to claim 1. refrigerator.
JP1127772A 1989-05-23 1989-05-23 Cold storage material manufacturing method and cryogenic refrigerator Expired - Fee Related JPH0668418B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1127772A JPH0668418B2 (en) 1989-05-23 1989-05-23 Cold storage material manufacturing method and cryogenic refrigerator
EP19900305632 EP0399813B1 (en) 1989-05-23 1990-05-23 Cryogenic refrigerator
DE1990603738 DE69003738T2 (en) 1989-05-23 1990-05-23 Cryogenic refrigeration system.
US07/776,885 US5224657A (en) 1989-05-23 1991-10-17 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1127772A JPH0668418B2 (en) 1989-05-23 1989-05-23 Cold storage material manufacturing method and cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH02309159A true JPH02309159A (en) 1990-12-25
JPH0668418B2 JPH0668418B2 (en) 1994-08-31

Family

ID=14968315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1127772A Expired - Fee Related JPH0668418B2 (en) 1989-05-23 1989-05-23 Cold storage material manufacturing method and cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPH0668418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006315A1 (en) * 1994-08-23 1996-02-29 Kabushiki Kaisha Toshiba Cold heat accumulating material for extremely low temperatures and cold heat accumulator for extremely low temperatures using the same
WO1997031226A1 (en) * 1996-02-22 1997-08-28 Kabushiki Kaisha Toshiba Cryogenic refrigerant and refrigerator using the same
JP2006002148A (en) * 2005-05-23 2006-01-05 Toshiba Corp Cryogenic heat storage material, method for producing the cryogenic heat storage material, and method for producing cryogenic heat storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152378A (en) * 1974-09-02 1976-05-08 Philips Nv
JPS5852987A (en) * 1981-08-10 1983-03-29 ヘリツクス・テクノロジ−・コ−ポレ−シヨン Regenerated heat exchanger
JPS6073267A (en) * 1983-09-30 1985-04-25 株式会社東芝 Refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5152378A (en) * 1974-09-02 1976-05-08 Philips Nv
JPS5852987A (en) * 1981-08-10 1983-03-29 ヘリツクス・テクノロジ−・コ−ポレ−シヨン Regenerated heat exchanger
JPS6073267A (en) * 1983-09-30 1985-04-25 株式会社東芝 Refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006315A1 (en) * 1994-08-23 1996-02-29 Kabushiki Kaisha Toshiba Cold heat accumulating material for extremely low temperatures and cold heat accumulator for extremely low temperatures using the same
US6042657A (en) * 1994-08-23 2000-03-28 Kabushiki Kaisha Toshiba Regenerator material for extremely low temperatures and regenerator for extremely low temperatures using the same
JP2013100509A (en) * 1994-08-23 2013-05-23 Toshiba Corp Method for producing cold-storage material for extremely low temperature
WO1997031226A1 (en) * 1996-02-22 1997-08-28 Kabushiki Kaisha Toshiba Cryogenic refrigerant and refrigerator using the same
JP2006002148A (en) * 2005-05-23 2006-01-05 Toshiba Corp Cryogenic heat storage material, method for producing the cryogenic heat storage material, and method for producing cryogenic heat storage device

Also Published As

Publication number Publication date
JPH0668418B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
US7594406B2 (en) Regenerator and cryogenics pump
JP2011027272A (en) Partition member, cold storage device, and cold storage device type refrigerator
JPH02309159A (en) Manufacture of cold accumulation material and ultra-low temperature refrigerator
JP2609327B2 (en) refrigerator
JPH02309158A (en) Ultra-low temperature refrigerator
JPH0452468A (en) Cryogenic refrigerator
JP3588647B2 (en) Regenerator and refrigerator
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JP3417654B2 (en) Cryogenic refrigerator
JP2766341B2 (en) Cryogenic refrigerator
US5224657A (en) Cryogenic refrigerator
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
JP2567196B2 (en) How to operate a cryogenic refrigerator
JP2723342B2 (en) Cryogenic refrigerator
JPH10132405A (en) Cold storage freezer and its operating method
JPH0399162A (en) Cryogenic refrigerator
JP2563272Y2 (en) Low temperature regenerator
JPH11257771A (en) Cold storage refrigerator
JPH11108479A (en) Cold heat storage type refrigerator and its operating method
JP2549861Y2 (en) Regenerator for cryogenic refrigerator
JP2980461B2 (en) Cryogenic refrigerator
JP2885529B2 (en) Cryogenic refrigerator
JPH0678857B2 (en) Cryogenic refrigerator
JPH11257769A (en) Cold storage refrigerating machine
JP2732686B2 (en) refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees